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We study the hard-core bosons in one-dimensional (1D) interacting topological bands at different filling factors
using exact diagonalization. At the filling factor ν = 1 and in the presence of the on-site Hubbard interaction,
we find no sign of the existence of the bosonic topological phase, which is in contrast to the fermionic case.
Instead by studying the momentum distribution and the condensate fraction we find a superfluid to Mott-insulator
transition driven by the Hubbard interaction. At the filling factor ν = 1/3 and in the presence of longer-ranged
interactions, we identify the bosonic fractional topological phase whose ground states are characterized by a
threefold degeneracy and a quantized total Berry phase, which is very similar to the fermionic case. Finally we
discuss the reason for the different behaviors of hard-core bosons at different filling factors by mapping them to
spinless fermions. Our results can be realized in cold-atom experiments.

DOI: 10.1103/PhysRevA.86.055604 PACS number(s): 03.75.Hh, 03.65.Vf, 71.10.Fd

Introduction. Recently topological insulators (TIs) have
been the subject of intense theoretical and experimental
studies [1,2]. Till now many materials have been found
to be TIs. The properties of noninteracting TIs have been
well understood and some of their important properties have
been verified by experiments [3–5]. Meanwhile the effects of
interactions in TIs have begun to be explored numerically and
analytically [6–12]. At the mean-field level, the interaction can
be decoupled to generate spin-orbit coupling and a topological
Mott insulator can be realized [6]. Numerical simulations using
different methods have obtained consistent results [7–11]. The
interacting topological invariant has been developed using
Green’s function and a simplified formula has been proposed
in terms of the Green’s function at zero frequency or in
the presence of inversion symmetry [13–15]. The effects of
interactions on the topological classification of free fermion
systems have also been studied [16,17].

By analogy with TIs, models that exhibit nearly flatbands
with nontrivial topology are constructed in different systems,
in which fractional Chern insulators (FCIs) may be realized
in the absence of external magnetic fields [18–29]. The phase
is characterized by a multifold degenerate ground state with a
quantized total Chern number. By combining the two copies
of FCIs formed by spin-up and spin-down electrons, fractional
TIs with time-reversal symmetry can be constructed, which
will be another new quantum state of matter.

In real materials, properties are usually exhibited by
electrons that are fermions, so most of the above studies are
for fermions. It is also interesting to ask whether there exist
similar topological phases in bosonic systems. Studies in two
dimensions have been carried out and the properties of hard-
core bosons in topological bands have been investigated [7,29].
In this paper, based on our study of the one-dimesional (1D)
interacting fermionic model [30,31], we study the behavior
of hard-core bosons in 1D topological bands using exact
diagonalization.

We study the cases of the filling factors ν = 1 and ν = 1/3.
For the case of ν = 1, we consider the on-site Hubbard
interaction. By calculating the energies of the lowest states,
the Berry phase, and the fidelity metric of the ground states,
we find no sign of the existence of the bosonic topological
phase. We further calculate the momentum distribution and

the condensate fraction and find a superfluid (SF) to Mott-
insulator transition driven by the Hubbard interaction. For
the case of ν = 1/3, we consider nearest-neighboring (NN)
and next-nearest-neighboring (NNN) interactions. We identify
the bosonic fractional topological phase (FTP) whose ground
states are characterized by a threefold degeneracy and a
quantized total Berry phase. The obtained phase diagram is
very similar to that of the corresponding fermionic system
except for the different critical values. Finally we discuss the
reason for the different behaviors of the hard-core bosons at
different filling factors.

The model. Our starting point is the 1D interacting tight-
binding model filled with hard-core bosons [30],

H =
∑

i

(M + 2B)�†
i σz�i −

∑

i,x̂

B�
†
i σz�i+x̂

−
∑

i,x̂

sgn(x̂)iA�
†
i σx�i+x̂ + U

∑

i

nc
i n

d
i , (1)

where σx and σz are Pauli matrices; �i = (ci,di)T , with ci (di)
hard-core boson annihilating operator at the site ri ; and nc

i (nd
i )

is the number operator of orbit c (d). In the fermionic version
of the noninteracting model (U = 0), depending on the values
of the parameters A, B, and M , the system can be a trivial
insulator or a nontrivial insulator at half-filling. Though like
spinless fermions the occupying number of hard-core bosons
is 0 or 1 per orbit on each site, the hard-core bosons obey
commutation relation [ci,c

†
j ]([di,d

†
j ]) = 0 at sites i �= j but

anticommutation {ci,c
†
i }({di,d

†
i }) = 1 on only site i, which

makes the hard-core bosons exhibit different properties from
the fermions. In the following calculations, we focus on the
parameters’ region where the Hamiltonian Eq. (1) at U = 0
has a nontrivial fermionic topological phase and we study the
properties of hard-core bosons in the interacting topological
bands at different fillings.

The filling factor ν = 1. We first study the case of the filling
factor ν = 1 (we denote the number of particles as Np and the
filling factor is ν = Np/L). To characterize the possible phases
and phase transitions in the system, we calculate the energies
En of the two lowest states, the Berry phase γ , and the fidelity
metric g of the ground state. The Berry phase is defined as
γ = ∮

i〈ψθ | d
dθ

|ψθ 〉 with θ being the twisted boundary phase
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FIG. 1. (Color online) (a) The energies of the ground states and
the first-excited states vs U . (b) The Berry phase and the fidelity metric
vs U . The results in bosonic (black, top two lines) and fermionic
(red, bottom two lines) systems are compared. The parameters are
A = B = 1 and M = −1, and the system size is L = 8.

and its value γ mod 2π gets a nonzero value π for the
topological phase and a zero value for the trivial phase [32–34].
The fidility metric g is defined as g(V,δV ) = 2

N

1−F (V,δV )
(δV )2 ,

with the fidelity F (V,δV ) = |〈�0(V )|�0(V + δV ) being the
overlap of the two ground-state wave functions at V and
V + δV [7]. When the topological band is filled with hard-core
bosons, as U is increased, it is shown in Fig. 1 that the
ground state remains gapped and γ = 0 and g = 0 all the way,
indicating that no obvious phase transition happens. This is in
contrast to the fermionic case, where the Hubbard interaction
U drives a topological phase transition [30].

So the topological property doesn’t persist when hard-core
bosons replace the fermions. To identify the bosonic phase,
we study the momentum distribution, which is defined by the
formula [35]

nL(k) = 1

L

L−1∑

i,j=0

〈c†i cj + d
†
i dj 〉eik(i−j ),

with the momentum k = (2π/L)l(l = 0,1, . . . ,L − 1) and the
average 〈· · ·〉 over the ground-state wave function. As has
been known for free hopping bosons, the ground state is a
SF, which is characterized by the peak at the zero-momentum
state and its height strongly depending on L. In our case of
U = 0 (see Fig. 2), the momentum distribution shows peaks
at k = π/2 and 3π/2 and their height increases with the size
L. Thus the results show that the system is in a trivial SF
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FIG. 2. (Color online) The momentum distributions at (a) U = 0
and (b) U = 10 on different sizes. The parameters are the same with
those in Fig. 1.
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FIG. 3. Finite-size scaling of the condensate fraction fc at U = 0
and U = 10. The parameters are the same as those in Fig. 1.

phase at ν = 1. When the Hubbard interaction is turned on,
the system is expected to experience a phase transition to the
Mott-insulator phase. This is from the result at U = 10 [see
Fig. 2(b)] where the momentum distribution nL(k) tends to be
uniform and its values nearly don’t change with L. To further
characterize the phases, we measure the condensate fraction
fc = (
c + 
d )/Nb (Nb is the total number of the hard-core
bosons), with 
c (
d ) being the largest eigenvalue of the
one-particle density matrix ρc

ij = 〈c†i cj 〉(ρd
ij = 〈d†

i dj 〉) [36].
Figure 3 shows that at U = 0 fc scales to a nonzero value in
the thermodynamic limit while at U = 10 it scales to zero. So
for small U the system has a nonzero SF density, while for large
U the system becomes a Mott insulator. We emphasize that the
study of the SF to Mott-insulator transition needs scaling for
systems with larger sizes, which is beyond the present method.

The filling factor ν = 1/3. Next we study the case of the
filling factor ν = 1/3. We drop the Hubbard interaction, but
add NN and NNN interactions to Eq. (1), which gives

HI = V1

∑

〈i,j〉
ninj + V2

∑

〈〈i,j〉〉
ninj ,

where ni = nc
i + nd

i is the total number of hard-core bosons
on site ri and V1 and V2 are the strength of the interactions.
We have carried out the calculations at ν = 1/3 and found the
bosonic FTP where the ground state is threefold degenerate.
We first look at the phase diagram in the (V1,V2) plane, which is
shown is Fig. 4. By turning on V1, the ground state is threefold
degenerate and the bosonic FTP emerges. The ground state
is separated from higher eigenstates by a finite gap, whose
value increases with the strength of V1. After turning on V2,
the value of the gap is decreased and vanishes at a critical
value V2c, which marks the boundary in the phase diagram.
Finite-size scaling shows that the bosonic FTP exists in the
thermodynamic limit (see the inset in Fig. 4).

We note that the present phase diagram is very similar
to that of the corresponding fermionic system except for the
smaller critical values V2c [31]. In Fig. 5(a), it is shown more
clearly: at small V2 the energies En of the two lowest states
are almost the same in the two systems, while at larger V2

they are different. The main difference of hard-core bosons
and fermions is the exchanging relation. So when the number
of the particles is fewer, the exchanging between the particles
is less possible and the hard-core bosons are more like spinless
fermions. Also at small V2, there is one particle within each
isolated bond, and thus their difference is further weakened.
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FIG. 4. (Color online) The phase diagram in the (V1,V2) plane at
ν = 1/3 for different sizes. The inset shows the finite-size scaling of
the critical value V2c at different V1. Here A = B = 1 and M = −2
when the Hamiltonian Eq. (1) has a nontrivial flatband in the fermionic
case.

It is interesting that the situation is similar in two dimensions
where the hard-core bosons in the topological band at integer
filling don’t exhibit the topological phase, while at fractional
fillings they do [7,29].

In momentum space, the degenerate ground states are in
different momentum sectors and are equally spaced with the
interval of Np, as shown in Fig. 5(b). We also calculate the
total Berry phase of the ground states, which is shown in
Fig. 5(c). The figure shows that the total Berry phase has
a nontrivial value π for small V2 and begins to be random
between (0,π ) from a critical value V2c, at which the bosonic
FTP is broken (here the randomness is due to the fact that
the multifold degeneracy of the ground states is greater than
three). The obtained critical value V2c is consistent with that
from the energy spectra.

Mapping hard-core bosons to spinless fermions. For 1D
systems, bosons and fermions can be transformed into
each other and there have been examples showing that the
topological features can be manifested by Bose to Fermi
statistics transmutations in other 1D systems [37]. So in
the following we map hard-core bosons to spinless fermions
using Matsubara-Matsuda and Jordan-Wigner transformations
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FIG. 5. (Color online) (a) The energies of the ground states and
the first-excited states vs V2 at V1 = 3. (b) The ground-state energy of
each momentum sector at V1 = 3 and V2 = 1.6. (c) The total Berry
phase vs V2 at V1 = 3. The parameters are the same as those in Fig. 4
except for M = −1.999 in panel (c) when the band slightly departs
from the exact flatness. Here the system size is L = 9.

FIG. 6. Zigzag path in the two-leg ladder.

[38–40] to gain some insight into the different behaviors of
hard-core bosons at different filling factors from the mapped
fermionic model. Using the Matsubara-Matsuda transforma-
tion, the Hamiltonian Eq. (1) can be mapped to a spin-1/2 one
with the identifications c

†
i (d†

i ) = S+
ic(S+

id ), ci(di) = S−
ic(S−

id ),
and nic,d = 1

2 + Sz
ic,d . The two-component system can be

regarded as a two-leg ladder with one component on each site
[41,42]. For two-leg ladders the Jordan-Wigner transformation
can be applied directly when all sites are arranged in a 1D
sequence (the zigzag path in Fig. 6). Then we divide the ladder
into two sublattices and introduce two species of spinless
fermions αi and βi . The spin operators on the two sublattices
transform to

S+
iα = α

†
i e

iπ
∑

j<i (α
†
j αj +β

†
j βj ), S+

iβ = β
†
i e

iπ
∑

j<i (α
†
j αj +β

†
j βj )eiπα

†
i αi .

Using the above transformation, besides the terms in Eq. (1) the
following additional terms containing four- and six-fermion
operators appear:

�H = 2B
∑

i

α
†
i αi+1niβ − 2B

∑

i

β
†
i βi+1ni+1α

+ 2iA
∑

i

α
†
i βi+1(niβ + ni+1α − 2ni+1αniβ) + H.c.,

(2)

with niα = α
†
i αi and niβ = β

†
i βi . At low fillings when there is

no double occupying and neighboring, these additional terms
vanish, so hard-core bosons show the same behaviors with
fermions. While at high fillings, these terms show their effect
and answer for the absence of the topological properties at
ν = 1 in hard-core boson systems.

Conclusions. We have studied the hard-core bosons in 1D
interacting topological bands at different filling factors. For the
case of ν = 1, we consider the on-site Hubbard interaction. By
calculating the energies of the lowest states, the Berry phase,
and the fidelity metric of the ground states, we find no sign
of the existence of the bosonic topological phase, which is
in contrast to the fermionic case. To identify the phase of
the ground state, we further study the momentum distribution
and the condensate fraction and find a SF to Mott-insulator
transition driven by the Hubbard interaction. For the case
of ν = 1/3, we add NN and NNN interactions instead. We
identify the bosonic FTP whose ground state is characterized
by a threefold degeneracy and a quantized total Berry phase.
We also find that the obtained phase diagram is very similar
to that of the corresponding fermionic system except for the
different critical values. Finally we discuss the reason for the
different behaviors of hard-core bosons at different filling
factors. Though the model we study is artificial, due to the
rapid development of the field of cold atoms [43], we are
hopeful that the model will be engineered and that the phases
it will exhibit will be studied experimentally.
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