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Noiseless amplification or attenuation are two heralded filtering operations that enable amplifying or de-
amplifying a quantum state of light with no added noise, at the cost of a small success probability. We show
that inserting such noiseless operations in a transmission line improves the performances of continuous-variable
quantum key distribution over this line. Remarkably, these noiseless operations do not need to be physically
implemented but can simply be simulated in the classical data postprocessing stage. Hence, virtual noiseless
amplification or attenuation amounts to performing a Gaussian postselection, which enhances the secure range
or tolerable excess noise while keeping the benefits of Gaussian security proofs.
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I. INTRODUCTION

Continuous-variable quantum key distribution (CV QKD)
based on Gaussian states and homodyne or heterodyne
detection can achieve very high secret key rates; see, e.g., [1]
for a review. Moreover, its practical implementation does
not require single-photon detectors and can be made to be
compatible with telecommunication optical networks [2].
However, although theory predicts that a secure key can be
generated for a pure loss channel over an arbitrary large
distance [3], the practical range of CV QKD is currently limited
to several tens of kilometers by noise and imperfect classical
data processing [4,5].

In contrast to classical optical networks, losses in quantum
communication channels cannot be compensated for by usual
phase-insensitive amplifiers, as the latter inevitably add noise
[6], making the channel insecure. Recently, however, the con-
cept of heralded noiseless quantum amplification has emerged
as a novel tool [7], which enables one to probabilistically
increase the amplitude of a coherent state without adding any
extra noise, |α〉 → |gα〉 with gain g > 1. Of course, a natural
question arises whether this noiseless amplifier may improve
the performance of QKD, particularly whether it can enhance
its secure range. In Ref. [8], it was indeed argued that (a
double version of) the noiseless amplifier can be beneficial
for device-independent quantum cryptography with single
photons.

Here, we investigate this question in more general terms.
We start from the observation that any physical realization of
the noiseless amplifier turns out to be very demanding. Even
the proof-of-principle experimental noiseless amplification of
weak coherent states requires state-of-the art technology, such
as single-photon addition and subtraction, or an auxiliary
source of single photons and multiphoton interference [9–13].
Moreover, the actual success rate of these experiments is
much lower than the theoretical predictions due to various
experimental limitations, and, furthermore, the noiseless trans-
formation can only be implemented approximately. Such an
approach seems rather impractical in the context of CV QKD,
where the system should be reasonably simple and robust in
order to allow for field deployment.

In this paper, we show that the physical implementation
of the noiseless amplifier can be substituted with suitable
data processing, so that the amplification is performed only
virtually. Just as virtual entanglement is used to analyze the
security of prepare-and-measure CV QKD protocols [14], it
appears that virtual noiseless amplification may simulate the
associated quantum filter and be beneficial. We also turn our
attention to a dual quantum filter called noiseless attenuation,
which is analogous to noiseless amplification but with a gain
lower than 1 [15]. It probabilistically transforms |α〉 → |να〉
with gain ν < 1, so it is akin to a beam splitter although it
effects a similar de-amplification on any state without adding
noise. We prove that noiseless attenuation can be faithfully
emulated by classical postprocessing of experimental data with
a moderate overhead. Noiseless amplification can, in principle,
also be emulated arbitrarily well, but an exact emulation is, in
contrast, only possible in the limit of a low success probability.
In both cases, the emulation amounts to applying what we call
a Gaussian postselection of the classical data.

We also demonstrate that (virtual) noiseless amplification
or attenuation can extend the range of CV QKD over noisy
channels. A simple picture, which provides a good—though
not rigorous—intuition of this effect, is as follows. The emitter
(Alice) preprocesses her signal states by noiselessly attenuat-
ing them, thereby making them strongly indistinguishable to an
eavesdropper (Eve) as they all approach vacuum. At the other
end of the line, the receiver (Bob) “revives” the signal states
by noiselessly amplifying them. Somehow, Eve cannot bias
the pre- and postselection filters, and the above “compaction”
of the signal states in the channel can only be detrimental
to her. In practice, preselection is not needed (it amounts
to reducing the modulation variance), while postselection
associated with noiseless amplification can be applied virtually
on the experimental data.

The usefulness of postselection in CV QKD is well
known [16], but it also comes with a strong limitation on
the resulting security [17]. Here, we replace this classical
filter (i.e., postselection conditionally on some measurement
outcome) with a quantum filter (i.e., noiseless amplification
or attenuation), which, although it is simulated classically, can
be viewed as an entanglement distillation protocol. Thus, our
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protocol with postselection is completely equivalent to the
following entanglement-based scheme: Alice sends one part
of an entangled two-mode squeezed vacuum state through the
channel to Bob, who applies a quantum filter in order to distill
the entanglement. The successfully distilled entangled states
are then used in an ordinary deterministic CV QKD protocol
where both Alice and Bob perform Gaussian measurements on
their parts of the shared states. Due to this equivalence with an
effective deterministic Gaussian protocol, all security proofs
and corresponding secret key rates that have been obtained
based on the optimality of Gaussian attacks [18–20] fully apply
to the protocol discussed here.

II. CV QKD PROTOCOLS

Gaussian protocols, to which we restrict ourselves here,
are based on the Gaussian modulation of Gaussian (coherent
or squeezed) states of light and Gaussian (homodyne or
heterodyne) measurements, which gives four possibilities. In
the first two protocols, Bob performs homodyne detection,
measuring at random the x or p quadrature, while Alice emits
a Gaussian-modulated coherent [21] or squeezed [22] state. In
the next two, Bob performs heterodyne detection, measuring
the x and p quadratures simultaneously, while Alice emits
again a coherent [23] or squeezed [24] state. Note the existence
of a fifth protocol, where Alice sends (mixed) thermal states
instead of pure states [25].

In what follows, we focus on the most symmetric protocol
[23], where Alice emits coherent states |α〉 and Bob projects
onto coherent states |β〉 (heterodyne detection), as illustrated
in Fig. 1(a). Alice draws a complex amplitude α from a
bivariate Gaussian distribution of variance V , and sends |α〉
to Bob through a quantum channel L which is controlled
by Eve. Then, Bob makes a projective measurement onto
coherent states and obtains the complex outcome β. After
N repetitions of these steps, Alice and Bob extract a secret
key from the accumulated classical data. From Eve’s point of
view, this prepare-and-measure protocol is indistinguishable
from an entanglement-based scheme where Alice prepares an
entangled two-mode squeezed vacuum state,

|�EPR〉 =
√

1 − λ2
∞∑

n=0

λn|n,n〉, (1)

FIG. 1. (a) Prepare-and-measure CV QKD protocol with coherent
states and heterodyne detection. (b) Equivalent virtual entanglement-
based protocol, with heterodyne detection on both sides.

FIG. 2. (a) CV QKD with coherent states and heterodyne detec-
tion augmented with noiseless amplification of the received signal.
(b) Equivalent protocol where noiseless amplification is emulated by
postprocessing Bob’s measurement data.

with λ2 = 2V/(2V + 1), and performs heterodyne measure-
ment on one mode; see Fig. 1(b).

This virtual entanglement picture [14] is very useful
for analyzing the security and understanding the benefit of
noiseless amplification. Suppose that L is a pure loss channel
with transmittance T . As shown in Ref. [26], an entangled
state (1) can be faithfully distributed over L if Alice sends
one mode of a weakly entangled state (λ � 1) to Bob, who
noiselessly amplifies his mode. In the considered CV QKD
protocol, this would correspond to weak modulation on Alice’s
side (V � 1) combined with noiseless amplification on Bob’s
side; see Fig. 2(a).

III. VIRTUAL NOISELESS AMPLIFICATION

The noiseless amplifier is described by the nonunitary
operator gn̂, where n̂ denotes the photon number operator.
Although it is probabilistic, this filter is Gaussian in the sense
that it converts a Gaussian state into another Gaussian state.
This filter can be viewed as distilling the virtual entanglement
between Alice and Bob, hence effectively converting the
channel L into another channel with presumably higher
associated performances. Unfortunately, gn̂ is an unbounded
operator for g > 1, so it cannot be implemented exactly, and,
furthermore, its optical implementation is very challenging.
Remarkably, these obstacles can be overcome by emulating
the noiseless amplifier, which is possible as it is immediately
followed by heterodyne measurement. Note that we can
formally consider the noiseless amplifier gn̂ at the output of
channel L to be part of the detection process; see Fig. 2(a).
Denoting by ρ̂ the mixed state at the output of L, Bob obtains
(after amplification) the measurement outcome β with relative
(unnormalized) probability

Pg(β) = 1

π
〈β|gn̂ρ̂ gn̂|β〉. (2)

Using the identity gn̂|β〉 = e(g2−1)|β|2/2|gβ〉, we can write

Pg(β) = 1

π
e(g2−1)|β|2〈gβ|ρ̂|gβ〉. (3)

If Bob directly measures ρ̂ without prior amplification, he
gets the outcome γ with probability P (γ ) = 1

π
〈γ |ρ̂|γ 〉. By
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comparing this probability with Eq. (3), we see that Bob can
emulate the noiseless amplifier by properly rescaling each
measurement outcome γ as β = γ /g, while assigning to it
a relative weight Q(γ ) = e(1−g−2)|γ |2 ; see Fig. 2(b).

This relative weight can be simulated by postselection,
accepting each piece of data γ with a probability Pacc(γ )
that is proportional to Q(γ ). After each measurement, Bob
publicly announces whether the result is kept or rejected,
which is equivalent to establishing the success or failure
of entanglement distillation in the virtual entanglement pic-
ture. A difficulty arises here because Q(γ ) diverges for
large |γ |, which reflects the impossibility of implementing
a perfect noiseless amplifier. If Alice’s modulation V is
weak enough, P (γ ) could be sufficiently narrow so that
lim|γ |→∞ P (γ )Q(γ ) = 0. Then, for a finite number N of data
points γj , one can accept each one with probability

Pacc(γ ) = e(1−g−2)(|γ |2−|γM |2) � 1, (4)

where |γM | = maxj |γj |. Unfortunately, the resulting number
of accepted data points Nacc grows sublinearly with the size N ,
so that the rejection rate increases with N and the procedure
becomes inefficient (see the Supplemental Material [27]).
Alternatively, one can fix |γM | independently of N . For
instance, if P (γ )Q(γ ) is expected to exhibit a distribution with
variance Vγ , then one can choose |γM | equal to a few standard
deviations

√
Vγ and set Pacc(γ ) = 1 if |γ | > |γM |. Assuming

a Gaussian distribution of variance VB for Bob’s measurement
outcomes γ , we find that Nacc scales linearly with N in this
case (see the Supplemental Material [27]), namely

Nacc

N
≈ g2

g2 + 2VB(1 − g2)

[
e−(1−g−2)|γM |2 − e

− |γM |2
2VB

]
. (5)

Note that this only works if 2VB < g2/(g2 − 1). Given its
linear scaling, this second method is more practical than the
first one, although the data processing does not emulate the
exact Gaussian filter because of the finite cutoff, which might
complicate the security analysis.

IV. VIRTUAL NOISELESS ATTENUATION

We also consider a reverse situation in which the noiseless
amplifier is on Alice’s side (replaced, in fact, by a larger
modulation variance V ), while the noiseless attenuator is
on Bob’s side (replaced by its virtualization). Noiseless
attenuation νn̂ with ν < 1 is a physical operation which can be
implemented by sending the state through a beam splitter of
transmittance ν2 and projecting the auxiliary output port of the
beam splitter onto a vacuum state. Although the efficiency of
common single-photon detectors is too low to implement this
latter projection with high fidelity, one can faithfully emulate
noiseless attenuation with a moderate overhead. The principle
is the same as before. Denoting by ρ̂ the state emerging from
L, the relative (unnormalized) probability of the measurement
outcome β after attenuation can be expressed as

Pν(β) = 1

π
〈β|νn̂ρ̂ νn̂|β〉 = 1

π
e−(1−ν2)|β|2〈νβ|ρ̂|νβ〉. (6)

Since ν < 1, we have e−(1−ν2)|β|2 � 1, hence no divergence
problem. Therefore, we can emulate noiseless attenuation by

rescaling the measurement outcome γ as β = γ /ν and accept-
ing the data point with probability Q(γ ) = e−(ν−2−1)|γ |2 < 1.
In this way, we postselect a subset of the original data that
corresponds to a protocol where the signal would be noise-
lessly attenuated before heterodyne detection. This emulation
is efficient as the number of accepted data points is proportional
to the original size (see the Supplemental Material [27]),

Nacc

N
= ν2

ν2 + 2VB(1 − ν2)
. (7)

V. CV QKD WITH GAUSSIAN POSTSELECTION

Exploiting that the (Gaussian) quantum filter effected by
the noiseless amplifier or attenuator can be emulated in the
postprocessing stage, we now investigate the benefit of the
resulting Gaussian postselection for CV QKD. We consider a
Gaussian lossy channel with excess noise, which is described
by the linear canonical transformation

âout =
√

T âin + √
1 − T ĉ, (8)

where â and ĉ denote the annihilation operators of the
signal and ancilla modes, respectively, and T is the channel
transmittance. A channel which is not quantum-noise-limited
is modeled by assuming that the ancilla mode is initially
prepared in a thermal state with mean photon number 〈c†c〉 =
n̄th/(1 − T ), where n̄th is the mean number of excess thermal
photons at the output of the channel. Sending one part of
the entangled state (1) through this channel yields a mixed
two-mode Gaussian state with covariance matrix

γAB =
(

a I c σz

c σz b I

)
, (9)

where a = cosh(2r), b = T cosh(2r) + 1 − T + 2n̄th, c =√
T sinh(2r), and r = tanh−1(λ). Here, I stands for the 2 × 2

FIG. 3. (Color online) CV QKD over a lossy channel of trans-
mittance T and output excess thermal noise n̄th. The maximum
tolerable noise n̄th,max decreases for decreasing T . A secret key
can be generated if n̄th < n̄th,max, shown with the blue solid line
(standard protocol) or red dashed line (protocol augmented with
virtual noiseless amplification). The gray area indicates the class of
channels for which noiseless amplification is beneficial. We optimize
over Alice’s modulation variance V and Bob’s amplification gain g,
and we assume the reconciliation efficiency η = 0.9. The inset shows
a zoom-in of the region of high losses, T � 0.1.
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FIG. 4. Achievable secret key rate K in CV QKD over a
lossy channel with 0.2 dB losses per km. (a) Comparison of the
protocol without Gaussian postselection (solid line) and with optimal
noiseless amplification (dashed line), nth = 2.5 × 10−3, γM = 3

√
Vγ .

(b) Comparison of the protocol without Gaussian postselection (solid
line) and with optimal noiseless attenuation (dashed line), nth = 0.1.
We assume η = 0.9, and the parameters V , g, and ν were optimized
for each d so as to maximize K . The resulting optimal g and ν are
plotted in panels (c) and (d), respectively.

identity matrix and σz stands for the third Pauli matrix. The
covariance matrix of the Gaussian state obtained conditionally
on the success of gn̂ (or νn̂) can be conveniently calculated (see
the Supplemental Material [27]) by exploiting a connection
between covariance matrix elements and density matrix
elements in the Fock basis [28]. The secret key rate against
collective attacks is calculated according to

K = max(ηIAB − χAE, ηIAB − χBE), (10)

where the first (second) term corresponds to direct (reverse)
reconciliation, so we choose the protocol that yields the
highest secret key rate (η is the reconciliation efficiency). Here,
IAB is Shannon mutual information between Alice and Bob,
while χAE (χBE) is the Holevo quantity between Alice and
Eve (Bob and Eve). Since we know the postselected virtual
Gaussian entangled state shared by Alice and Bob, all these
quantities can be calculated using standard methods (see the
Supplemental Material [27]).

Figure 3 illustrates that the CV QKD protocol tolerates
more excess thermal noise n̄th for a fixed T when it is
augmented with virtual noiseless amplification. A clear im-
provement is obtained even for very high losses; see the inset
of Fig. 3. This effect may be connected to the improvement
brought about by inserting an optical amplifier in front of Bob’s
detector in CV QKD [29], although here the amplification is
noiseless and pushed at the classical postprocessing level, so
it suffers basically no imperfection. The benefit is also clear
in Fig. 4, where we exhibit the dependence of the achievable
secret key rate K on the channel length d, assuming 0.2 dB
losses per km. We can see that the postselection becomes
useful and increases the key rate as soon as d exceeds a
certain threshold depending on the channel parameters. The
plotted key rates include the effect of the rejection due to

postselection, as specified by Eqs. (5) and (7), but they
neglect the slight non-Gaussianity induced by the postselection
cutoff γM . While Fig. 4(a) illustrates the improvement due
to noiseless amplification, we see in Fig. 4(b) that noiseless
attenuation also helps to increase the key rate and secure
range of the protocol in the high-noise low-loss regime. This
unexpected benefit of noiseless attenuation is actually more
understandable if we consider an amplifying channel instead
of a lossy channel (see the Supplemental Material [27], where
it is shown that noiseless attenuation increases the maximum
tolerable noise of an amplifying channel, which is an effect
dual to that depicted in Fig. 3). Note finally that in Figs. 3 and
4, we have taken a realistic value η = 0.9 for the efficiency
of the classical data reconciliation [4,5]. The gain of virtual
noiseless amplification in Fig. 4(a) would be even stronger for
larger efficiencies, which are becoming reachable nowadays
with sophisticated error-correcting codes [30].

VI. CONCLUSION

We have demonstrated the improved performance (en-
hanced secure range or tolerable excess noise) of a CV QKD
protocol with coherent states, heterodyne detection, and virtual
noiseless amplification or attenuation. The latter two quantum
filters do not need to be physically implemented, which would
be experimentally quite challenging, but they may be simulated
by classical postprocessing (Gaussian postselection) of the
measured data, making this proposal immediately applicable
in practical CV QKD. Furthermore, since the postselected data
can be treated as emerging from an effective deterministic
Gaussian protocol, the standard security proofs based on
Gaussian extremality still hold.

One may also consider virtual operations in protocols where
Bob performs homodyne detection. A noiseless attenuation
followed by the projection onto squeezed displaced states can
be interpreted as a projection onto a squeezed displaced state
with lower squeezing and rescaled displacements. Thus, to
simulate noiseless attenuation, we would need to change the
detection scheme so that it performs projections onto finitely
squeezed states. This could be achieved by employing an
eight-port homodyne detection with an unbalanced central
beam splitter. In view of all this, we anticipate that Gaussian
postselection may become a tool of practical importance in
quantum communication.

Note added. Recently, the usefulness of noiseless amplifica-
tion in CV QKD has been independently demonstrated in [31]
and [32].
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