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By restating geometrical optics within the field-theoretical approach, the classical concept of a photon (and,
more generally, any elementary excitation) in an arbitrary dispersive medium is introduced, and photon properties
are calculated unambiguously. In particular, the canonical and kinetic momenta carried by a photon, as well as
the two corresponding energy-momentum tensors of a wave, are derived from the first principles of Lagrangian
mechanics. As an example application of this formalism, the Abraham-Minkowski controversy pertaining to the
definitions of these quantities is resolved for linear waves of arbitrary nature, and corrections to the traditional
formulas for the photon kinetic energy-momentum are found. Several other applications of axiomatic geometrical
optics to electromagnetic waves are also presented.
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I. INTRODUCTION

A. Motivation

The discussion about how to define the momentum and
the angular momentum of a photon in a dispersive medium
(PDM), and even simply of a classical wave, has recurred
in literature periodically during the last 100 years. The
recent burst of theoretical [1–53] and experimental [54–56]
publications indicates both an abiding interest in the problem
and, apparently, a lack of consensus or certainty about what
the correct answer is. The traditional arguments can be found
in reviews such as Refs. [57–63] and references therein, which
are too numerous to be listed in this paper. Let us mention only
briefly that two alternative forms of the PDM momentum are
adopted most commonly:

pM = h̄ωnp/c, pA = h̄ω/(ngc), (1)

which are known, respectively, as the Minkowski interpre-
tation and the Abraham interpretation [64]. (Here, ω is the
frequency, c is the speed of light, and np = c/vp and ng = c/vg

are the refraction indexes associated with, correspondingly,
the phase velocity vp and the group velocity vg; for the
two associated angular momenta, see Ref. [46].) Since both
have supporting theoretical and experimental evidence [1],
the question about which of the two interpretations is “more
correct” has been controversial.

A resolution to this Abraham-Minkowski controversy
(AMC) was proposed recently in Ref. [1]. It was argued
there that both interpretations are correct; namely, pM can
be attributed as the canonical momentum and pA can be
attributed as the kinetic momentum of a photon. Yet, strictly
speaking, the argument of Ref. [1] applies only to the case of a
nonrelativistic solid dielectric. The subsequent generalization
in Ref. [6] is not quite complete either; for example, the
latter neglects electrostriction and magnetostriction, kinetic
effects, and spatial dispersion, and also attributes vg entirely to
the Poynting flux, in disagreement with a textbook theorem
[Eq. (136)]. Thus, a quantitative relativistic theory is still
lacking that would correct the existing understanding of PDM,
and Eqs. (1) in particular. The purpose of this paper is to

resolve these issues in a consistent manner and, through that,
formulate a comprehensive asymptotic theory of linear waves
of arbitrary nature.

B. Field-theoretical approach

Before photon properties can be calculated, the PDM itself
must be defined unambiguously. (In particular, this means that
contrary to the common presumption, the PDM properties
cannot simply be inferred from experiment without a theory
of what is being inferred.) Second of all, the definition should
not be expected to originate from electromagnetism, because
the concept of a photon, and even of vp and vg that enter
Eqs. (1), is not embedded in Maxwell’s equations per se. On
the other hand, the photon concept is also not entirely of a
quantum nature [65], and mechanical properties of quantum
radiation (dipole force, radiation pressure, cooling effects on
atoms, etc.) are consistently shown to have direct classical
analogs [66–70]. It then stands to reason that an abstract
classical calculation could resolve the AMC, generalizing
Eqs. (1), without assuming a specific underlying physical
system whatsoever.

To understand what the right framework is for such a
calculation, notice that introducing a photon implies that
the frequency ω and the wave vector k are well defined.
These are exactly the validity conditions of the asymptotic
theory commonly known as geometrical optics (GO). (The
term “optics” here means only that the theory deals with
sufficiently large ω and k; i.e., waves need not be electro-
magnetic.) Although usually defined through rays and wave
equations [71–79], the most fundamental, axiomatic GO is
an abstract field theory that applies to any field having a
Lagrangian density of a specific form [Eq. (11); dissipative
effects can also be added, see Sec. IV D]. Just like Newton’s
laws of particle motion hold, with obvious exceptions, in-
dependently of specific forces acting on particles, the basic
GO equations are then invariant to the wave nature [80],
and the wave properties can be derived in general. Hence,
axiomatic GO should resolve the AMC automatically and
transparently.
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C. Outline

Here we aim to apply the GO formalism toward deriving
PDM general properties deductively using nothing more than
first principles of classical mechanics. In doing so, we draw
on the Lagrangian field theory as elaborated in plasma physics
and hydrodynamics during the last 50 years [81–109]. Since
this literature, sadly, remains unknown within the mainstream
approach to the AMC (with few exceptions), the general
formalism of axiomatic GO will also be restated.

Specifically, below we do the following:
(a) formulate from first principles a comprehensive theory

of axiomatic GO, extending and expanding on existing
results in applications to waves of arbitrary nature (not just
electromagnetic waves);

(b) explain how the wave canonical energy-momentum
tensor (EMT) is related to the photon properties in the
Minkowski interpretation (here and further photons are un-
derstood as any elementary excitations, not just light quanta;
see Secs. III A and VI F);

(c) introduce the wave angular momentum and photon
(plasmon, phonon, polariton, etc.) spin within axiomatic GO
and calculate it explicitly for cylindrical beams, also of
arbitrary nature;

(d) derive the effect of local linear dissipation;
(e) unambiguously define the wave kinetic EMT and

calculate it explicitly for isotropic relativistic fluids (with
striction effects included);

(f) calculate the associated energy, momentum, and angu-
lar momentum per photon (plasmon, phonon, polariton, etc.);
show that the traditional, Abraham’s formulas are reproduced
as a limiting case;

(g) illustrate how the properties of electromagnetic waves,
considered as a special case, can be inferred deductively
within axiomatic GO;

(h) and, finally, responding to the questions posed in
Ref. [35], we clarify the applicability of Minkowski’s and
Abraham’s formulas for electromagnetic waves in various
media (including cold, warm, and relativistic) and present
examples.

Note that in (a) and (b) above, which correspond to
Secs. III–IV B, we mostly repeat known arguments, which
were published previously, e.g., in Refs. [84–88]. Also keep
in mind that in application to specific media, the problem of
finding both canonical and kinetic EMT of a classical elec-
tromagnetic wave was solved comprehensively in Ref. [88],
which, while known within the plasma physics community,
seems to remain unknown to the general readership. The dif-
ference between Ref. [88] and our paper is that we use different
machinery to arrive at results that are, in certain aspects, more
general and, as a consequence, more concise and transparent.
In particular, our paper is not about electromagnetism but
rather about basic physics of waves, so we need not specify
the wave nature; also we derive photon properties, and allow
for dissipation, complementing Ref. [88] on these issues.

The paper is organized as follows. In Sec. II we introduce
the notation used throughout the text. In Sec. III we describe
general GO waves, including nonlinear waves, in arbitrarily
curved spacetime and also in the Minkowski spacetime as
a particular case. In Sec. IV we reduce the theory further

to describe linear waves and explain how the Minkowski
representation is recovered; in particular, the wave angular
momentum and dissipative effects are discussed. In Sec. V we
introduce the wave kinetic EMT and reproduce the traditional
formulas for the corresponding photon quantities as a limiting
case. In Sec. VI we consider, as an example, how the specific
properties of electromagnetic waves flow deductively from
the general theory. Section VII explores the ramifications
of our findings and summarizes our main results. Auxiliary
calculations are presented in the Appendix.

II. NOTATION

The following notation will be assumed below. We use the
symbol

.= for definitions. Greek indexes span from 0 to 3
and refer to coordinates in spacetime, xα . In particular, for
the Minkowski spacetime, we adopt x0 .= ct , where t is time.
Hence the Lorentz transformation matrix, �α

β
.= ∂xα/∂x ′β ,

is given by

�0
0 = γ, �0

i = γ vi/c, �i
0 = γ vi/c,

(2)
�i

j = δi
j + (γ − 1)vivj /v

2,

where vi is the velocity of the “primed” reference frame
with respect to the laboratory frame, and γ

.= (1 − v2/c2)−1/2.
Latin indexes i, j , and l span from 1 to 3 and refer to spatial
coordinates, xi . Spatial vectors are denoted with bold, X;
spatial tensors are also marked with hat, T̂; symbols such
as XY .= Ẑ stand for spatial dyadics, Zij = XiY j ; the symbol
1̂ denotes the unit spatial tensor; and the three-tensor

�̂
.= 1̂ + γ − 1

v2
vv (3)

is the spatial part of �α
β . Summation over repeating indexes

will also be implied; e.g., XiYi ≡ ∑3
i=1 XiYi .

Latin indexes (excluding i, j , l, and nonbold roman, as in
np) denote partial derivatives with respect to the corresponding
variables; e.g., for f

.= f (a,ω,k; t,x), the symbol fx denotes
the derivative (gradient) with respect to the last argument, x. In
addition to those, we also introduce “full” temporal and spatial
derivatives, ∂tX ≡ ∂X/∂t and ∂iX ≡ ∂X/∂xi , which treat all
arguments of (any) X as functions of, correspondingly, t and
xi . For instance, for the above f , one has

∂tf = fa ∂ta + fω ∂tω + fki
∂t ki + ft , (4)

∂if = fa ∂ia + fω ∂iω + fkj
∂ikj + fxi

, (5)

while ∂ta(t,x) = at (t,x), etc. The symbol ∇ denotes the
associated full covariant derivative; e.g., ∇if = ∂if is the full
gradient of the scalar f , and ∇ · F is the full divergence of the
vector F,

∇ · F = 1√
η

∂

∂xi
(
√

η F i), (6)

where η
.= det ηij , and ηij = ηji is the spatial metric.

[In Cartesian coordinates, Euclidean space has ηij = ηij =
diag (1,1,1), so η = 1.] The symbol ,α denotes the analogous
(to ∂i) full derivative with respect to xα , and ;α denotes
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TABLE I. Summarized here is some notation adopted for wave variables (“ponder.” stands for ponderomotive; the
integral quantities are obtained by integrating the corresponding densities over the spatial volume, dV ≡ √

η d3x). The
rest of the notation is explained in the text.

Per unit spatial volume Integral Per photon

Canonical Kinetic Ponder. - Canonical Kinetic

Number of photons N - - N 1 -
Action I - - I h̄ -
Energy E ε �ε - H h

Momentum P ρ �ρ - P p
Angular momentum M μ �μ - M m
Photon flux G - - - - -
Action flux J - - - - -
Energy flux Q ϑ - - - -
Momentum flux �̂ π̂ - - - -
Energy-momentum tensor T τ �τ - T -
Wave Lagrangian L - - L - -

the analogous full covariant derivative. For example, the
four-divergence is

Fα
;α = 1√

g

∂

∂xα
(
√

g Fα), (7)

where g
.= −det gμν , and gμν = gνμ is the spacetime metric.

For an introduction to the tensor notation and index manipu-
lation rules in particular, see Refs. [71,110,111].

Some specific symbols are also summarized in Table I.

III. GENERAL WAVES

A. Covariant formulation

First, let us consider a general nondissipative wave de-
scribed by some action integral S = ∫

L
√

g d4x, where
√

g d4x ≡ √
g dx1dx2dx3dx4 (8)

is an invariant volume element in spacetime, and the four-
scalar L is the Lagrangian density. Since the action of the
underlying medium is not included here, no invariance re-
quirements on L are imposed. Instead, we assume that the wave
structure remains fixed (albeit not necessarily sinusoidal), so
the wave is fully described by some canonical phase θ , which
will be understood as a scalar field θ (xν), and a = a(xν), which
is an arbitrary measure of the wave local amplitude [112]. We
also assume that the envelope evolves on spacetime scales
that are large compared to those of local oscillations. On such
time scales, it is only the average Lagrangian density that
contributes to S, so one can adopt that L does not depend on θ

explicitly. Instead, L must depend on the phase four-gradient,

kμ
.= θ,μ, (9)

which is the generalized “wave vector” (actually, a four-
covector here), obviously having zero four-curl,

kμ;ν − kν;μ = kμ,ν − kν,μ = θ,μν − θ,νμ = 0. (10)

[Equation (10) is known as the consistency relation.] Besides
that, L must depend on a; yet the dependence on the amplitude
gradients a,ν is negligible in the GO limit. Thus, allowing also
for slow parametric dependence on the spacetime coordinates

xν , we postulate

L = L(a,kμ; xν), (11)

which as well can be considered as the definition of the GO
approximation. Hence wave equations are inferred using the
least action principle, namely, as follows.

First, let us consider the variation of S with respect to the
wave amplitude a. Since δaS = ∫

La δa
√

g d4x for any δa,
the requirement δaS = 0 leads to

La = 0. (12)

Equation (12) can be understood as the wave dispersion
relation, and it is generally nonlinear, i.e., it may retain
essential dependence on a (see, e.g., Refs. [106,108]).

Second, let us consider the variation of S with respect to
the wave phase θ [113]. Due to Eq. (9) and the fact that L does
not depend on θ explicitly, for any δθ one has

δθS =
∫

Lkμ
δθ,μ

√
gd4x

=
∫ [(√

gLkμ
δθ

)
,μ

− (√
gLkμ

)
,μ

δθ
]
d4x

= −
∫ (

Lkμ

)
;μδθ

√
gd4x,

where we used the fact that the wave field vanishes at infinity,
so

∫
(. . .),μ d4x = 0. Thus, the requirement δθS = 0 yields that

the four-divergence of the action flux density J μ .= −Lkμ
is

zero [114],

J μ
;μ = 0, (13)

which is called the action conservation theorem (ACT).
Since the ACT has the form of a continuity equation, one
can treat Gμ .= J μ/h̄ as the flux density of some fictitious
quasiparticles, or “photons.” (In application to specific waves,
one can as well think of plasmons, phonons, polaritons, or
any other elementary excitations instead. See also Sec. VI F.)
However, remember that within our classical description, it is
only the product h̄Gμ that has an explicit physical meaning, so
the actual value of h̄ will be irrelevant for our purposes.
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Finally, let us also introduce the wave EMT as follows.
Consider the (generally asymmetric) tensor

Tα
β .= kαJ β + δβ

αL. (14)

The divergence of Tα
β equals

Tα
β

;β = kα;βJ β + kαJ β
;β + δβ

α

(
La a;β + Lkλ

kλ;β + Lxβ

)
= kα;βJ β + δβ

α

(
Lkλ

kλ;β + Lxβ

)
= kα;βJ β − kλ;αJ λ + Lxα

= kα;βJ β − kα;λJ λ + Lxα

= Lxα , (15)

where we used Eqs. (11)–(13). This tensor is then associated
with the conservation law, Tα

β
;β = 0, yielded when the system

is translationally invariant in spacetime (i.e., when the four-
force is zero, Lxα = 0). Hence, Tα

β is a true canonical EMT
[115], as one could also infer from the standard definition
that is based on Noether’s theorem [116]. However, notice
that in contrast to the fundamental theorem of the vacuum
field theory ([71], Sec. 32), T αβ does not permit the usual
[88,101,117–120] symmetrization, since L is not restricted
by any invariance requirements [81]. (Yet see Ref. [121] for
symmetrization via adopting an effective, “optical” metric.)
In particular, the very fact that a scalar field such as θ (xν)
yields an asymmetric EMT already proves the lack of Lorentz
invariance ([122], Sec. 5.6).

B. Application to the Minkowski spacetime

From now on, we will assume the Minkowski spacetime
with metric signature (−, + , + ,+); hence,

g00 = g00 = −1, ηij
.= gij , η = g. (16)

(Although the space is Euclidean, we will allow for curvilinear
coordinates; thus, albeit flat, the spatial metric ηij can
otherwise be arbitrary.) In this case, kα = (−ω/c,k), and
kα = (ω/c,k), where

ω
.= −∂tθ, k .= ∇θ. (17)

Then Eq. (10) turns into the following set of equations:

∂tk + ∇ω = 0, ∇ × k = 0. (18)

One may notice also that the latter equation here can be
considered as the initial condition for the former one, taking
curl of which readily yields ∂t (∇ × k) = 0.

Accordingly, Eq. (11) becomes

L = L(a,ω,k; t,x). (19)

The dispersion relation hence holds in the form (12). The ACT
can be rederived from Eq. (19) or it can be deduced from
Eq. (13) by substituting J α = (cI,J ); either way, one gets
(cf. Refs. [85,86])

∂tI + ∇ · J = 0, (20)

where I is the action density, and J is the action spatial flux
density, introduced as follows:

I .= Lω, J .= −Lk. (21)

In particular, the integration of Eq. (20) over the volume dV ≡√
η d3x yields conservation of the integral action,

I
.=

∫
IdV = const. (22)

Introducing the photon density N .= I/h̄ and the photon
spatial flux density G .= J /h̄, one can further rewrite Eq. (20)
as ∂tN + ∇ · G = 0, and Eq. (22) will yield the photon
conservation, N

.= ∫
NdV = const. Also notice that both I

and N are Lorentz invariants, as are well known to flow
from the general (unlike, e.g., in Ref. [123]) properties of
the continuity equation ([111], Sec. 2.6).

The elements of the (contravariant) EMT are now

T 00 = ωI − L, T 0i = ωJ i/c,
(23)

T i0 = ckiI, T ij = kiJ j + ηij L.

In particular, Eq. (15) yields

∂T 00

∂t
+ 1√

η

∂

∂xi
(cT 0i√η) = w, (24)

which is a continuity equation for T 00 with the right-hand side
being w

.= g00cLx0 = −Lt . Since the latter has the meaning
of the canonical power source, E .= T 00 must be the wave
canonical energy density, andQi .= cT 0i must be the canonical
energy flux density. Similarly,

1

c

∂T i0

∂t
+ 1√

η

∂

∂xj
(T ij√η) = f i, (25)

which is a continuity equation for the three-vector T i0/c with
the right-hand side being f .= Lx. Since the latter has the
meaning of the canonical momentum source,P i .= T i0/c must
be the wave canonical momentum density, and the (generally
asymmetric) three-tensor �ij .= T ij must be the canonical
momentum flux density [124].

In summary, one then has

T αβ =
(

E Q/c

cP �̂

)
, (26)

where the individual blocks are given by

E = ωI − L, Q = ωJ , P = kI, �̂ = kJ + L 1̂,

(27)

and Eqs. (24) and (25) can be written as follows:

∂tE + ∇ · Q = w, ∂tP + ∇ · �̂ = f. (28)

It is hence seen that the wave energy propagates at velocity
Q/E that is generally different from the action flow velocity
J /I [cf. Eq. (20)], and similarly for the momentum flow
velocity. Moreover, those three turn out to be different from
the velocities of information, or the nonlinear group velocities,
of which there can also be more than one. For an expanded
discussion on this, see Refs. [86,109] and references therein.

IV. LINEAR WAVES: MINKOWSKI REPRESENTATION

A. Basic equations

Now let us consider a linear wave, i.e., such that has
ω(k; t,x) independent of a. In this case, from Eq. (12)
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it is seen that La must be separable as La = D(ω,k)Aa ,
where A(a,ω,k) is some function such that Aa is nonzero.
[Parametric dependence of functions like L, D, and A on (t,x)
is also assumed, but will be omitted for the sake of brevity.]
Then,

L = D(ω,k)A. (29)

It will hence be convenient to think of a as a linear measure
of the oscillating field amplitude. Then, most commonly, one
will have A ∝ a2; yet for our purposes, the actual dependence
need not be specified.

Equation (12) now yields

D(ω,k) = 0. (30)

Thus Eqs. (21) become

I = DωA, J = −DkA, (31)

and Eqs. (27) take the form

E = ωI, Q = ωJ , P = kI, �̂ = kJ . (32)

Hence the photon canonical energy H
.= E/N and the photon

canonical momentum P .= P/N equal [84]

H = h̄ω, P = h̄k, (33)

matching the Minkowski interpretation exactly and inde-
pendently of the wave nature. (In fact, P = h̄k holds even
for nonlinear waves [cf. Eqs. (27)].) In particular, P α .=
(H/c,P) = h̄kα happens to be a true four-vector, by definition
of kα , so P αPα is a Lorentz invariant. The latter can also be
understood as a measure of the photon canonical mass M,
defined via

M2 .= −P αPα/c2 (34)

(cf., e.g., Refs. [103,125,126]).
Further, differentiating Eq. (30) with respect to k [with ω =

ω(k; t,x)] also gives Dωvg + Dk = 0, where we introduced the
linear group velocity vg

.= ωk; therefore,

vg = −Dk/Dω = J /I. (35)

Hence, Eq. (26) yields T αβ = NT αβ , where

T αβ =
(

h̄ω h̄ωvg/c

ch̄k h̄kvg

)
(36)

is the canonical EMT per photon. Alternatively, one can also
exclude N and rewrite Eqs. (32) as

P = kE/ω, Q = Evg, �̂ = Pvg. (37)

It is seen, from here and Eqs. (28), that the canonical action,
energy, and momentum are all transported at the same velocity,
vg. However, keep in mind that the full, or kinetic, energy and
momentum densities carried by the wave (Sec. V) generally
do not have this property.

Finally, let us introduce photon trajectories dtx = vg, also
known as GO rays. Along those trajectories,

dt = ∂t + vg · ∇. (38)

Then Eqs. (18) yield

dtx = vg, dtk = −ωx, dtω = ωt . (39)

[Remember that the derivatives ωx and ωt of ω(k; t,x) are taken
at fixed k.] In particular, the ACT can hence be written as

dt ln I = −∇ · vg. (40)

Also notice that Eqs. (39) can be understood as canonical
equations for the photon motion governed by the Hamiltonian
H (x,P; t). In this form, i.e.,

dtx = HP, dtP = −Hx, dtH = Ht, (41)

they are identical to the motion of a true classical particle
such as an electron, which supports the well-known analogy
between GO and classical mechanics ([127], Sec. 9.8).
Reverting to Eqs. (11) and (19), it is seen then that not just
waves, but classical particles too can be described in terms of
phases and amplitudes [128].

B. Noether’s integrals

Various transport equations can now be derived from

∂t (XI) +∇ · (XJ ) = (∂tX)I + X(∂tI) + (∇X)J + X(∇ · J )

= (∂tX)I + (∇X)J
= I (∂tX + vg · ∇X)

= I dtX, (42)

which holds for arbitrary X. Some of those are as follows.
Action. Taking X equal to a constant, one recovers Eq. (20),

or the ACT. [Of course, this is not an independent derivation of
the ACT, since the latter itself was used in deriving Eq. (42).]
As already emphasized, Eq. (20) is due to the fact that L does
not depend on θ explicitly. Since it also implies conservation
of the integral action I , the latter can be understood as the
corresponding Noether’s integral.

Energy. Taking X = ω, one obtains

∂tE + ∇ · (Evg) = I dtω. (43)

As seen from Eq. (39), in a stationary medium, dtω = 0, so
one recovers the result obtained in Sec. III, namely, that the
wave integral energy

∫
EdV is the Noether’s integral that is

conserved when the system is translationally invariant in time.
Another corollary, which is obtained by comparing Eq. (43)
with Eq. (24), is that

−Lt = w = Idtω = I ωt, (44)

where we also used Eq. (39). Alternatively, one can rewrite
this as w = NdtH , where dtH is the work on an individual
photon per unit time.

Momentum. Taking X = k, one obtains

∂tP + ∇ · (Pvg) = Idtk. (45)

As seen from Eq. (39), in a homogeneous medium, dtk = 0,
so one recovers the result obtained in Sec. III, namely, that
the wave integral momentum

∫
PdV is the Noether’s integral

that is conserved when the system is translationally invariant
in space. Another corollary, which is obtained by comparing
Eq. (45) with Eq. (25), is that

Lx = f = Idtk = −Iωx, (46)

where we also used Eq. (39). Alternatively, one can rewrite this
as f = NdtP, where dtP is the force on an individual photon.
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Angular momentum. Taking X = x × k, one obtains from
Eq. (42) that

∂tM + ∇ · (Mvg) = Idt (x × k), (47)

where we formally introduced M .= (x × k)I, or

M = x × P . (48)

Based on Eq. (48), one could anticipate that M is the wave
angular momentum density, and indeed Eq. (47) yields that
this is the case, as we will now prove.

C. Angular momentum

Conservation theorem. Consider system rotation by an
arbitrary infinitesimal angle δϕ. Associated with this rotation
will be a variation of the Lagrangian density,

δL = Lk · δk + Lx · δx, (49)

where we substituted Eq. (11) for La; also,

δk = δϕ × k, δx = δϕ × x, (50)

Lk = −J = −vgI, and Lx = Idtk, where the latter is taken
from Eq. (46). Hence,

I−1δL = −vg · (δϕ × k) + dtk · (δϕ × x)

= δϕ · (vg × k) + δϕ · (x × dtk)

= δϕ · dt (x × k). (51)

Having δL = 0 yields that dt (x × k) = 0. From Eq. (47), one
then obtains that

∂tM + ∇ · (Mvg) = 0, (52)

which means, in particular, that
∫

MdV is conserved. Since
this is the invariant associated with the medium isotropy, it
by definition ([129], Sec. 9) represents the wave angular mo-
mentum. Correspondingly, M is the wave angular momentum
density [130]. Also, M .= M/N , or

M = x × P, (53)

is the angular momentum of a photon, h̄ dt (x × k) ≡ dtM is
the torque on a photon (cf. Ref. [96]), and the corresponding
dynamic equation is spelled out as

dtM = vg × P − x × Hx. (54)

Spin angular momentum (SAM). Consider a stationary
wave beam symmetric with respect to the z axis; i.e., in
cylindrical coordinates (r,φ,z), the amplitude a and the wave
vector components kr , kφ , and kz are independent of φ. The
consistency relation (18) requires then that ∂r (rkφ) = 0, so
kφ = m/r , where m is a constant. This gives Mz = rkφI =
mI, or that the carried angular momentum per photon is
Mz = mh̄. To find m, notice that due to kφ = r−1∂φθ , the
wave canonical phase has the form θ = mφ − ωt + �(r,z),
where � is some function of r and z only. Thus, after any
time δt , the wave must repeat itself, at the same r and z,
in the coordinate frame rotated by δφ = (ω/m) δt . Satisfying
this condition are, in fact, only circularly polarized waves (at
least, in free space), corresponding to m = ±1. Other types of
wave beams therefore cannot be considered symmetric within
GO and thus can be assigned only average m. Specifically, by
decomposing a wave with a given elliptic polarization into

the two independent circularly polarized components with
corresponding weights C+ and C−, one gets 〈m〉 = C+ − C−.
In particular, linear polarization corresponds to C+ = C−, in
which case 〈m〉 = 0.

These results match the known quantum theorem, which
says that states with circular polarization are the only po-
larization states of a free photon that are eigenstates of the
corresponding SAM projection, Mz = ±h̄ ([131], Sec. 8).
Thus, for an axially symmetric beam, Mz that originates
entirely from the beam polarization can be called the SAM
density. Interestingly, it can also be interpreted as follows.
For those (circularly polarized) waves that do allow precise
definition of the SAM, the latter appears due to the singularity
of kφ at r = 0, i.e., due to θ (r = 0) being undefined [132].
In this sense, the canonical phase increment �θ = 2πm

along a closed contour encircling the symmetry axis is the
corresponding Berry phase [133,134], so the photon SAM (in
units of h̄) is just the Berry index of the classical phase field.

Finally, note that a wave beam that is not axially symmetric
will also carry additional, “orbital” momentum [135,136]. The
latter is included in Eq. (48), and separating it from the SAM
unambiguously may not be possible except in special cases, as
usual; see, e.g., Refs. [135–137] or Ref. [131], Sec. 6.

D. Dissipation

Suppose now that a linear wave experiences weak dissipa-
tion. Then, comprising the wave locally are Fourier harmonics
with complex frequencies and wave vectors,

� = �′ + i�′′, K = K′ + iK′′. (55)

Assuming the local dispersion relation in the form

D(�,K) = 0, (56)

let us keep only the terms of the zeroth and first order in �′′
and K′′. Then one gets

D + iD��′′ + iDK · K′′ = 0, (57)

where D and its derivatives are henceforth evaluated at (�′,K′).
Now suppose D = D′ + iD′′, where D′′ .= Im D is much
smaller than D′ .= Re D. One hereby obtains

D′ + iD′′ + iD′
��′′ + iD′

K · K′′ = 0 (58)

(where higher-order terms were neglected), the real part and
the imaginary part of which are, correspondingly,

D′ = 0, (59)

D′′ + D′
��′′ + D′

K · K′′ = 0. (60)

From here, the envelope dynamics is inferred as follows.
At any given time, the field distribution of the real system

can be mapped into the auxiliary nondissipative system, where
the wave phase θ is well defined, and

L
.= D′(ω,k)A. (61)

This defines the instantaneous a and also the instantaneous
real canonical frequency and wave vector, (ω,k); hence all
other local quantities can be introduced through L(a,ω,k) too.
However, the dynamics in the auxiliary system and in the real
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system are different; thus, for the latter, an extra term � must
be added in Eq. (40),

dt ln I = −∇ · vg − �. (62)

Assume that dissipation is determined by the local (a,ω,k)
and by the local parameters of the medium, rather than
their gradients. Then one can find � by calculating it for a
homogeneous stationary medium and a wave whose field is
locally “monochromatic,” i.e., can be assigned a particular
complex (�,K) [which maps to the given canonical (ω,k)].
Then,

� = −dt ln I = −κ(�′′ − vg · K′′), (63)

where κ

.= d ln A/d ln a (which commonly equals 2; see
Sec. IV A), and the left-hand side is evaluated at (�′,K′). On
the other hand, Eq. (60) yields

�′′ − vg · K′′ = −D′′/D′
�. (64)

Hence � is connected with the dispersion function as

�(ω,k) = κ D′′(ω,k)/D′
ω(ω,k), (65)

where we used that to the leading order, it is sufficient to take
(�′,K′) ≈ (ω,k) on the right-hand side.

Now let us present the corresponding transport equations.
Similarly to Eq. (42), one has, for any X, that

∂t (XI) + ∇ · (XJ ) = IdtX − �XI. (66)

Since X is arbitrary, the number of equations that can
be produced from here is infinite, like in Sec. IV B. In
particular, those for the action, energy, momentum, and angular
momentum are obtained by taking X = 1, X = ω, X = k, and
X = x × k, correspondingly, and are as follows:

∂tI + ∇ · (Ivg) = −�I, (67)

∂tE + ∇ · (Evg) = Idtω − �E, (68)

∂tP + ∇ · (Pvg) = Idtk − �P, (69)

∂tM + ∇ · (Mvg) = Idt (x × k) − �M. (70)

The physical statement contained in these is twofold. First of
all, one can see that the decay rate is the same in all of the
equations, regardless of the specific X. [This, of course, is
seen already from Eq. (66).] Second of all, this rate is actually
known from Eq. (65), which connects � with the dispersion
function D. In particular, the action loss per unit volume per
unit time can be written as

ıloss
.= �I = κ D′′A, (71)

and the corresponding losses of the wave energy, momentum,
and angular momentum are given by

wloss = ωıloss, floss = kıloss, κ loss = (x × k)ıloss.

Also notice that dtω and dtk entering Eqs. (67)–(70) can
be taken from the GO ray equations. Since they are based
entirely on Eqs. (17) and (18) (Sec. IV A), dtω and dtk happen
to be unaffected by dissipation; i.e., they are still given by
Eqs. (39). Hence, the above results can be interpreted as
follows: local dissipation does not affect individual photons,
but rather changes the photon density.

For an explanation of how the results reported here apply
to electromagnetic waves, see Sec. VI. The same results
are also applicable to dissipation-driven instabilities (� < 0).
Nondissipative instabilities can be accommodated within GO
too, namely, by allowing for complex rays; for details, see
Ref. [138] and references therein.

V. LINEAR WAVES: ABRAHAM REPRESENTATION

A. Basic definitions

In addition to the wave canonical, or Minkowski, EMT that
we discussed so far, one can also introduce the corresponding
so-called kinetic, or Abraham, EMT,

ταβ =
(

ε ϑ/c

cρ π̂

)
. (72)

It is defined such that being a part of the complete EMT
that describes the “wave + medium” system (WMS), ταβ

includes all the wave-related (i.e., a-dependent) dynamics
of the medium and fields. We hence express it as ταβ =
T αβ + �ταβ , where �ταβ is the “ponderomotive” part that
is stored in the medium, and, similarly,

ε = E + �ε, ρ = P + �ρ, μ = M + �μ. (73)

In particular, notice the following. Since the WMS is closed
and thus Lorentz-invariant, its complete EMT is symmetriz-
able [88,117,118]. Yet its unperturbed part is symmetrizable
by itself (because it describes a closed system too, namely,
the medium absent a wave), so ταβ is also symmetrizable
separately. On the other hand, since ταβ is proportional to the
wave intensity, it is defined uniquely and, therefore, must be
symmetric. This yields ρ = ϑ/c2, and

μ = x × ρ (74)

holds automatically ( [71], Sec. 32). Also, since the integral
energy-momentum of the whole WMS is defined uniquely
([71], Sec. 32), and its a-dependent part is defined uniquely
too, one can find (ε/c,ρ) as the a-dependent part of the
WMS canonical energy-momentum density. Given the WMS
Lagrangian density, the latter can, in principle, be found
straightforwardly in any specific problem [116]. However, the
general answer is not informative (meaning that ταβ is by itself
a somewhat artificial construct; see also Ref. [121]). Thus,
below, we consider only the particular model of an isotropic
medium, most popular in the AMC context, yet still refrain
from specifying the wave nature.

B. Wave energy-momentum in an isotropic medium

General case. Consider an isotropic medium (such as gas,
fluid, or plasma) comprised of elementary [139] particles or
fluid elements whose dynamics absent a wave is described
by some aggregate Lagrangian L. In the presence of a wave,
the WMS Lagrangian is hence L + L, where L = ∫

L dV is
the wave Lagrangian. Assuming that particles contribute to
L additively, the latter can be written as L = L(0) − ∑

� �(�),
where L(0) is independent of all particle velocities u(�), and
each of the so-called ponderomotive potentials �(�) [106,107],
or dipole potentials [67,68], depends on the specific u(�)

but not on other velocities. Omitting the index �, we can
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write the canonical momentum of each particle as the sum
of the mechanical part ∂uL and the ponderomotive part
−∂u�, also yielding the ponderomotive contribution to the
particle canonical energy, −u · ∂u�. (This energy should not
be confused with the ponderomotive potential � itself, which is
a part of the wave canonical energy [140].) Thus, the densities
of the ponderomotive momentum and energy stored in particles
can be written as follows:

�ρ = −
∑

s

n(s)〈∂u�〉(s), (75)

�ε = −
∑

s

n(s)〈u · ∂u�〉(s), (76)

where the summation is taken over different species, n(s)

are the (locally averaged) densities of those species, and
angular brackets denote averaging over velocities within the
corresponding ensembles.

Fluid model. If a medium can be modeled as a single
fluid (in particular meaning that kinetic effects are inessential,
unlike, e.g., in warm plasma), one can simplify Eqs. (76) and
(75) further as follows. First of all, notice that the velocities
u of fluid elements are all equal to a single velocity v, so
Eqs. (75) and (76) become

�ρ = −n ∂v�, �ε = v · �ρ. (77)

It is hence convenient to rewrite Eqs. (77) in terms of Lorentz-
invariant proper parameters of the medium [141]. Since � that
enters here depends on the wave intensity, it must be gauge-
invariant; thus, being (minus) the interaction Lagrangian of a
single element, it transforms as � = �′/γ [142], with primes
in this section (Sec. V) denoting the medium rest frame, and
γ = (1 − v2/c2)−1/2. Also, n = γ n′, where n′ is the proper
density, correspondingly. Since the latter does not depend on
v, we then get �ρ = −∂v(n′�′) + γ 2vn′�′/c2. Further, let us
denote

n′�′ = L′ − L′(0) .= U ′, (78)

where L′(0) is L′(0) per unit volume, and introduce

R
.= γ 2v

c2
U ′, (79)

understood as the striction contribution (Sec. VI B). Since L′(0)

is also independent of v, one then can write

�ρ = ∂vL
′ + R. (80)

Due to the fact that a Lagrangian density is a four-scalar, L′
that enters Eq. (80) can also be replaced with L [143]. However,
using L′(a′,k′

μ) is preferable because it cannot depend on v
explicitly, but rather depends on it solely through a′ and k′

μ.
[Remember that the velocity derivative in Eq. (80) must be
taken at fixed a and kμ.] Due to L′

a′ = 0 [cf. Eq. (30)], we then
get

∂vL
′ = −(

∂v�
ν
μ

)
kνJ ′μ, (81)

where we substituted the (covector) Lorentz transformation
(2), i.e., k′

μ = �ν
μkν . On the other hand, kν = (�−1)λνk

′
λ, so

Eq. (81) can also be written as

∂vL
′ = −γ Gλ

μT ′
λ

μ/
c, (82)

where we introduced a dimensionless matrix function

Gλ
μ(v)

.= (c/γ )(�−1)λν

(
∂v�

ν
μ

)
. (83)

As shown in the Appendix, Eq. (82) is also equivalent to

∂vL
′ = γ Tr(GT ′)/c = P + B, (84)

where the terms on the right-hand side are defined as

P = γ �̂ ·
(E ′v′

g

c2
− P ′

)
, (85)

B = γ 2

γ + 1

[
v
c

×
(v′

g

c
× P ′

)]
. (86)

Yet, v′
g is parallel to k′ in an isotropic medium, so B vanishes,

and we finally get

�ρ = P + R, �ε = v · (P + R). (87)

C. Wave EMT in the isotropic-fluid model

Within the isotropic-fluid model, one can hence explicitly
construct the complete kinetic EMT of a wave,

ταβ = �α
μ�β

ντ
′μν, (88)

which is done as follows.
Energy and momentum. First of all, let us combine Eqs. (73)

and (87) with Eq. (85) for P, Eq. (79) for R, and E = ωI and
P = kI, as well as with

I = γI ′(1 + v · v′
g/c

2), (89)

where we employed the four-vector transformation properties
of J α . This yields

ε = γ 2E ′ + γ E ′v
c2

·
(

�̂ · v′
g + ω

ω′ v′
g

)
+ γ 2v2

c2
U ′, (90)

ρ = γ E ′

c2

[
�̂ · v′

g + γ v + k
ω′ (v · v′

g)

]
+ γ 2v

c2
U ′. (91)

[Entering the numerator in Eq. (91) is actually k, not k′.] By
taking v = 0 here, we then get, in particular,

ε′ = E ′, cρ ′ = ϑ ′/c = E ′v′
g/c, (92)

also using that ταβ is symmetric in all reference frames.
Momentum flux density. Since k′ is the only designated di-

rection in the medium rest frame, the (symmetric) momentum
flux density π̂ ′ must be a linear superposition of k′k′ and 1̂′,
or, equivalently, π̂ ′ = ψ k′v′

g + ζ 1̂′, where ψ and ζ are some
coefficients. Combining this with Eqs. (88) and (92) and plus
with, e.g., Eq. (90) for ε ≡ τ 00, one readily obtains ψ = I ′
and ζ = U ′; i.e.,

π̂ ′ = E ′ k′v′
g/ω

′ + U ′ 1̂′. (93)

(In particular, if v′
g = 0, then the term U ′ acts as the

ponderomotive pressure; cf. Ref. [144].) Equation (91) flows
from Eq. (88) automatically; yet, Eq. (88) also gives

π̂ = ω′(k′ · v′
gE ′)

c2|k′|2
(

c2kk
ω′2 − γ 2vv

c2

)
+ γ vv

c2
E ′

+
(

1̂ + γ 2vv
c2

)
U ′. (94)
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EMT and ponderomotive forces. The wave kinetic EMT in
isotropic fluid is hereby summarized as

τ ′αβ =
(

E Evg/c

Evg/c E kvg/ω + U 1̂

)′
(95)

in the medium rest frame and is transformed to other frames
via Eq. (88), as also spelled out in Eqs. (90), (91), and (94). In
particular, if the flow velocity is negligible in a given frame,
one can take �α

β ≈ δα
β , so

ε ≈ E, ρ ≈ Evg/c
2, μ ≈ (x × vg)E/c2. (96)

Finally, the ponderomotive four-force density f̄ α that a wave
imparts to a medium also can be calculated [115],

f̄ α = −ταβ
;β, (97)

whence, substituting f̄ α = (w̄/c,f̄), one obtains

w̄ = −∂tε − c2∇ · ρ, f̄ = −∂tρ − ∇ · π̂ . (98)

(Here, w̄ has the meaning of the power-density input into the
medium, and f̄ is the usual three-force density.) In particular,
note that since ταβ is expressed through quantities derived from
L′ and L′(0), which are the fundamental invariants of the wave,
the usual ambiguity in calculating the forces on the medium is
hence avoided.

The above results, which rely essentially only on Eq. (11)
and the isotropic-fluid approximation (without any reference to
electromagnetism), represent a more concise and transparent
version of those reported in Ref. [88] and generalize the latter
to the case of waves of arbitrary nature; see also Sec. VI B.

D. Photon kinetic properties

The following energy, momentum, and angular momentum
can now be assigned to a single photon:

h
.= ε/N , p .= ρ/N , m .= μ/N . (99)

Keep in mind, however, that these are merely quantities per
photon rather than the momenta of a photon, in contrast
with (H,P,M) that actually enter the photon motion equations
[Eqs. (41) and (54)]. As a result, (h,p,m) do not enjoy the
simple transformation properties of their canonical counter-
parts. In particular, the kinetic four-momentum pα .= (h/c,p)
is generally not a four-vector. One can easily check this, e.g.,
by using pα = (cN )−1

∫
τα0 dV with ταβ taken from Sec. V C

and

N = γN ′(1 + v · v′
g/c

2), (100)

E ′ = h̄ω′N ′, P ′ = h̄k′N ′. (101)

Still, simple expressions are obtained from Eqs. (96) for
isotropic fluid medium at rest; namely,

h ≈ h̄ω, p ≈ h̄ωvg/c
2, m ≈ (x × vg)h̄ω/c2. (102)

Since here vg is assumed to be parallel to k, one also gets that
p is parallel to P, m is parallel to M, and

p/P = m/M ≈ 1/(npng). (103)

These match the traditional Abraham’s formulas [1,46], which
hence are seen to hold for waves of arbitrary (not necessarily
electromagnetic) nature. Yet it is clear now that the traditional

formulas are, in fact, approximate and generally invalid for
moving and nonfluid media, in contrast with Minkowski’s
formulas for the canonical quantities [Eqs. (33) and (48)],
which are more universal.

VI. LINEAR ELECTROMAGNETIC WAVES

Finally, let us apply the above results to illustrate how
the properties of linear electromagnetic waves can be cal-
culated explicitly within our general approach, without using
Maxwell’s equations for the wave envelope. Note also that
similar calculations can be performed for nonlinear waves
too, for which L can be constructed from first principles as
well [106–109].

A. Wave Lagrangian

Basic equations. First, let us consider a nondissipative
wave, as usual. The wave Lagrangian density (derived inde-
pendently, e.g., in Refs. [11,88]) can be expected in the form
L = L(0) − U , where

L(0) .= 1

16π
(Ẽ∗ · Ẽ − B̃∗ · B̃) (104)

is that in vacuum [106], Ẽ and B̃ are the electric and magnetic
field envelopes, and U is the potential-energy density of the
wave-medium interaction [cf. Eq. (78)]. For linear, i.e., dipolar
interaction, we can take ([145], Secs. 4.2, 4.8, 5.7, 6.2)

U = − 1
4 Re(Ẽ∗ · P̃ + B̃∗ · M̃). (105)

Here, P̃ is the electric dipole moment density (i.e., the
polarization), and M̃ is the magnetic dipole moment density
(i.e., the magnetization); also, one factor 1/2 comes from the
time averaging and the other 1/2 comes from the fact that P̃
and M̃ are linear functions of Ẽ and B̃, correspondingly. Now
let us introduce D̃ and H̃ via

D̃ .= Ẽ + 4π P̃ .= ε̂ · Ẽ, (106)

B̃ .= H̃ + 4πM̃ .= μ̂ · H̃, (107)

assuming that the permittivity tensor ε̂ and the permeability
tensor μ̂ (not to be confused with the kinetic angular
momentum density μ) are Hermitian so the assumption of
zero dissipation is satisfied. One gets then [11,88]

L = 1

16π
(Ẽ∗ · ε̂ · Ẽ − B̃∗ · μ̂−1 · B̃) (108)

(here μ̂−1 is the tensor inverse to μ̂), also meaning that

U = − 1

16π
[Ẽ∗ · (ε̂ − 1̂) · Ẽ − B̃∗ · (μ̂−1 − 1̂) · B̃]. (109)

In agreement with Refs. [106,107], this implies assigning
the following ponderomotive potentials to particles (or fluid
elements) comprising the medium:

� = −Ẽ∗ · α̂ · Ẽ/4 − B̃∗ · β̂ · B̃/4, (110)

where α̂ and β̂ are the particle electric and magnetic polariz-
abilities [68], and

ε̂ = 1̂ +
∑

s

4πn(s)〈α̂〉(s), (111)

μ̂−1 = 1̂ −
∑

s

4πn(s)〈β̂〉(s). (112)
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Parametrization and dispersion. Remember that there is a
freedom in defining a, so there are various options for how to
parametrize the wave Lagrangian density. First, let us consider
Ẽ and Ẽ∗ as independent vector fields, i.e., a = (Ẽ,Ẽ∗). In this
case, it is convenient to write

L(0) = 1

16π

(
Ẽ∗ · Ẽ − c2

ω2
|k × Ẽ|2

)
(113)

(where we used that B̃ = ck × Ẽ/ω) and

L = 1

16π

[
Ẽ∗ · ε̂ · Ẽ − c2

ω2
(k × Ẽ∗) · μ̂−1 · (k × Ẽ)

]
, (114)

correspondingly. Using that

(k × Ẽ∗) · μ̂−1 · (k × Ẽ) = −(Ẽ∗ × k) · μ̂−1 · (k × Ẽ)

= −Ẽ∗ · {k × [μ̂−1 · (k × Ẽ)]},
(115)

one can further rewrite Eq. (114) as follows:

L = Ẽ∗

16π
·
{
ε̂ · Ẽ + c2

ω2
k × [μ̂−1 · (k × Ẽ)]

}
. (116)

Then, varying L with respect to Ẽ∗ yields the following
dispersion relation:

ε̂ · Ẽ + c2

ω2
k × [μ̂−1 · (k × Ẽ)] = 0, (117)

in agreement with Maxwell’s equations ([146], Sec. 3.4).
Similarly, varying L with respect to Ẽ yields the complex-
conjugate equation.

Alternatively, if the polarization vector e is prescribed (or
considered as an independent field), then one can as well
introduce a scalar amplitude instead, say, a = |Ẽ|. This yields
L = D(ω,k)a2, with D(ω,k) given by

D = 1

16π

[
e∗ · ε̂ · e − c2

ω2
(k × e∗) · μ̂−1 · (k × e)

]
. (118)

The dispersion relation that follows [Eq. (30)] is Eq. (117)
multiplied by e∗.

B. Wave action and EMT

Action. The action density I is now obtained straight-
forwardly by differentiating L [e.g., Eq. (114)] with respect
to ω:

I = 1

16π

[
Ẽ∗ · ε̂ω · Ẽ + 2

ω
H̃∗ · B̃ − B̃∗ · (μ̂−1)ω · B̃

]
,

where we used H̃∗ · B̃ = B̃∗ · H̃, due to μ̂ being Hermitian.
From L = 0 [Eq. (30)], one also has

Ẽ∗ · D̃ = H̃∗ · B̃. (119)

Thus, I = I (E) + I (B), where

I (E) = 1

16π

[
Ẽ∗ · ε̂ω · Ẽ + 1

ω
Ẽ∗ · ε̂ · Ẽ

]
, (120)

I (B) = 1

16π

[
1

ω
H̃∗ · μ̂ · H̃ − B̃∗ · (μ̂−1)ω · B̃

]
. (121)

One can further substitute

B̃∗ · (μ̂−1)ω · B̃ = B̃∗ · (μ̂−1)ω · μ̂ · H̃

= −B̃∗ · μ̂−1 · μ̂ω · H̃

= −H̃∗ · μ̂ω · H̃, (122)

where we used (μ̂−1 · μ̂)ω ≡ 0. Therefore,

I = 1

16πω
[Ẽ∗ · (ωε̂)ω · Ẽ + H̃∗ · (ωμ̂)ω · H̃]. (123)

Canonical EMT. The elements of the wave canonical
EMT [Eq. (26)] are readily obtained from Eq. (123). For
completeness, we summarize them here once again:

E = ωI, Q = vgωI, P = kI, �̂ = kvgI. (124)

Kinetic EMT. Assuming that dissipation is negligible and
the medium is isotropic, the wave kinetic EMT, as well as
the kinetic angular momentum, can also be found, namely,
using the results from Sec. V. In the general case, one can
employ Eqs. (75) and (76), substituting Eq. (110) for �. In the
isotropic-fluid approximation, Eqs. (90), (91), and (94) can be
used in combination with Eqs. (123) and (124) taken in the
medium rest frame. Due to Eq. (109), one can also take, in
particular,

R = −γ 2v
c2

(
n

∂ε

∂n

|Ẽ|2
16π

− n
∂μ−1

∂n

˜|B|2
16π

)
, (125)

where the expression in parenthesis (equal to the interaction-
Lagrangian density −U) is Lorentz-invariant. Hence, R can
be attributed to electrostriction and magnetostriction [88,147].
Besides, one can show that Eqs. (170) and (171) of Ref. [88],
derived there from different considerations, are recovered from
our Eqs. (90), (91), and (94) as a special case. (The proof is
straightforward and will not be presented here.) For practical
ramifications of our results in application to electromagnetic
waves also see Ref. [88] and Sec. VII.

C. Dissipative waves

In the presence of dissipation, the dispersion relation flow-
ing from Maxwell’s equations is similar to that in Sec. VI A.
Namely, it can be written as D(�,K) = 0, where D has the
same form as in Eq. (118), yet now with

ε̂ = ε̂′ + iε̂′′, μ̂ = μ̂′ + iμ̂′′, (126)

where ε̂′ and μ̂′ are Hermitian, and iε̂′′ and iμ̂′′ are anti-
Hermitian. Using that

(μ̂′ + iμ̂′′)−1 ≈ μ̂′−1 − iμ̂′−1 · μ̂′′ · μ̂′−1, (127)

we can hence write, for D evaluated at real (ω,k), that D =
D′ + iD′′, where D′ and D′′ are real and given by

D′ = 1

16π

[
e∗ · ε̂′ · e − c2

ω2
(k × e∗) · μ̂′−1 · (k × e)

]
,

D′′ = 1

16π

[
e∗ · ε̂′′ · e + c2

ω2
(k × e∗) · μ̂′−1 · μ̂′′

· μ̂′−1 · (k × e)

]
.
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According to Sec. IV D, we can infer I directly from
Eq. (123) by replacing D with D′, so

I = 1

16πω
[Ẽ∗ · (ωε̂′)ω · Ẽ + H̃∗ · (ωμ̂′)ω · H̃]. (128)

Then the known formula ([72], Sec. 80) for the energy density
is recovered from E = ωI. Other local properties of the wave
are found from Eqs. (32) and (48), the dissipation rate � is
found from Eq. (65), and Eq. (71) yields

ıloss = 1

8π
(Ẽ∗ · ε̂′′ · Ẽ + H̃∗ · μ̂′′ · H̃), (129)

where we substituted κ = 2, since A = a2. The expression for
the dissipation power density, wloss = ωıloss, hence also agrees
with the known formula ([72], Sec. 80).

D. Dielectric media

Since B̃ is proportional to Ẽ, one usually can define the
high-frequency medium-response tensors ε̂ and μ̂ such that
μ̂ = 1 (in a selected frame of reference). As this is done often,
e.g., in plasma physics [146], let us also simplify some of the
above expressions for this particular case. First of all, Eq. (108)
yields

L = 1

16π

[
Ẽ∗ · ε̂′ · Ẽ − c2

ω2
|k × Ẽ|2

]
, (130)

or L = L(0) + Ẽ∗ · χ̂ ′ · Ẽ/(16π ), where L(0) is the vacuum
Lagrangian [Eq. (113)], and we introduced the electric
susceptibility χ̂

.= ε̂ − 1. Then the wave energy is

E = 1

16π
[Ẽ∗ · (ωε̂′)ω · Ẽ + |B̃|2], (131)

or, equivalently [due to Ẽ∗ · ε̂′ · Ẽ = |B̃|2; cf. Eq. (119)],

E = 1

16πω
Ẽ∗ · (ω2ε̂′)ω · Ẽ. (132)

Also, as usual, the canonical momentum density equals

P = kE/ω. (133)

One can show, using Eq. (117), that the latter is just a more
concise form of the corresponding expression in Ref. [148].
Contrary to Ref. [149], what is calculated there is thus not the
total, but only the canonical momentum (and the canonical
energy) of the wave; see also Refs. [150,151].

Following Ref. [146], let us also separate the energy flux Q
into the electromagnetic part and the kinetic part. Specifically,
using Q = −ωLk, one can write it as Q = S + K, where
S = −ωL

(0)
k , and

K = − ω

16π
Ẽ∗ · χ̂ ′

k · Ẽ. (134)

The latter is recognized as the energy flux density caused by
the presence of the medium ([146], Chap. 4), whereas

S = c2

16πω
{(k × Ẽ∗) · (k × Ẽ) + (k × Ẽ∗) · (k × Ẽ)}k

= c2

16πω
{k · [Ẽ∗ × (k × Ẽ)] + k · [Ẽ × (k × Ẽ∗)]}k

= c2

16πω
{Ẽ∗ × (k × Ẽ) + Ẽ × (k × Ẽ∗)}

= c

8π
Re (Ẽ × B̃∗) (135)

is the time-averaged Poynting vector, i.e., the “vacuum part”
of Q. [Here we substituted Eq. (113) and used underlining to
specify where the differentiation applies.] Recalling that Q =
Evg, one then also recovers the known formula ([146], Chap. 4)

vg = (S + K)/E . (136)

Below, several examples of specific dielectrics will be
discussed to illustrate these and earlier formulas.

E. Examples

Waves in fluids at rest. Let us first summarize, using the
results of Sec. VI D, the densities of the kinetic energy,
momentum, and angular momentum for a wave in a fluid
dielectric at rest:

ε = E, ρ = (S + K)/c2, μ = [x × (S + K)]/c2.

Electromagnetic waves in vacuum can be considered as
a special case and have ω2 = c2k2, so vg = c2k/ω = ck,
where k

.= k/k. Then, E = |Ẽ|2/(8π ); c2P and Q are equal
to each other (so the EMT is symmetric, and canonical
quantities coincide with kinetic quantities) and S = kcE ; also,
�̂ = kk E equals minus the time-averaged Maxwell stress
tensor. Thus, in this case, the wave EMT coincides with the
electromagnetic stress-energy tensor ([71], Sec. 32). Besides,
M and μ are both equal to x × S/c2, in agreement with the
traditional definition of the wave angular momentum density
in vacuum [135].

Electrostatic waves in beams and plasmas. To also illustrate
waves in moving dielectrics, consider further a relativistic
electron beam with electrostatic oscillations seeded on it with
k parallel to the beam velocity v. Assuming that the beam
is cold, it acts as a fluid medium isotropic in its rest frame.
(In fact, as long as the dynamics is one-dimensional, having
isotropy is inessential.) Since there is no dissipation in a cold
beam, we revert here to using primes as a reference to that
frame. The proper ponderomotive potential, which is the same
for all electrons, can then be written as �′ = e2|Ẽ|2/(4meω

′2)
[107], where e and me are the electron charge and mass,
respectively; remember also that the longitudinal field satisfies
Ẽ = Ẽ′. Then, ε′ = 1 − ω′2

p /ω′2 (cf. Sec. VI A), where ω′
p

.=
(4πn′

ee
2/me)1/2, and n′

e is the beam proper density. This yields
the dispersion relation in the form ω′2 = ω′2

p , and v′
g = 0 in

particular. From Eq. (132), we hence get E ′ = |Ẽ|2/(8π ), so
U ′ = E ′/2 [cf. Eq. (78)]; then Eqs. (90) and (91) lead to

ε = (3γ 2 − 1)
|Ẽ|2
16π

, ρ = 3γ 2v

c2

|Ẽ|2
16π

. (137)
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Since ω′ = γ (ω − kv), the dispersion relation in the labo-
ratory frame is ω = ω′

p/γ + kv, and vg = v; therefore, ρ =
[1 − 1/(3γ 2)]−1εvg/c

2, or ρ ≈ 3εvg/(2c2) at γ ≈ 1. This
differs by a factor 3/2 from Abraham’s result (expected at
nonrelativistic velocities), but the discrepancy can be readily
explained. Recall that Abraham’s limit [Eq. (102)] is derived
by neglecting v but retaining vg. For the electrostatic waves in
question, this is legitimate only when v equals zero exactly;
in that case, just like Abraham’s formula, Eq. (137) yields
ρ = 0. Note that this result is also understood from the
fact that, at v = 0, each nonrelativistic electron has a zero
average momentum, while the instantaneous momentum of the
electrostatic field [proportional to the instantaneous Poynting
vector ([145], Sec. 6.9)] is zero identically.

Now consider thermal effects, which will render beam
oscillations identical to Langmuir waves in warm collisionless
plasma ([146], Chap. 8). We can take the electron ponderomo-
tive potential in the form � = e2|Ẽ|2/[4me(ω − ku)2], where
u is the average velocity of an individual particle; then the
general Bohm-Gross dispersion relation is recovered [107].
As usual, we assume that the electron thermal velocity vT

satisfies ξ0
.= ω/(kvT) � 1, and the electron average velocity

is zero, so one gets ω2 ≈ ω2
p + 3k2v2

T and vg ≈ 3kv2
T/ω. (See

Ref. [152] for how to deal with the singularity at u = ω/k.)
The canonical energy and momentum densities are then found
to be E ≈ (ωp/ω)2|Ẽ|2/(8π ) and P = kE/ω. This time we
still cannot apply Abraham’s formula [Eqs. (102)] to further
find ε and ρ because, as an ensemble of electrons with different
velocities, warm plasma is not a simple fluid. Thus, we revert
to Eqs. (75) and (76), which give

�ε ≈ −3k2v2
T

ω2
p

|Ẽ|2
8π

, �ρ ≈ − k

ω

ω2
p

ω2

|Ẽ|2
8π

. (138)

Hence, Eqs. (73) finally yield ε = |Ẽ|2/(8π ) and ρ = 0, at
least up to terms of the order of ξ−4

0 .
Since ρ is independent of the amplitude, the evolution

of Langmuir waves does not affect the electron average
momentum (zero in our example). This agrees with the stan-
dard quasilinear theory [153]; however, an explanation is due
regarding the details. Notice that a Langmuir envelope seems
to transport canonical momentum due to nonzero vg, but does
not seem to transport any kinetic momentum, as ρ is zero; on
the other hand, one may expect that the total momentum in any
volume enclosing the pulse is defined unambiguously in quies-
cent plasma, so one arrives to paradox, much like the AMC. To
resolve this, recall that above we assumed zero average veloc-
ity inside the wave, so the outside plasma had to be flowing, as
the amplitude gradient at the interface causes ponderomotive
acceleration. Accordingly, to keep the outside velocity zero,
we must allow for a nonvanishing flow of electrons inside the
pulse, and that is precisely where the total momentum is stored.
In other words, Langmuir waves do transport momentum
through ambient plasma, just like other waves. This, if
anything, may serve as a particularly vivid illustration for how
the abstract resolution of the AMC relates to experiment.

Kinetic waves. The small but finite �ε/E ∼ ξ−2
0 that we

found for Langmuir waves is a purely kinetic effect, which does
not fit into the resting-fluid model [Eq. (92)]. For other waves
in collisionless plasma, having finite ξ0 generally renders

the fluid model inapplicable too [146]. (The same applies
to collisionless gas [154], but collisional media are more
forgiving.) Light waves, in particular, are affected at relativistic
temperatures, which are possible in astrophysical settings and
also in the laboratory, say, in counterpropagating relativistic
beams. But even more easily, the fluid approximation can be
broken for waves tuned in resonance with medium natural
oscillations. Replacing ξ0, the controlling parameters in this
case are each of ξ�

.= (ω − ��)/(kvT), where � is the natural
frequency and � is an arbitrary integer. This is well known for
a cyclotron resonance [146], but interactions at other, even
quantum resonances are similar [67]. For example, one can
show that �ε/E ∼ ξ−1

1 when a medium, resting on average,
consists of two counterpropagating low-density beams of
nonrelativistic oscillators with ω ≈ �. However, elaborating
on this is beyond the scope of our paper, and our intention here
is only to reemphasize that Abraham’s formulas for ε and ρ

may not apply even when the medium average velocity is zero.

F. Quantum interpretation

Let us now recast our findings in the photon language. To
do so, however, we first need to recall what a photon actually
is, and we start with one in vacuum.

A vacuum photon is defined as an elementary excitation
of electromagnetic field, in a certain energy eigenstate that
determines both the spatial structure of the mode and also its
frequency. For example, the mode can be a standing wave with
a certain number of nodes in a finite-size box. Yet if the box
size is large enough or infinite (as it would be for free field), the
energy gap between neighboring modes is negligible, so we
can loosen the definition. Specifically, neighboring modes can
then be excited coherently such that their interference produces
a propagating envelope with a size negligible for our purposes.
Precisely these envelopes we call photons, much like it is
often done for regular particles in quasiclassical theories [155].
Hence the GO approximation is also adopted automatically.

Now that we have introduced a photon in vacuum, let us
define one in a dispersive medium. It is natural to continue
thinking of a photon as a quasiparticle in this case, i.e., an
object that is conserved within the GO approximation. To
understand what it means, consider a vacuum photon entering
a dispersive medium. We will assume no scattering at the
boundary, to ensure that GO remains valid; i.e., (i) there is no
reflection and (ii) the wave continues inside the medium as
a quasimonochromatic field. In other words, only one of the
internal eigenwaves, or branches of the dispersion relation, is
excited, while others are nonresonant to the incident photon
and thus remain quiescent. In the general case, when the
medium is both inhomogeneous and time-dependent, there
is exactly one GO integral: the wave action. Therefore, it is the
action conservation that must be associated with the photon
conservation. And since all of the action belongs to a single
branch, so must all photons.

As one moves away from the boundary, the initial branch
can adiabatically transform into something very different from
the original electromagnetic wave. In that case, it may be more
natural to assign a different name to its elementary excitations,
i.e., call them not photons but, say, plasmons or polaritons.
Remember, however, that a wave with given ω and k can be
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associated with only one type of quasiparticles, whatever they
are called, and those must account for oscillations of both the
field and the medium. (In other words, GO photons cannot be
separated from GO polaritons in principle, as long as a single
branch of the dispersion curve is considered.) Absent a better
term [156], we thus adopted “photon” as the generic term for
all such elementary excitations.

Much like an electron interacting with a vector potential, a
photon defined this way can hence be assigned two different
momenta. The first, canonical momentum P is the one that
enters the Hamiltonian equations [Eqs. (41)] and is due to the
corresponding Noether symmetry of the wave subsystem. It
is given by P = h̄k; surprisingly, this expression holds in any
dissipationless medium whatsoever, and even for nonlinear
waves. (This is not so for the canonical energy h̄ω.) The second,
kinetic momentum p is defined as the amplitude-dependent
part of the average momentum of the whole physical system
divided by the total number of photons. It is due to the WMS
Lorentz invariance, or, in other words, the corresponding
Noether symmetry of the whole system, which includes the
medium. In particular, for isotropic fluid medium at rest, we
show that p = h̄ωvg/c

2, in agreement with Abraham [64].
Remember, however, that this result is less general than
Minkowski’s formula for P; for example, it does not apply in
moving media (such as beams) and may not hold at relativistic
temperatures.

Note, finally, that the per-photon average momenta of fields
and particles taken separately are not associated with any
conservation laws, in contrast with P and p. Therefore, they
cannot be attributed to any conserved quasiparticles and, in
this sense, are less meaningful.

VII. DISCUSSION

In this paper, we pose classical GO axiomatically within
the field-theoretical approach, while extending it to account
for dissipation. The concept of a photon in a dielectric medium
is introduced, and photon properties are calculated unam-
biguously. In particular, the canonical and kinetic momenta
and angular momenta carried by a photon, as well as the
two corresponding EMTs, are derived from first principles
of Lagrangian mechanics. Responding to the questions posed
in Ref. [35], we thus resolve the Abraham-Minkowski con-
troversy pertaining to the definition of the photon energy-
momentum and spin, clarify the applicability of Minkowski’s
and Abraham’s formulas, and find corrections to them for
various media (including cold, warm, and relativistic media).

Furthermore, the axiomatic formalism that we adopt leads
also to wider results, since it applies not just to electromagnetic
waves but to any linear waves in any dispersive media,
including ones yet to be discovered. For example, the EMTs
of acoustic waves follow, plus the phonon spin—and these are
only some of the AMC-related issues that otherwise remain
under debate [157–159]. We show, in fact, that all wave
mechanical properties flow from little more than the wave
definition, whereas the specific internal physics of a medium
is largely irrelevant. Since definitions are not really a matter of
verification, experimental resolution of the AMC is obviated;
at least, one may call into question exactly what aspect of the
AMC an experiment might resolve. In addition, derivations

of the EMTs and angular momenta for specific waves are
obviated too, as they are subsumed under our more general
theory. For instance, (i) the canonical EMT that we present
is general (Sec. IV), (ii) the force produced by a wave on a
fluidlike medium is independent of the precise constitution
of the medium (Sec. V C), and (iii) even an understanding
of kinetic waves does not require solving any field equations
(Sec. VI E).

Let us emphasize, finally, that these findings have been
made possible by our adopting the abstract Lagrangian
formulation, whose utility for understanding general linear
waves should hence be obvious. We also suggest Refs. [66,
144,160,163] as recent illustrations of how advantageous it is
for analyzing the linear wave dynamics in plasmas. In addition,
the nonlinear Lagrangian theory has been getting a new spin
recently, namely, in the context of plasma waves carrying
autoresonantly trapped particles [106–109,161]. Those waves
are unique in the sense that the trapped-particle nonlinearity
is, within a certain range of parameters, independent of the
wave amplitude, or even gets strengthened when the ampli-
tude decreases. Hence the traditional intuition and standard
perturbative approaches often fail when applied to such waves,
whereas the axiomatic GO not only holds but also offers the
advantage of tractability [109]. In particular, understanding
how the wave momentum relates to the plasma Lagrangian
yields precise quantitative predictions of (quite nontrivial)
evolution of waves with trapped particles in nonstationary
plasma [162]. Thus, with this paper, we would like to attract
attention to the axiomatic GO itself as a remarkably convenient
framework for analyzing the wave basic physics, not only in
the AMC context, but also in the context of solving practical
problems.
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APPENDIX: AUXILIARY FUNCTION Gλ
μ

Here, we summarize the properties of a dimensionless
matrix function Gλ

μ introduced in Eq. (83). First of all, notice
an obvious equality

(�−1)λν(v) = �λ
ν(−v), (A1)

which can also be checked by confirming that

�μ
λ(−v)�λ

ν(v) = δμ
ν . (A2)

Then a direct calculation yields

G0
0l = 0, (A3)

Gi
0l = �i

l, G0
il = ηij�

j
l, (A4)

Gi
jl = (

δi
l vj − ηjlv

i
)
(γ /c)/(γ + 1), (A5)

where we introduced the notation

Gλ
μl ≡ (Gλ

μ)l
.= (c/γ )(�−1)λν

(
∂�ν

μ

/
∂vl

)
. (A6)
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(In particular, notice that the three l-components Gν
μl at v = 0

happen to be the well-known Lorentz boost generators.) Let
us now define the function

Gνμl
.= gνλG

λ
μl. (A7)

Due to Eqs. (16), one finds the latter to be

G00l = 0, (A8)

G0il = −Gi0l = −ηij�
j
l, (A9)

Gijl = (ηilvj − ηjlvi)(γ /c)/(γ + 1), (A10)

so, in particular,

Gνμ = −Gμν, (Gμν)l ≡ Gμνl. (A11)

Hence, Eq. (82) becomes

∂vL
′ = −γ Gλ

μgλνT ′νμ/c = −γgνλGλ
μT ′νμ/c

= −γ GνμT ′νμ/c = γ GμνT ′νμ/c, (A12)

which is exactly Eq. (84), where we substituted Eq. (A8) and
introduced

Pl
.= (γ /c)(Gi0lT ′0i + G0ilT ′i0), Bl

.= (γ /c)GijlT ′ji .

Finally, due to Eqs. (A9) and (A10),

Pl = γ
(
ηij�

j
lE ′v′i

g

/
c2 − ηij�

j
lP ′i)

= γ�j
l(E ′v′

gj /c
2 − P ′

j )

= [γ �̂ · (E ′v′
g/c

2 − P ′)]l ,

[(γ + 1)c2/γ 2]Bl = (ηilvj − ηjlvi)P ′j v′i
g

= (
v′

glvjP ′j − P ′
l viv

′i
g

)
= [v′

g(v · P ′) − P ′(v · v′
g)]l

= [v × (v′
g × P ′)]l ,

from which Eqs. (85) and (86) readily follow.
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