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Dipole pulse theory: Maximizing the field amplitude from 4π focused laser pulses
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We present a class of exact nonstationary solutions of Maxwell equations in vacuum from dipole pulse theory:
electric and magnetic dipole pulses. These solutions can provide for a very efficient focusing of electromagnetic
field and can be generated by 4π focusing systems, such as parabolic mirrors, by using radially polarized laser
pulses with a suitable amplitude profile. The particular cases of a monochromatic dipole wave and a short dipole
pulse with either quasi-Gaussian or Gaussian envelopes in the far-field region are analyzed and compared in
detail. As a result, we propose how to increase the maximum field amplitude in the focus by properly shaping
the temporal profile of the input laser pulses with given main wavelength and peak power.
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I. INTRODUCTION

Strongly focused electromagnetic fields at subwavelength
scales are the centerpiece in many areas of fundamental
research and technology, such as high-intensity laser physics,
high-resolution optical sensing technologies, and other appli-
cations [1–4]. At least two characteristics of these focused
electromagnetic fields are significant in this context: first, the
maximum value of the electric or magnetic field amplitude in
the focus region for a fixed total energy of the input radiation,
hence the focusing efficiency, and, second, space and time
distributions of electric and magnetic fields near the focus.
Owing to this, a detailed analysis of the space-time-dependent
field solutions of Maxwell equations in the context of strong
focusing is required. Such analysis is the main subject of this
paper.

The focusing of monochromatic light was widely discussed
[3,5–9], and several corresponding solutions were analyzed
(see [3,6,9–15] and references therein). It has been demon-
strated that the highest focusing effectiveness can be achieved
in the so-called 4π focusing case, where the 4π denotes
the coverage of the full solid angle by the incident light.
Experimentally, this ideal case can be approached either by
using several counterpropagating focused pulses [16], one
focused beam and a plane mirror [8], or by suitable formed
propagating light beams being mode converted into a nearly
perfect dipolar shape by a deep parabolic mirror [4,17,18].
In this case, both propagating and evanescent waves occur,
pointing out the difference in the cases of weak focusing from
narrow solid angles.

It was rigorously proved in Ref. [19] for monochromatic
light that the maximum possible field amplitude for given
incoming power and frequency (hence the focusing efficiency)
can be achieved in the case of converging dipole radiation.
Some practical realizations for the focusing of monochromatic
light in vacuum were discussed also in Ref. [20], which
studied converging mixed (electric and magnetic) dipole
radiation for the achievement of the focusing efficiency close
to the maximum possible limit. Nevertheless, both the elec-
tromagnetic energy density concentration and corresponding
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focusing efficiency depend on the typical extensions of the field
distribution for the given pulse parameters (frequency, average
input power, etc.). Near the focus region the length scale of
the distribution is proportional to the wavelength. At large
distances the extension is determined by the field amplitude
decrease in the far-field region, which is proportional to R−1,
where R is the distance from the focus point (see [9,21] and
references therein).

A fundamentally different situation arises in the case of
focusing nonmonochromatic light, such as short-length laser
pulses with an arbitrary broadband carrier-envelope spectrum.
In terms of focusing efficiency and energy concentration, the
previous considerations for monochromatic light fields cannot
be applied in a straightforward fashion. This is due to the
interference effects between the various frequency modes of
the incident field and the nonlinear condition for the fixed total
energy or average input power.

It is nevertheless already obvious that the achievable energy
concentration is additionally determined by the duration of the
input radiation. For short-length pulses, the concentration of
energy can be much smaller than in the case of a focused
monochromatic field, which decreases as R−1 in the far-field
region. The pulse length therefore renders an additional
parameter in terms of the energy compression inside the
near-focus region.

Additional motivation for considering short electromag-
netic pulses arises from the fact that the most powerful
attainable laser pulses nowadays can have durations which
are less than several optical periods [1,2]. Therefore, this
study is relevant for the extreme space-time focusing of light
(such as superposition of dipole waves), which is important for
high-intensity laser physics applications. Please note here that
the temporal focusing of light as a superposition of X-shaped
waves was introduced in Refs. [22,23].

Summing up, the scenario which has to be analyzed can
be stated as following. An exact nonstationary solution of the
Maxwell equations in pure vacuum, achieving high focusing
efficiency and possessing a finite total energy, should be found.
In this respect we consider the sought solution to be of
the class of nonmonochromatic converging dipole radiation
since it was demonstrated (see [19]) that the monochromatic
dipole wave provides for the maximum possible concentration
of the electromagnetic energy.
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In this paper we consider focusing from the full solid angle
for the generation of electric and magnetic dipole pulses using
exact nonstationary solutions of the Maxwell equations in
vacuum. These solutions are obtained from the dipole pulse
theory (DPT). In principal, as follows from DPT, particular
cases of the electric and magnetic dipole pulses (for example,
an electric dipole monochromatic wave) can be obtained using
a field expression for an arbitrary radiating dipole [24,25]
and the time reversal transformation (see also [26]). As we
will demonstrate, however, the general solution has a more
compound structure and needs additional consideration for the
derivation. To obtain a singularity-free dipole field solutions,
we refer to an analog of the idea of Dirac [27] and Wheeler
and Feynman [28], where the mixing of retarded and advanced
potentials permits us to eliminate the divergence of the self-
energy of charged particles. For the derivation of dipole field
distributions without singularities, we present a detailed study
of the general case within DPT. In addition, we also illustrate
a way for an experimental realization. Dipole pulses can be
generated in 4π focusing systems such as parabolic mirrors by
using radially polarized laser pulses with a certain amplitude
profile and plane phase front [4,17,18,29–34]. In this scheme,
we have also analyzed the far-field distribution of the input
and expressed all the parameters of the dipole pulses via the
initial laser pulses parameters.

As we will demonstrate, dipole pulses provide for very
efficient focusing of electromagnetic energy and have some
remarkable properties. The particular cases of standing
monochromatic dipole waves and short dipole pulses with
quasi-Gaussian and Gaussian envelopes in the far-field region
are analyzed in detail. We also present the increase of
the maximum field amplitude in the focus for a shaped dipole
pulse in comparison to a quasimonochromatic dipole pulse
with the same main wavelength and maximum value of the
initial amplitude in the far-field region or with the same peak
power at the input. We show that dipole pulses have some
definite advantages in comparison to monochromatic dipole
waves regarding high-intensity laser physics and particularly
regarding the problem of maximizing the field amplitude in
the focus (the effect of a sharply shaped dipole pulse).

This article is organized as follows. In Sec. II we present
the dipole pulse theory with a general solution for electric
and magnetic dipole pulses. In Sec. III we describe a method
suited to generate dipole pulses and express the parameters
of the generated dipole pulses through the initial laser pulse
parameters at the input. In Secs. IV and V we consider the
cases of standing dipole waves and short dipole pulses with
a quasi-Gaussian envelope in the far-field region (the case of
a Gaussian envelope is analyzed partly in Appendix B). The
effect of sharply shaped dipole pulses and the corresponding
optimization procedure are presented in Secs. VI and VII.
Finally, in Sec. VIII we summarize our results.

II. THE DIPOLE PULSE THEORY: GENERAL SOLUTION

In this section we demonstrate a theoretical procedure
which allows us to obtain exact analytical solutions of Maxwell
equations in vacuum with finite energy (dipole pulses). This
procedure is based on a study of the field distribution of an
arbitrary radiating electric dipole.

Let us start from the electromagnetic radiation being
emitted from a pointlike nonstationary electric dipole (e-
dipole). As is well known (see, for example, [21,35]), the
radiation of the e-dipole which is excited by the arbitrary
nonstationary dipole moment �d(t) can be described by means
of the Hertz vector �Zd :

�Zd = −
�d(t − R

c
)

R
, (1)

where R is the distance from the dipole source to the point
of observation. From knowing the Hertz vector, the magnetic
( �Hd ) and electric ( �Ed ) field distributions for the radiation field
can be written as

�Hd = −1

c
(∇ × �̇Zd ), (2a)

�Ed = −∇ × (∇ × �Zd ). (2b)

This field describes divergent e-dipole radiation together with
the self-field of the e-dipole. Applying some simple vector
operations (see Appendix A), we can obtain from Eqs. (1) and
(2) the following analytic expressions for the magnetic and
electric field distributions (see also [25]):

�Hd = −
{

�n ×
[

1

c2R
�̈d(τ ) + 1

cR2
�̇d(τ )

]}
, (3a)

�Ed = �n ×
[
�n × 1

c2R
�̈d(τ )

]
+ 1

cR2
{3�n[�n · �̇d(τ )] − �̇d(τ )}

+ 1

R3
{3�n[�n · �d(τ )] − �d(τ )}, (3b)

where �n = ∇R = �R/R is a unit vector along the direction
of observation, τ = (t − R

c
), and the dot symbol denotes the

derivative with respect to t , e.g., �̇d(τ ) = ∂ �d(τ )/∂t . This field
consists of two parts: a radiated electromagnetic field and a
nonradiated field (the self-field of the e-dipole). The latter
nonradiated part is given by

�Hnr
d = 0, (4a)

�Enr
d = 1

R3
{3�n[�n · �d(τ )] − �d(τ )} (4b)

and is directly related to the well-known electric field distri-
bution of a single pointlike nonstatic e-dipole.

The presence of this field in the distribution, Eq. (3), leads
to some fundamental properties for a nonvanishing dipole
moment �d(τ ):

Wd = 1

8π

∫ [ �E2
d ( �R,t) + �H 2

d ( �R,t)
]
dV = ∞, (5a)

dWd

dt
= ∞, (5b)

where Wd is the total energy of the electromagnetic field. The
cause of these infinities is the presence of several singularities
in the origin of the coordinates. To describe the nature of
these singularities in the region R ≈ 0, we can use the Taylor
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expansion:

�d
(

t − R

c

)
=

∞∑
n=0

(−1)n
�d (n)(t)

n!

(
R

c

)n

= �d(t) −
�̇d(t)

1!

R

c
+

�̈d(t)

2!

R2

c2
−

...
�d (t)

3!

R3

c3
+ · · · .

(6)

By substituting from Eq. (6) into Eq. (3) we obtain, in the limit
R ∼= 0,

�Hd
∼= −�n ×

[
1

cR2
�̇d(t) − 1

2c3

...
�d (t) + · · ·

]
, (7a)

�Ed
∼= 1

R3

{
3�n[�n · �d(t)] − �d(t)

}

− 1

2Rc2
{3�n[�n · �̈d(t)] + �̈d(t)} + 2

3c3

...
�d (t) + · · · .

(7b)

We can see from Eq. (7) that the electromagnetic field of
an arbitrary radiating dipole includes strong singularities at
R = 0. These lead to the divergence of the electromagnetic
energy. From this we can conclude that such a field cannot
be generated, in principle, by using laser fields (with finite
energy) in vacuum.

To construct a singularity-free solution, we notice that these
singularities are generated by the corresponding R dependence
of the Hertz vector near R = 0:

�Zd = −
�d(

t − R
c

)
R

= − 1

R

∞∑
n=0

(−1)n
�d (n)(t)

n!

(
R

c

)n

= −
�d(t)

R
+

�̇d(t)

c
− R �̈d(t)

2c2
+ · · · . (8)

To solve this problem we refer to ideas of Dirac [27] and
Wheeler and Feynman [28] (see also [36] and references
therein), where the authors proposed to use superpositions
of retarded and advanced potentials in order to eliminate the
divergence of the self-energy of charged particles. In our
case, we have the divergence of a radiating dipole field at
the origin, which is related to the singularity of its Hertz
vector. To obtain the required singularity-free solutions, we
propose to consider a linear combination of exact solutions of
linear Maxwell equations and to apply transformations to it,
under which Maxwell equations remain invariant. One of the
transformations, under which the Maxwell equations remain
invariant, is the time-reversal transformation (see also [21]):

t → −t, �E → �E, �H → − �H, �Z → �Z. (9)

There exist two specific cases regarding the symmetry of the
dipole moment �d(τ ) under the time-reversal transformation
equation (9): (1) �d(τ ) for even functions and (2) �d(τ ) for odd
functions.

(1) �d(τ ) = �d(−τ ). In this case we have

�Zd = −
�d(t − R

c
)

R
= −

�d0

R
g(t) +

�̇d(t)

c
+ · · · , (10a)

�Z−t
d = −

�d(t + R
c

)

R
= −

�d0

R
g(t) −

�̇d(t)

c
+ · · · , (10b)

where �Z−t
d is obtained from �Zd by using time-reversal

transformation equation (9). It follows then from Eq. (10) that

�Zd − �Z−t
d = −

�d(
t − R

c

)
R

+
�d(

t + R
c

)
R

(11)

gives us an exact nontrivial singularity-free solution of the
Maxwell equations.

(2) �d(−τ ) = −�d(τ ). In this case we have

�Zd = −
�d(t − R

c
)

R
= −

�d0

R
g(t) +

�̇d(t)

c
+ · · · , (12a)

�Z−t
d = +

�d(t + R
c

)

R
= +

�d0

R
g(t) +

�̇d(t)

c
+ · · · . (12b)

Again the combination

�Zd + �Z−t
d = −

�d(
t − R

c

)
R

+
�d(

t + R
c

)
R

(13)

gives us an exact nontrivial singularity-free solution of the
Maxwell equations.

Let us now consider the most general case, namely, �d(τ )
being neither an even nor an odd function of τ . Then we can
use the expansion

�d(τ ) = �de(τ ) + �do(τ ), (14)

where �de(τ ) = 1
2 [ �d(τ ) + �d(−τ )] is an even vector function

and �do(τ ) = 1
2 [ �d(τ ) − �d(−τ )] is an odd vector function. From

this equation and using Eqs. (11) and (13), we can obtain the
required solution as a linear combination of exact Maxwell
equation solutions. The corresponding Hertz vector is the
following:

�Z = −
�d(

t − R
c

)
R

+
�d(

t + R
c

)
R

. (15)

It is important to note that this solution cannot be simply
obtained from Eq. (3) by applying the time-reversal transfor-
mation to arbitrary dipole moment �d(τ ). To be more precise,
any linear combinations of the fields from Eq. (3) and the time
reversal fields [which can be obtained by using time reversal
transformation in Eq. (3)] can still include singularities.
Nevertheless we have obtained the Hertz vector equation (15),
which gives us the required solution for an arbitrary vector
function �d(τ ).

We would like also to note that the solution to Eq. (15)
can be simply obtained from Eq. (1) either by mixing
retarded and advanced Hertz vectors or by using the following
transformation:

t → t, R → −R. (16)

We stress here, however, that although both transformations,
Eqs. (9) and (16), finally lead to the same expressions for the
field distributions, Eq. (16) just amounts to an “empirical” rule,
while Eq. (9) constitutes the basis for a rigorous proof.
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Finally, from Eqs. (2) and (15) (see also Appendix A), the
general, exact, and singularity-free solution for the electro-
magnetic field of an e-dipole pulse can be obtained in the
following form:

�H = −
{

�n ×
[

1

c2R
�̈d+(t,R) + 1

cR2
�̇d−(t,R)

]}
, (17a)

�E = �n ×
[
�n × 1

c2R
�̈d−(t,R)

]

+ 1

cR2
{3�n[�n · �̇d+(t,R)] − �̇d+(t,R)}

+ 1

R3
{3�n[�n · �d−(t,R)] − �d−(t,R)}, (17b)

where �d±(t,R) = �d(t − R
c

) ± �d(t + R
c

) and �d(τ ) is an arbitrary
vector function, hereinafter referred to as the virtual dipole
moment. As can be simply verified, Eq. (17) is an exact
solution of the Maxwell equations in vacuum, without any
dipole charges, for any arbitrary vector function �d(τ ).

Let us now consider the temporal and spatial distributions
of the field in the near-field and far-field regions. As we can see
from Eq. (17b) the electric field of the e-dipole pulse consists
of three parts:

�E = �E1 + �E2 + �E3, (18)

where �E1 ∝ R−1, �E2 ∝ R−2, and �E3 ∝ R−3. In the far-field
region (R → ∞) �E is dominated by �E1. On the other hand, in
the near-field region (R ≈ 0) all the components enact a part.
We can use the expansion, Eq. (6), to obtain

�H = −
{

�n ×
[

2

3

R

c4
�d (4)(t) + · · ·

]}
, (19a)

�E = 4

3c3

...
�d (t) + 4

15

R2

c5

{
�d (5)(t) − 1

2
�n[�n · �d (5)(t)]

}
+ · · ·

∝ 4

3c3

...
�d (t) + O(R2). (19b)

At R = 0 these precisions reduce to

�H (0,t) = 0, (20a)

�E(0,t) = 4

3c3

...
�d (t). (20b)

From Eq. (17) we can obtain now

W = 1

8π

∫
( �E2 + �H 2)dV = const, (21a)

dW

dt
= 0, (21b)

where W is a total energy of the e-dipole pulse. Since W is
finite, this field can thus be generated in vacuum by using
electromagnetic fields (for example, laser pulses).

The field distribution of magnetic dipole pulse can be
obtained from Eq. (17) by using the following rule [21]:

�HMD ← �EED, �EMD ← − �HED, (22)

where the superscripts ED and MD stand for electric and
magnetic dipole pulses, respectively. As can be seen, the field
of dipole pulses depends on �n, t , and R and upon the virtual
dipole moment �d(τ ), which can be any smooth vector function.

In the following, we will concentrate on the special case of
dipole pulses with �d(τ ) = �d0g(τ ), where the virtual dipole
moment �d0 is an arbitrary constant vector and g(τ ) is an
arbitrary dimensionless function (driving function). In this
case, the general solution can be simplified to the form

�H = −[�n × �d0]

[
1

c2

g̈+(t,R)

R
+ 1

c

ġ−(t,R)

R2

]
, (23a)

�E = �n × [�n × �d0]

Rc2
g̈−(t,R) + 3�n(�n · �d0) − �d0

R3

×
[
R

c
ġ+(t,R) + g−(t,R)

]
, (23b)

where g±(t,R) = g(t − R
c

) ± g(t + R
c

), �d0 is a virtual dipole
moment (arbitrary constant vector), and g(τ ) is an arbitrary
function, hereinafter referred to as the driving function.

III. GENERATION OF DIPOLE PULSES

The idea to generate dipolelike pulses by using external
electromagnetic fields is based on the uniqueness of the
solutions of the Maxwell equations and, particularly for
experimental realizations, the proximity of solutions with
nearly the same parameters. Of course, the accuracy of such
a scheme in real, nonideal systems, can be analyzed either
numerically or experimentally [17,29,33,34]. In this section we
consider the case of an ideal infinitely large focusing system.

The basic idea is the following: one has an ideal 4π focusing
system (a parabolic mirror or several lenses and so on) which
is illuminated by an input light beam of suitable spatial,
polarization, and temporal shape. Such a shape is determined
by the requirement that the electromagnetic field distribution
near the focus (near field) of the focusing system will be
described by Eq. (23). The amplitude and the polarization
of the input beam far from the focus in the far-field region
uniquely determine the near-field dipole pulse characteristics
for a given focusing system. In that way, we calculate the
dipole radiation flowing through a reference sphere having a
big radius (much more than the characteristic wavelength) and
use the energy conservation law. We assume that the size of
the focusing system is much larger than the main wavelength
of the dipole pulse radiation.

The field distribution of the e-dipole pulse in the far-field
region, also known as the Fraunhofer zone, can be obtained
from Eq. (23) by neglecting the R−2 and R−3 terms:

�H ∼=
�d0 × �n
Rc2

[
g̈

(
t − R

c

)
+ g̈

(
t + R

c

)]
, (24a)

�E ∼= [ �d0 × �n] × �n
Rc2

[
g̈

(
t − R

c

)
− g̈

(
t + R

c

)]
. (24b)

To study the generation procedure, in the case of pulses
with finite duration, we can consider the ingoing [proportional
to g̈(t + R/c)] and outgoing [proportional to g̈(t − R/c)]
radiation parts separately. We can thereby find the field
of the initial ingoing laser pulse, which is required in
order to generate the particular finite-length dipole pulse, as
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follows:

�Hg =
�d0 × �n
R0c2

g̈(τ+), (25a)

�Eg = − [ �d0 × �n] × �n
R0c2

g̈(τ+), (25b)

where R0 is the radius of the reference sphere and τ± =
t ± R/c. As can be seen, the field distribution of the dipole
pulse in the far-field region, hence on the sphere with the
big radius, corresponds to the plane electromagnetic waves
propagating opposite to �n with a certain amplitude depending
on the polar angle θ between �n and the virtual dipole moment
�d0 and the distance R0. It additionally follows from Eq. (25)
that the ingoing laser pulse envelope fl(τ+) is proportional to
the second derivative of the driving function: fl(τ+) ∝ g̈(τ+).

The only unknown parameter within these equations is the
virtual dipole moment �d0, as R0 depends on the size of the
focusing system. This virtual dipole moment can be expressed
in terms of the initial energy Wp of the ingoing laser pulse.
For that we can calculate the radiation power per solid angle
d� of the ingoing laser pulse in the far-field region,

dPτ = −(�S · �n)R2
0d� = g̈2(τ+)

4πc3
[ �d0 × �n]2d�

= d2
0 g̈2(τ+)

4πc3
sin2 θsin θdθdϕ, (26)

and the total radiation power Pτ , denoting the radiated energy
per time unit:

Pτ =
∫ 2π

0
dϕ

∫ π

0
dθ

d2
0 g̈2(τ+)

4πc3
sin3 θ = 2d2

0

3c3
g̈2(τ+). (27)

Finally, we equate the input laser pulse energy Wp, which is
equal to the dipole pulse energy, to the integrated power:

Wp =
∫ ∞

−∞
Pτdτ+ = 2d2

0

3c3

∫ ∞

−∞
g̈2(τ+)dτ+. (28)

In order to extend the integration limits to infinity without
taking into account the divergent (outgoing) radiation depend-
ing on τ−, we consider the case of finite dipole pulses and an
indefinitely large focusing system. Based on this last formula,
we can express the dipole moment d0 by the initial laser pulse
energy Wp for a definite driving function g(τ ).

Let us now consider the spatial distribution of the dipole
pulses and the input laser pulses. In what follows, the virtual
dipole vector �d0 will be set parallel to the z axis. Considering
Eq. (25), we can propose a way of generating dipole pulses
using a parabolic mirror (see also [4,17]). To this end, we need
to obtain the parameters of the laser field at the input of the
focusing system required for the generation of a dipole pulse,
hence the field polarization and the intensity distribution. The
principal scheme of the proposed facility is presented in Fig. 1,
with the following form of the parabolic mirror:

z = r2

4f
− f, (29)

where f is the focusing parameter of the mirror (focal length).
We can consider the propagation of light inside the focusing
system in terms of optical rays if the condition f 
 λ is

z

R
θ

r

f

2f

L

Il(r)

FIG. 1. (Color online) The principal scheme for dipole pulse
generation by using a parabolic mirror. Here f is a focusing parameter
of the mirror (focal length), L is the distance from the focus
(approximate length of the mirror), and Il(r) is the radial intensity
distribution of the input laser radiation.

fulfilled, where λ is the characteristic wavelength of radiation.
The optical path length from the input to the focus point of each
ray, which is parallel to the z axis at the input of such a focusing
system, is equal to R0 = L + 2f , where L is the distance from
the focus point of the mirror to its edge on the right side in
Fig. 1. If L 
 f , then the mirror can produce 4π focusing
within the superposition of such optical rays with equal optical
path length. In this case, for the generation of dipole pulses,
we can use laser pulses with plane phase fronts at the input.
We assume further that the condition L 
 f 
 λ is fulfilled
for the generation procedure. From symmetry considerations
and with the help of Fig. 1 and Eq. (25), it follows that a
radially polarized field at the input is needed. A discussion
concerning the generation of such a field can be found in
Refs. [18,29,33,34].

Now we consider the radial intensity distribution Il(r) at
the input of the parabolic mirror, which is necessary for the
generation of dipole pulses, where the subscript l stands for
laser. The angular intensity distribution Id (θ ) is obtained from
Eq. (25):

Id (θ ) = I0sin2 θ, (30)

where θ is the polar angle (see Fig. 1) and I0 =
d2

0 [g̈(τ )]2/4πR2
s c

3 [see Eqs. (25) and (26)]. After some simple
calculations using Eq. (29) we can write

r

2f
= 1 + cos θ

sin θ
; (31)

therefore sin θ = 2p/(p2 + 1) and cos θ =
±(p2 − 1)/(p2 + 1), where p = r/2f . Using also the
relation

Il(r)rdrdϕ = −Id (θ )R2
s sin θdθdϕ, (32)

we finally obtain

Il(r) = I0
R2

s

f 2

4p2

(p2 + 1)4
, (33)
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which can be rewritten in the form

Il(r) = 3

2

Pτ

πf 2

p2

(p2 + 1)4
= d2

0 g̈2(τ )

πf 2c3

p2

(p2 + 1)4
. (34)

The same radial dependence of the intensity distribution
was first obtained in Ref. [4]. More cases were analyzed
in Ref. [30]. Let us now consider the particular cases of
dipole pulses with different driving functions g(τ ), namely,
the standing monochromatic dipole wave and finite dipole
pulses with quasi-Gaussian and true Gaussian envelopes in the
far-field region.

IV. STANDING MONOCHROMATIC DIPOLE WAVE

In order to underline the special advantages of short
dipole pulses, we first consider a monochromatic dipole wave
which is equivalent to an indefinitely long dipole pulse.
Standing monochromatic e-dipole waves are generated by a
monochromatic driving function:

g(τ ) = sin(ωτ ). (35)

A similar case was discussed in Refs. [9,35], where the corre-
sponding spatial dependence of the electric field distribution
was analyzed. Using the general solution, Eq. (23), we can
obtain the field distribution for the monochromatic standing
e-dipole wave:

�H ( �R,t)

= 2 sin(ωt)( �d0 × �n)

[
−k2

R
cos(kR) + k

R2
sin(kR)

]
,

(36a)
�E( �R,t)

= 2 cos(ωt)

{
�d0

[(
k2

R
− 1

R3

)
sin(kR) + k

R2
cos(kR)

]

+ �n(�n · �d0)

[(
−k2

R
+ 3

R3

)
sin(kR) − 3k

R2
cos(kR)

]}
,

(36b)

where k = ω/c = 2π/λ. This field is an exact solution of
Maxwell equations in vacuum. The corresponding field energy
density distribution is shown in Fig. 2. The maximum value
of the electric field in the focus, Emax = | �E( �R,t)|max =
| �Ez( �R,t)|︸ ︷︷ ︸

R→0

, can be obtained from Eq. (36b) or directly from

Eq. (20).

Emax = 4

3

ω3

c3
d0. (37)

Using Eq. (27), we can express the virtual dipole moment d0

as a function of the average input power P :

d0 =
√

3

(2π )2

λ2
√

P√
c

. (38)

The average input power is defined as

P = 1

T

∫ T

0
Pτdτ , (39)

where T = 2π/ω and Pτ is given by Eqs. (27) and (35).
Obviously, P = 1

2Ppeak, where Ppeak is the peak power of the
incoming radiation. Finally, we can obtain the expression for
the maximum value of the electric field amplitude in a standing
e-dipole wave:

Emax = 8π√
3

√
P

λ
√

c
. (40)

We can also express this in the following dimensional form:

Emax = 8π
√

10
√

10−8 × c/(m/s)

100
√

3
× 108

(
V

m

)√
P/W

λ/μm

≈ 0.79344 × 108

(
V

m

)√
P/W

λ/μm
. (41)

In the same way we can express the maximum value of the
magnetic field amplitude near the focus of a standing e-dipole
wave through λ and P . This demands, however, solving a
transcendent equation for the spatial position of this maximum
at ωt = π/2 [see Eq. (36a)]. Here, we write only the final
approximate result:

Hmax ≈ 0.654 × Emax. (42)

On the contrary, for the case of a standing magnetic dipole
wave, we find the maximum value of the magnetic field
amplitude in the focus to be equal to the value in Eq. (40)
and the maximum value of the electric field to be equal to the
value in Eq. (42).

To complete our discussion in this section, we roughly esti-
mate the focusing effectiveness of the monochromatic dipole
wave by calculating the corresponding effective focusing spot
size δSmd and the effective focusing volume Vmd of the energy

FIG. 2. (Color online) Electromagnetic energy density distribution of the monochromatic e-dipole wave. The energy density (ωt = 0) (a)
as a function of transverse coordinates and (b) as a function of the transverse coordinate and the longitudinal one.
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density concentration. In the next section, we compare these
results to the case of a short dipole pulse.

To estimate the focusing effectiveness we obtain and
compare the effective focal spot sizes. We therefore express
the energy flux of the monochromatic dipole wave through the
average power P and the effective focal spot size δSmd:

1

2
× c

4π
E2

max = P

δSmd
. (43)

Using Eq. (40), we obtain the final expression for the effective
spot size of a monochromatic dipole wave:

δSmd = 3

8π
λ2 ≈ 0.12λ2. (44)

This result demonstrates that the monochromatic dipole
wave provides for a much more efficient focusing compared to,
for example, a single monochromatic Gaussian beam (corre-
sponding to the case of 2π focusing), which has a significantly
bigger focusing spot size. A detailed comparison can be done
by using, for example, the results from Refs. [3,10–12,37].

An interesting solution, which leads in some particular
cases to the Gaussian beams, was analyzed also in Ref. [38].
This solution does not include singularities and corresponds
to the field of higher-order multipoles. Nevertheless, the
maximum focusing efficiency of this solution is lower than
in our case. As follows from the author’s calculations,
the thereby found focusing coefficient equals 2π

√
5/

√
3 or

2π
√

10/
√

3 depending on the polarization. Here we find, for
the same coefficient, a value of 8π/

√
3 [see Eq. (40)]. Similar

estimations can also be done for the case of a given set of
counterpropagating Gaussian beam pairs, corresponding to the
case of 4π focusing (see, for example, [16]). In that case, with
an increasing number of counterpropagating Gaussian beams,
the difference to the dipole wave case can slightly decrease.

By using the analytical solution (36), we can find also that
the effective spatial focusing volume Vmd of a monochromatic
dipole wave (i.e., the electromagnetic energy density concen-
tration volume) is much less than the well-known value λ3

(see also Fig. 2). To be more precise, we calculate the volume
edged by the half height of the energy density concentration
(half width at half maximum). In that way, Eq. (36) gives us the
characteristic extensions in the longitudinal (l‖ ≈ 0.58λ) and
transversal (D⊥ ≈ 0.4λ) directions. From these dimensions,
the effective spatial focusing volume Vmd can be obtained:

Vmd � πD2
⊥

4
l‖ ≈ 0.073λ3. (45)

Thus, we can conclude that the monochromatic dipole wave
already provides for a very high focusing efficiency. Nev-
ertheless, as we will demonstrate below, short dipole pulses
with an appropriate time shape can provide for additional ad-
vantages, particularly regarding the maximization of the field
amplitude.

V. DIPOLE PULSE WITH A QUASI-GAUSSIAN ENVELOPE
IN THE FAR-FIELD REGION

In this part we consider the dipole pulses with a quasi-
Gaussian envelope in the far-field region. The field distribution
of such a finite pulse can be obtained analytically as a
combination of elementary functions at any point in space
and time. The case of a Gaussian envelope in the focus is
considered in Appendix A. Thus we start with a driving
function, which is not equal to the pulse envelope, and consider
the case

g(τ ) = e−a2τ 2
sin(ωτ ). (46)

This type of driving function fulfills the following condition
in the far-field region, where �E(t) ∝ g̈(t):∫ ∞

−∞
�E(t)dt = 0. (47)

The fulfillment of this condition is necessary in order for the
pulse to propagate without strong absorption in a media with
charged particles; see also [21]. It can be important in the case
of the dipole pulse generation within a nonideal vacuum.

The envelope of the input laser pulse for the generation of
the dipole pulse with such a driving function is

fl(τ ) ∝ g̈(τ ) = e−a2τ 2
[−4a2ωτcos(ωτ )

+ (4a4τ 2 − ω2 − 2a2) sin(ωτ )]. (48)

We call such an envelope quasi-Gaussian because, even for
short pulses, with durations longer than a few optical periods
a � ω, and consequently, the envelope is similar to a Gaussian
envelope.

The corresponding field distribution for an e-dipole pulse
(a/ω = 0.2) is shown in Fig. 3. As can be seen from Fig. 3,
short dipole pulses provide for a much higher concentration of
electromagnetic energy density compared to monochromatic
dipole waves (see Fig. 2). Using Eqs. (23) and (46), we can
obtain the field distribution analytically at any point in space.
As these expressions are too long to be shown here, we limit

FIG. 3. (Color online) Electromagnetic energy density distribution of an e-dipole pulse with a quasi-Gaussian envelope (a/ω = 0.2). The
energy density (ωt = 0) (a) as a function of transverse coordinates and (b) as a function of the transverse coordinate and the longitudinal one.
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ourselves to the field in the focus by using Eq. (20) in order to
obtain the maximum value of the electric field:

Ez = 4

3

d0

c3
e−a2t2

[(6a2ω − 12a4t2ω + ω3)cos(ωt)

+ 2a2t(4a4t2 − 3ω2 − 6a2) sin(ωt)]. (49)

Finally, we can obtain the expression for the maximum value
of the electric field amplitude (ωt = 0) for the e-dipole pulse
[compare with Eq. (37)]:

Emax = Ez(0) = 4

3

ω3

c3
d0

(
1 + 6

a2

ω2

)
. (50)

Now we need to express the unknown virtual dipole moment
through the input laser pulse parameters. Using Eqs. (28) and
(46), we can write

d0 =
√

Wp × 3c3

2Np

, (51)

where, supposing a > 0,

Np =
∫ ∞

−∞
g̈2(τ )dτ

= ω4

2a

√
π

2

[(
1 + 6

a2

ω2
+ 3

a4

ω4

)
− 3

a4

ω4
e
− ω2

2a2

]
. (52)

In that way we have

d0 =
√

Wp × 3ac3

ω2
(

π
2

) 1
4
[(

1 + 6 a2

ω2 + 3 a4

ω4

) − 3 a4

ω4 e
− ω2

2a2
] 1

2

. (53)

Finally, the field amplitude can be written

Emax = 4ω√
3c3

√
Wpa√
π/2

√
1 + 6

a2

ω2

×
⎡
⎣1 + 3 a4

ω4

(
1 − e

− ω2

2a2
)

1 + 6 a2

ω2

⎤
⎦− 1

2

, (54)

or equivalently,

Emax = (8π )
5
4√

3

√
Wp

λ
3
2

√
a

ω

(
1 + 6

a2

ω2

)

×
⎡
⎣1 + 3 a4

ω4

(
1 − e

− ω2

2a2
)

1 + 6 a2

ω2

⎤
⎦− 1

2

, (55)

where λ = 2πc/ω is the main wavelength and Wp is the total
pulse energy [compare with Eq. (40)]. In a similar way, by
additionally solving the transcendent equation for the position,
the maximum value of the magnetic field in the e-dipole pulse
can be calculated.

Summarizing, we can also estimate numerically the effec-
tive focusing volume of energy density concentration Vdp for
the dipole pulse with the same parameters as in Fig. 3:

Vdp ≈ 0.032λ3. (56)

This result demonstrates that short dipole pulses can provide
for more effective focusing (more optimal energy density
concentration) compared to a monochromatic dipole wave

with the same main wavelength [compare with Eq. (45) and
Fig. 2].

VI. OPTIMIZING THE PULSE SHAPE FOR
MAXIMIZATION OF THE FIELD AMPLITUDE

IN THE FOCUS

Here we consider the problem of how to maximize the field
amplitude in the focus by choosing a perfect pulse shape at
the input. Under this consideration, we assume that both the
pulse energy and the main wavelength are given and limited.
From Eq. (40), it is already obvious that infinitely high field
amplitudes can be achieved in the case of infinitely small main
wavelength. But, as will be demonstrated below, this is not the
necessary condition for the maximization problem in the case
of nonmonochromatic fields.

Our starting point for finding the solution of the maxi-
mization problem is the fact that we have a different time
dependence for the field in the focus and in the far-field region.
This fact follows directly from DPT [see Eqs. (20) and (25)].
These formulas enable us to express the field amplitude in
the focus Ef analytically through the z component of the
amplitude in the far-field region Ez [we consider the case
�d(t) = �d0g(t), �d0 = �z0d0, R0 = Rf , and θ = π/2; see also
Fig. 4]:

Ef

(
t − Rf

c

)
= 4

3

Rf

c
Ėz(t). (57)

In that way, to maximize the field amplitude in the focus, we
need to maximize its first derivative in the far-field region at
some moment in time. We therefore do not need to change
the main wavelength. Consider, for example, the extreme case
where a step function in the envelope of the initial field leads
to the generation of a Dirac δ function in the focus (see Fig. 5).

By additionally using formula (27) together with Eqs. (20)
and (25) we can obtain an expression for the field amplitude

z

θ = π
2

Rf

Ef

Ez

li

FIG. 4. (Color online) Field distribution of the dipole pulse with
a sharp front at some fixed moment of time (green line); li is a
characteristic pulse buildup length.
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1
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Normalized amplitude in the far field region

t
2 2 4 6

1

1

2

3

4

5
Normalized amplitude in the focus

t − Rf

c

FIG. 5. (Color online) Comparison of the normalized field amplitudes as functions of time (left) in the far-field region and (right) in the
focus for a monochromatic e-dipole wave (yellow lines) and e-dipole pulses with sharp fronts (blue and red lines).

in the focus as a function of the incoming power:

Ef

(
t − Rf

c

)
= ±

(
8

3c3

) 1
2 d

dt
[Pτ (t)]

1
2 . (58)

The field near the sharp front can be approximated as a linear
function. We can then obtain from Eq. (57)

Max(Ef ) ≈ 4

3

Rf

tic
E0 = 4

3

Rf

li
E0, (59)

where E0 is a local maximum of Ez, ti is the characteristic
buildup duration, and li is the corresponding length (see also
Fig. 4). In the case of a monochromatic dipole wave, we can
obtain from Eq. (57) the following expression:

Max(Ef ) = 8π

3

Rf

λ
E0. (60)

We can conclude that dipole pulses with sharp edges can give
additional advantages regarding the problem of field amplitude
maximization. The difference from the monochromatic case
can be very high for the case li � λ, which can be realized,
for example, by using special optical generators [39,40] or
by pulse reflection from (or propagation through) a nonlinear
medium [41,42].

VII. THE EFFECT OF A SHAPED DIPOLE PULSE AND
PHASE OPTIMIZATION

In this section we consider the effect of short or sharply
shaped dipole pulses and hence the increase of the maximum
field amplitude in the focus from these dipole pulses in com-
parison to a quasimonochromatic dipole pulse with the same
main wavelength and maximum value of initial amplitude in
the far-field region or with the same peak power of input
pulses. To demonstrate this effect we compare the dipole pulses
with different parameters, say with different shapes and carrier
envelopes, but the same peak power.

Let us assume that the initial field in the far-field region is
determined by two parameters: (1) the envelope f (t) and (2)

the phase ϕ:

E(t) = f (t) sin(ωt + ϕ). (61)

By using Eq. (57), we can write

Ef

(
t − Rf

c

)
∝ ḟ (t) sin(ωt + ϕ) + ωf (t) cos(ωt + ϕ)

=
√

ḟ 2 + ω2f 2 sin

[
ωt + ϕ + arcsin

(
ωf√

ḟ 2 + ω2f 2

)]
.

(62)

In order to maximize the field amplitude, we first need to
find the optimal time t∗, which can be determined from the
following condition:

t∗ : (ḟ 2 + ω2f 2) → Max. (63)

After that, we can find the optimal phase ϕ∗ by using the
following condition:

ωt∗ + ϕ∗ + arcsin

(
ωf√

ḟ 2 + ω2f 2

)
= π

2
. (64)

Summarising these results, we conclude, that for shaped
dipole pulses [with the form such as in Eq. (61)], under such
condition:

∃t∗ : (ḟ 2 + ω2f 2) > Max(ω2f 2), (65)

the effect of the shaped dipole pulse, and hence the increase
of the field amplitude above the level of the corresponding
monochromatic dipole wave, can be observed. From Eqs. (61)–
(64), it follows additionally that if the focused pulse possesses
a symmetric envelope (maximum value at t = 0) and contains
at least several optical periods, then Max(ḟ 2 + ω2f 2) =
Max(ω2f 2), t∗ = 0, and the optimal phase is ϕ∗ = 0.
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VIII. CONCLUSION

We have introduced and analyzed the exact nonstationary
solutions of Maxwell equations in vacuum: electric and
magnetic dipole pulses, which are obtained from DPT. These
pulses can be generated in 4π focusing systems such as
parabolic mirrors using radially polarized laser pulses with
a suitable radial amplitude profile and a plane phase front at
the input. As shown, dipole pulses have at least two remarkable
properties: (1) they provide for very good focusing efficiency
(regarding the problem of maximizing the field amplitude in
the focus) where the characteristic spatial volume of focusing
for short pulses is substantially smaller than 0.073λ3, and
(2) they provide also for a very effective separation of the
electric and magnetic fields in the focus region. Moreover,
we demonstrated that sharply shaped dipole pulses with a
given peak power and main wavelength can produce a sharply
peaked amplitude of the field in the focus. Also a certain
choice of carrier envelope of the shaped dipole pulse at the
input allows us to achieve the effect of an increase of the
maximum value of the field amplitude in the focus for a shaped
dipole pulse in comparison with a quasimonochromatic dipole
pulse under the same input conditions, the main wavelength,
and peak power in the far-field region. The corresponding
optimization procedure is analyzed. All these properties give
us the opportunity of using dipole pulses for a number of
problems and applications of high-intensity laser physics
(see [1] and references therein), namely, charged-particle
acceleration, high harmonic generation in the relativistic
regime, and electron-positron pair production in vacuum.
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APPENDIX A

In this appendix, we point out some mathematical formulas
and expressions which we use for the derivation of the field
distributions, Eqs. (3) and (23). For the derivation of the
electric field distribution one can use the well-known formula
for an arbitrary vector function �M:

∇ × [∇ × �M] = grad(div �M) − � �M, (A1)

where � = ∇ · ∇ is the Laplace operator. In order to perform
vector operations, we can use the following expressions for a

vector function of the form �F = �F (R,t):

∇ × �F = �n × ∂ �F
∂R

, (A2a)

div �F = �n · ∂ �F
∂R

= �R · 1

R

∂ �F
∂R

, (A2b)

grad( �R · �F ) = �F + �R
(

�n · ∂ �F
∂R

)
. (A2c)

Thus, if we have a combination (t ± R
c

) in any part of the vector
functions used, the corresponding spatial partial derivative ∂R

can be replaced by the temporal partial derivative ∂t . Finally,
we make use of a simple, well-known formula from vector
analysis:

�a − �n(�n · �a) = �n × [�a × �n]. (A3)

APPENDIX B

Here we present a derivation of the driving function for
a dipole pulse with a Gaussian envelope. As follows from
Eq. (23), it is enough to obtain the field distribution in any
point of space and time. Our goal is to find the driving function
g(t) which satisfies the condition

g̈(t) = e−a2t2
sin(ωt). (B1)

For that we can find first time integrate of g̈(t) to obtain

ġ(t) = i
√

π

4a
e
− ω2

4a2

[
erf

(
at + iω

2a

)
− erf

(
at − iω

2a

)]
, (B2)

where erf(x) is the error function:

erf(x) = 2√
π

∫ x

0
e−y2

dy. (B3)

Using the simple formula

d

dx

[
xerf(x) + e−x2

√
π

]
= erf(x), (B4)

the required driving function can be obtained from Eq. (B2) in
the following form:

g(t) = i
√

π

4a
e
− ω2

4a2

[(
at + iω

2a

)
erf

(
at + iω

2a

)

−
(

at − iω

2a

)
erf

(
at − iω

2a

)]
. (B5)

This real function satisfies (B1) and determines completely the
propagation of the dipole pulse with a Gaussian envelope in
the far-field region.
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