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Diagrammatic approach to attosecond delays in photoionization
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We study laser-assisted photoionization by attosecond pulses using a time-independent formalism based on
diagrammatic many-body perturbation theory. Our aim is to provide an ab initio route to the “delays” for this
above-threshold ionization process, which is essential for a quantitative understanding of attosecond metrology.
We present correction curves for characterization schemes of attosecond pulses, such as “streaking,” that account
for the delayed atomic response in ionization from neon and argon. We also verify that photoelectron delays from
many-electron atoms can be measured using similar schemes if, instead, the so-called continuum-continuum

delay is subtracted. Our method is general and it can be extended also to more complex systems and additional

correlation effects can be introduced systematically.
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The temporal aspects of photoionization from many-
electron systems can now be explored using extreme ultraviolet
(XUYV) attosecond pump pulses and infrared (IR) femtosecond
laser probe fields. Experimental studies have evidenced rela-
tive delays between different ionization processes of various
target systems including both solid-state surfaces [1] and
atomic gases [2—4]. This has stimulated a number of theoretical
investigations concerning the role of the long-range Coulomb
potential [3,5,6], many-electron screening effects [4,7,8],
electron localization [9], and nondipole effects [10]. The
delayed response of atomic systems can be decomposed as
the sum of two terms [3,11]:

A = Tw + Tcc, (1)

corresponding to the Wigner-like delay of the photoelectron
wave packet [12,13] and the continuum-continuum delay
from the laser-probe process [3]. Equation (1) is accurate
for simple single-electron systems [11,14], but its extension
to many-electron systems has been predicted to be difficult
[15]. It is of great importance for attosecond metrology to
understand the origin of these time delays [16,17], but also
to be able to account for them in the most accurate way.
Numerical experiments, based on the propagation of the
time-dependent Schrodinger equation, serve as an important
tool to estimate the delays in photoionization, but inclusion
of all many-electron interactions is not possible at this time
[7,8,18], except in the restricted case of helium [19]. In these
demanding numerical experiments, the fast spatial extension
of the photoelectron wave packet leads to difficulties for the
analysis of the ionization process, due to the artificial boundary
of the computational box.

In this Rapid Communication we present a method to
compute complex amplitudes for this class of above-threshold
ionization (ATTI) transitions in a time-independent formalism.
These complex amplitudes are then used to determine the
atomic delay in laser-assisted photoionization [14,17] (also
referred to as the “streaking delay”) for electrons from the
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outermost n shell in neon and argon atoms. Furthermore, we
gauge the validity of Eq. (1) and discuss the role of multiple
ionization channels. Correlation effects are accounted for “all
orders” of single-particle excitations, including the nonlocal
exchange interaction and ground-state correlation. Our anal-
ysis is based on the dominant class of two-photon processes,
where one XUV photon is absorbed from the attosecond pulse
and one IR probe photon is exchanged. The XUV photon
frequencies must then differ by two probe photons in order to
reach the same final state, as can be seen in Fig. 1(a) [14]. The
photoelectron is thus probed at different intermediate kinetic
energies, in close analogy with spectral shear interferometry,
yielding information about the spectral phase variation of
the attosecond pulse [20], but also including a characteristic
response of the electronic wave packet [21]. Interestingly, these
two-photon amplitudes depend rather weakly on the probe
step of the process in the high XUV energy range, as shown in
Fig. 1(b) for the case of ionization from the 3 p orbital in argon.
The gross features of the two-photon process can, therefore,
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FIG. 1. (Color online) (a) Photon picture of laser-assisted pho-
toionization from the outermost orbital of argon (3 p). (b) Phase (solid)
and normalized probability (dashed) calculated from the two-photon
matrix elements. The thick curves correspond to absorption of a probe
photon (A), while the thin curves correspond to emission of a probe
photon (E). The probe photon w is 1.55 eV.

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.86.061402

J.M. DAHLSTROM, T. CARETTE, AND E. LINDROTH

W

FIG. 2. (Color online) (a) Absorption of XUV (pump) and IR
(probe) photons by the photoelectron. (b) Direct and (c) exchange
interactions between the photoelectron and the remaining electrons
in the core. (d)—(g) Ground-state correlation interactions. The XUV
photon and the IR photon are indicated by the fast wiggle and slow
wiggle, respectively, while the interaction between the photoelectron
and the remaining hole in the atom is a dashed line.

be identified already in the XUV-photon matrix element, e.g.,
a “Cooper minima” at an XUV energy of ~55 eV as expected
from the 3p orbital in argon [22]. Around this energy, the
phase of the matrix element exhibits a nontrivial behavior as
the dominant ionization rate is shifted from the 3p — €d to
the 3p — es channel. Clearly, this complex region is ideally
suited for a quantitative test of Eq. (1).

The correlated photoelectron and ion are represented using
the perturbation diagrams shown in Fig. 2, including linear
screening for the absorption of the XUV photon [23]. It is
convenient to rewrite the two-photon transitions in Fig. 2 using
a perturbed wave function (PWF) |pgq ,) for absorption of one
XUV photon €2 from an initial atomic orbital |a) with energy
€,. The complex two-photon transition amplitude can then be
expressed as a one-photon dipole matrix element from this
intermediate PWF to the final state |s) through absorption of
one probe photon w,

Mx,a),Q,a = <S|dw|p9,a>» (2)

where global energy conservation for absorption of both
photons is imposed: €, — €, = Q + w. The photoelectrons are
detected along the polarization direction of the fields, namely,
the quantization axis Z. Note that the dipole matrix element
in Eq. (2) is nontrivial because it describes an ATI process,
i.e., a transition between two wave functions of continuum
character.

The PWF s set up in a Hartree-Fock (HF) basis with exterior
complex scaling in the radial dimension [24]:

0<r <Rc

Rc <, )

r— { " .

Rc + (r — Re)e'?,
where the complex scaling starts at r = R¢, located far away
from the atomic core. Typical scaling parameters are Rc = 100
Bohr radii and ¢ = 43°. This allows for the photoelectron to
reach its asymptotic form before entering the exterior complex
scaled region, as seen in Fig. 3(a). A broad range of correlation
effects between the photoelectron and the ion can then be
accounted for using infinite-order, many-body perturbation
theory (MBPT). We construct self-consistent equations for
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FIG. 3. (Color online) (a) Typical outgoing PWEF, following
absorption of one XUV photon, with real (thin red) and imaginary
(thick blue) components shown. The damping of the PWF for
r > Rc¢ = 100 Bohr radii is due to the exterior complex scaled basis
set. (b) Radial integration path used to evaluate the dipole transition
in Eq. (2). Note that R < R, which implies that the “break point”
occurs in the unscaled region of space.

the forward-propagating (4) and backward-propagating (—)
PWF using the diagrams in Fig. 1:
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is the zeroth-order PWF, i.e., before interaction with the IR
photon and with no correlation. The sum over excited states
(exc) in Egs. (4) and (5) includes bound and continuum states.
The finite size of the computational box Rg = 140 Bohr radii
ensures that the HF basis remains discrete, while the use
of exterior complex scaling results in complex eigenenergies
for the continuum states and, therefore, the correct outgoing
nature of the photoelectron wave packet (inside the unscaled
region).

Further, in Eq. (4), the terms on the second line correspond
to direct and exchange interactions, and the terms on the
third line represent the ground-state correlation. We can solve
Eq. (4) by numerical iteration including all interacting core
orbitals |b) of the atom, but for the XUV photon energies of
interest in this Rapid Communication, it is sufficient to include
only the outermost n orbitals. Once convergence is found, the
forward-propagating PWF is used to evaluate the two-photon
matrix element in Eq. (2). The backward-propagating PWF is
only required for a self-consistent treatment of ground-state
correlation effects in Eq. (4) (cf. Ref. [25]). Also, a PWF
for the process where the IR photon is absorbed first, i.e.,
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time-ordered before absorption of the XUV photon, can be
constructed in a similar fashion, but we have verified that
these processes are weaker and can be omitted to good
approximation.

In order to evaluate Eq. (4), we apply the closed-shell HF
approximation. Then, we remove the monopole contribution
of a vacancy in the atom, say |a), from the MBPT operator rle
to form modified HF equations that include a “projected-hole”
potential [26]. This results in two important consequences:
(1) the long-range interaction between the photoelectron and
the ion, due to the monopole term, is included already in
the modified HF basis; and (ii) the remaining part of the rﬁl
interactions are short ranged. This method can be extended
also to more complex systems, such as molecules, provided
that the asymptotic form of the PWF will be determined
by this long-range monopole term. The final state |s) is not
correlated in our analysis because there are no interactions
(dashed lines) after absorption of the probe photon in Fig. 2.
The exact form of the final state is not critical since the
absolute phase shift cancels out when constructing the atomic
delay [14,17], but interorbital interactions after the probe
step may, nonetheless, present an interesting case for further
studies.

In the complex scaled region Rc < r < Rp the photoelec-
tron wave packet is exponentially decaying, as observed in
Fig. 3(a). Therefore, it cannot be directly used for the transition
to the final state in Eq. (2), but it is possible to solve this
problem using the analytical properties of Coulomb waves.
The ATI matrix element is evaluated by changing the path
of radial integration in the complex plane before entering
the complex scaled region, as sketched in Fig. 3(b). The
first part is integrated from r =0 to R using a numerical
final state and PWF. Both functions are then matched to
Coulomb functions at this break point and the next part of the
integral is evaluated from R to R &£ iC using these analytical
functions. The remaining integral path, sketched as a dashed
curve, can be neglected provided that C is large enough,
typically a few hundred Bohr radii. We have computed the
integrals for several different break points in order to verify this
procedure.

In Fig. 4, we present the atomic delays for photoelectrons
from the outermost n orbitals of (a) neon and (b) argon atoms.
We find that the atomic delays from the outer orbitals, 2p
and 3p, respectively, are mostly insensitive to the coupling
with the inner orbitals. This demonstrates the validity of
the single-active orbital approximation for outer electrons.
In contrast, the delays from the inner orbitals, 2s and 3s,
respectively, are strongly altered by the coupling to the outer
orbitals and it is required to venture beyond a single-active
orbital. This interorbital correlation leads to an induced delay
of a few attoseconds in the entire energy range for neon. The
relative delay between the two ionization channels is ~12 as
for an XUV photon energy of ~105 eV, which is close to
the value of 10.2 & 1.3 as obtained using the time-dependent
R-matrix approach by Moore et al. [8]. Intriguingly, these
theoretical values are still too small to properly explain the
21 &£ 5 as measured experimentally by Schultze et al. [2]. Our
approach can be extended to include additional correlation
processes [27] allowing for further investigation of this
discrepancy.

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 86, 061402(R) (2012)

0 Ne2p'1 Ne2s1
(a)
_20 L
m
©
N—
§~ 40+
(]
kS
L
g -60
o
<
N | Ne2p'l {25'1}
-80 - w Nezpl i
+ Ne2s1 {2p'1}
* Ne2sL
-10045 20 40 60 80 100 120
XUV photon energy (eV)
Ar3p'1 Ar3s]
400 (b) T T T T T T T
+ Ar3p'1 {35'1}
+ Ar3p'1
300 x Ar3sd {3p713
= x Ar3s1
©
N—
s, 200+
)
(]
ke
L 100+
g
S
< ol
-100 -

0 10 20 30 40 50 60 70 80
XUV photon energy (eV)

FIG. 4. (Color online) Atomic delays from the outermost orbitals
of (a) neon and (b) argon atoms using a probe of 1.55 eV. The
data including interorbital correlation is outlined, while the single-
active orbital approximation is marked by small black symbols. HF
ionization thresholds are shown.

In the case of argon, we observe sharp delay structures
close to the “Cooper minima” from the 3p and 3s orbitals,
respectively. The delay peak from the 3s orbital is only
observed in the correlated calculation, as predicted by Kheifets
in Ref. [4]. The atomic delay difference between the 3p and
3s orbitals is ~78 as at an XUV photon energy of ~37 eV,
which is consistent with the experimental value of 100 &= 50
presented in Ref. [4].

Finally, in order to gauge the validity of Eq. (1), we extract
the Wigner delay 7y from the PWF using scattering states
for emission along the polarization axis. This delay is then
subtracted from the total atomic delay in order to obtain the
“exact” continuum-continuum delay, tcc = 74 — tw, for each
ionization process (see Fig. 5). An analytical curve from
the asymptotic approximation [17] shows good agreement
for all ionization processes in neon and argon. The large
delay peaks of several hundred attoseconds in argon amount
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FIG. 5. (Color online) The exact continuum-continuum delay is
determined for all outermost n-shell electrons in neon and argon as
Tcc = T4 — Ty using Eq. (1). The good agreement with the analytical
curve (CC) from Ref. [17] shows that a meaningful separation of the
delays can be made for atomic many-electron systems.

to rather small deviations of tcc, which are barely visible
in Fig. 5.
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In conclusion, we have developed a powerful approach to
include correlation effects in laser-assisted photoionization.
The delayed atomic response 74 is calculated from first
principle for all outermost n-shell electrons in neon and
argon atoms. Future analysis of attosecond pulse structures
based on RABITT [20], PROOF [28], and FROG-CRAB [29]
should include 74 in order to avoid errors of several hundred
attoseconds close to atomic features, such as Cooper minima.
The calculation of the continuum-continuum transition relies
on the asymptotic form of the intermediate wave packet, but
only far away from the atomic core, where it is known to be an
outgoing Coulomb function. In this way, we have demonstrated
the validity of Eq. (1) also for correlated atomic systems.
Since the method presented here builds on well-developed
many-body methods, it can also be extended to other systems
where the random phase approximation (RPA) has been
applied previously and the general form of the asymptotic
continuum wave packet is known. As an example, it would be
interesting to study the role of an IR probe field present in pho-
toionization of N,, where calculations have been performed
within the RPA covering the highest four occupied molecular
orbitals [30].
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