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Phase measurement with classical light
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In this paper we investigate whether it is, in general, possible to substitute maximally path-entangled states,
namely, NOON states, with classical light in Doppleron-type resonant multiphoton detection processes by
studying adaptive phase measurement with classical light. We show that multiphoton detection probability using
classical light coincides with that of NOON states and the multiphoton absorption rate is not hindered by the
spatially unconstrained photons of the classical light in our scheme. We prove that the optimal phase variance
with classical light can be achieved and scales the same as that using NOON states.
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I. INTRODUCTION

Optical phase measurement is the basis of many scientific
research areas, such as quantum metrology and quantum
computing. The precision of optical phase measurement is
bounded by the standard quantum limit or shot-noise limit,
which scales as 1/

√
N in the number of N independent

resources. However, many authors [1–3] have proposed the
possibility of beating the standard quantum limit and reaching
the Heisenberg limit, which scales as 1/N , by using nonclas-
sical states. One possibility for reaching the Heisenberg limit
is to use NOON states and combine them with an adaptive
measurement scheme [7].

NOON states are among the most highly entangled states
and they have the potential to enhance measurement pre-
cision [4] not only in phase measurement [7] but also in
subwavelength lithography [5] and atomic interferometry [6].
However, due to the difficulty in generating NOON states with
a large photon number (N > 2), alternative efforts have been
made such as the use of multiple passes of a single photon [8]
and the dual Fock state [9]. In the single-photon scheme, the
measurement time scales with N , which poses a problem
for very fast measurement. In the dual-Fock-state scheme,
a sub-shot-noise limit rather than the Heisenberg limit is
obtained. Moreover, number-entangled states [5] are criticized
for being highly spatially unconstrained to be absorbed at a tiny
spot [10].

Recently, Hemmer et al. [11] pointed out the quantum
feature of path-number entanglement with NOON states
can be realized with classical light. Their work shows the
possibility of a highly frequency selective Doppleron-type
multiphoton absorption process [12–14] with classical light
used to achieve subwavelength diffraction and imaging.
The multiphoton absorption process generates and detects
a NOON state simultaneously. We apply this semiclassical
frequency-selective measurement with classical light in the
subwavelength lithography to optical phase measurement.
Our proposal provides an effective alternative adaptive phase
measurement method in conventional two-path interferometry,
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which previously required nonclassical states. Although a
point detector is also required in our scheme, a high enough
number of photons from classical light will arrive at the point
of the detector to stimulate frequency-selective measurement.
Photons arriving at other positions are of no interest to us.
Therefore, the excitation rate in our scheme is not hindered by
spatially unconstrained photons of classical light.

In this paper, we first summarize in Sec. II the main
ingredients of phase measurement with NOON states [7]. Then
we apply in Sec. III the idea of replacing NOON states with
classical light in this phase measurement algorithm, before
discussing detection rate scaling and possible errors of our
algorithm in Sec. IV.

II. PHASE MEASUREMENT SCHEME USING
NOON STATES

To perform a phase measurement Berry et al. [7] use a
sequence of NOON states (|n,0〉 + |0,n〉)/√2 with n = 2k ,
where k is varied from K to 0. These states are sent through
a Mach-Zehnder interferometer as shown in Fig. 1, where
the phase of the light in one arm is shifted by the unknown
phase ϕ and by the controllable phase φ in the other arm.
The photons are detected in the two output modes, c0 and c1,
after a 50/50 beam splitter. The detection of all photons, with
measurement results �un = {u1,u2, . . . ,un} and uj ∈ {0,1},
obeys the probability distribution

P (�un|ϕ) ≡ 1
2 {1 + (−1)u cos[n(ϕ − φ)]}, (1)

where u is given by the parity (even or odd) of u1 + u2 + . . . +
un. In order to explain the phase measurement scheme, we first
assume that the unknown phase ϕ is of the form

ϕ ≡ ϕK ≡ π

K∑
k=0

ak

2k
(2)

with ak ∈ {0,1}. We start with n = 2K and φ = 0, which leads
to the probability distribution

P (�un|ϕK ) = 1
2 {1 + (−1)u cos[(πaK )]}, (3)
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FIG. 1. (Color online) Measurement scheme for the unknown
phase ϕ with the help of the NOON state (|n,0〉 + |0,n〉)/√2.

which is equal to 0 or unity depending on aK and u as specified
below:

u = even u = odd
aK = 0 1 0
aK = 1 0 1

(4)

As a consequence, if we have measured that u equals an even
number, we know that aK must be equal to 0, because for
aK = 1, the probability of measuring u = even is 0. On the
other hand, if we have measured that u = odd, then we know
that aK = 1. For the next measurement, we choose n = 2K−1

and φ = πaK/2K and get aK−1 similar to aK , and so on, until
we have measured all coefficients ak .

However, in general, the unknown phase ϕ consists of
an infinite number of coefficients, and therefore we cannot
measure them exactly. To determine the accuracy of this phase
measurement algorithm, we describe all measurements for
different photon numbers n by one POVM, given by

F (ϕ̂) ≡ |ϕ〉〈ϕ|, |ϕ〉 ≡ 1

NK

NK∑
j=0

eijϕ̂|j 〉, (5)

performed on the state

|ψ〉 ≡ 1

(NK + 1)1/2

NK∑
j=0

eijϕ|j 〉 (6)

with NK = 2K+1 − 1.
The scaling of the algorithm depends on the phase variance

(�ϕ)2, which is usually given by the Holevo variance VH ≡
μ−2 − 1 with μ ≡ |〈eiϕ̂〉|. Thus the feedback phase φ should
maximize μ in the system phase (ϕ) probability distribution.
From Bayes’ theorem, the probability distribution for the
system phase is then P (ϕ|u) ∝ P (�un|ϕ) provided that ϕ is an
initially completely unknown phase. Therefore, the sharpness
of the phase distribution in the semiclassical case is given by
Ref. [7]

μ = 1

2π

∑
�un

∣∣∣∣
∫

eiϕP (�un|ϕ)dϕ

∣∣∣∣. (7)

With maximized μ in the feedback process, the variance VH

scales like the standard quantum limit for the measurement
scheme described above. However, by using M copies of each
NOON state with M � 4 and performing M measurement
for each NOON state, Berry et al. show that this modified
algorithm scales as the Heisenberg limit [7]. This algorithm
was performed experimentally [8] by using a single photon
with n passes through the phase shift and for M = 6 repeated
measurements for each n given the system phase distribution,
Eq. (1).

The main ingredients of this scheme are the enhancement of
the unknown phase ϕ by the factor n through NOON states and
the interference of the unknown phase ϕ with the controllable
phase φ. Furthermore, there are only two possibilities for u, 0
or 1, and all probabilities P (�un|ϕ) add up to unity. Therefore,
by knowing P (�un|ϕ) for one given �un, we can calculate all
other probabilities.

III. SUBSTITUTION OF NOON STATES

Let us now analyze the substitution of NOON states by
classical light as done in Ref. [11]. We first consider a four-
level atom as our point detector interacting with the classical
fields illustrated in Fig. 2. In this scheme, level |b〉 is assumed
to be the ground level. The intermediate levels |c1〉 and |c2〉 are
highly detuned from the driving fields and we do not include
the population decay rate from these levels. The population
decay from the upper level |a〉 is denoted by γ . We assume
that |b〉 ⇀↽ |c1〉, |c1〉 ⇀↽ |c2〉, and |c2〉 ⇀↽ |a〉 are the only dipole
allowed transitions.

The basic idea behind this scheme is to send two signal
beams of slightly different frequencies ν± from opposite
directions and two vertically incident driving beams of
frequencies ω± as shown in Fig. 2. The excitation from level

FIG. 2. (Color online) Two-photon interference with classical
light and the interaction of classical fields with the four-level atomic
structure.
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|b〉 to level |a〉 can take place by either absorbing two ν+ signal
photons and emitting one ω+ driving photon or absorbing two
ν− signal photons and emitting one ω− driving photon. Any
other process (such as absorbing one ν+ signal photon and
one ν− signal photon and emitting one ω+ driving photon
or absorbing two ν− signal photons and emitting one ω+
driving photon) would be forbidden by selection rules or
be nonresonant and therefore negligible for reasonable Rabi
frequencies. These two excitation branches then stimulate the
(|2,0〉 + |0,2〉)/√2 NOON state path correlations, which is
possible for supersensitive phase measurement when we shift
the phases in each branch.

The two classical signal fields and one driven field interact-
ing with the four-level atomic system are written as

E+
S (x,t) ≡ ESe

i(k+x−ν+t), (8)

E−
S (x,t) ≡ ESe

i(k−x−ν−t), (9)

and

ED ≡ ED[e−iω+t + e−iω−t ]. (10)

The interaction Hamiltonian in the rotating-wave approxima-
tion is given by

HI ≡ h̄�S(|c1〉〈b|ei�1±t+ik±x + |a〉〈c2|ei�2±t+ik±x)

+ h̄�D|c1〉〈c2|ei(�1±+�2±)t + H.c. (11)

The one-photon detunings given by �1± ≡ ωc1b − ν± and
�2± ≡ ωac2 − ν± are much larger compared with 1/t so that
no atom will be excited to the intermediate levels. The three-
photon resonance condition, ωab + ω± = 2ν±, is considered
when deriving the interaction Hamiltonian.

We consider the atomic system as a narrow-bandwidth
detector [11] for which the lifetime 1/γ in the excited level |a〉
is longer than the detecting time t . In the perturbative regime,
|�j±t | 	 1, the amplitude of excitation from |b〉 to |a〉 is given
to the lowest order by the three-photon process [21],

a(1)(x,t) =
(

− i

h̄

)3 ∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3〈a|HI (x,t1)HI (x,t2)HI (x,t3)|b〉

= i�2
S�Dt

[(
ei2k+x

�1+�2+
+ ei2k−x

�1−�2−

)
+

(
(e−i2δt − 1)ei2k+x

�1+(�2+ + 2δ)(−i2δt)
+ (ei2δt − 1)ei2k−x

�1−(�2− − 2δ)(i2δt)

)

+
(

eiδt − 1

�1−(�2− − 2δ)(iδt)
+ eiδt − 1

�1+�2+(iδt)
+ e−iδt − 1

�1−�2−(−iδt)
+ e−iδt − 1

�1+(�2+ + 2δ)(−iδt)

)
ei(k++k−)x

]
, (12)

where δ ≡ ν+ − ν− = �j− − �j+ represents the frequency
difference between the two signal beams. The physical mean-
ing of this amplitude of excitation is the following: the first
term in square brackets represents resonant the three-photon
process from each channel; the second and third terms are
off-resonant terms due to interchanging one driving photon
ω± and one signal photon ν±, respectively, from the resonant
three-photon process between the two channels. Each of the
nonresonant terms is multiplied by either e±iδt−1

±iδt
or e±i2δt−1

±i2δt
. For

δt 	 1,

∣∣∣∣e
±ijδt − 1

±ijδt

∣∣∣∣ � 2

jδt

 1 (j = 1,2), (13)

the contribution from the nonresonant terms is in general
proportional to 1/(δt/2).

Under the condition δt 	 1 and γ t < 1, the only two
significant terms in the first-order perturbation theory will be
the resonant term for which the same beam, + or −, contributes
twice. Therefore, the amplitude of excitation a(1)(x,t) is given
by

a(1)(x,t) ≡ i�2
S�Dt

(
ei2k+x

�1+�2+
+ ei2k−x

�1−�2−

)
. (14)

For �1+�2+ ≈ �1−�2− ≡ �1�2 the probability Pa(x,t) of
finding the atom in state |a〉 is given by

Pa(x,t) = 2

∣∣∣∣�
2
S�Dt

�1�2

∣∣∣∣
2

[1 + cos(2k+x − 2k−x)]. (15)

Note that this perturbation theory is only valid when the

effective Rabi frequency �2
S�D

�1�2

 1/t [11]. This probability

shows an increased resolution with the absorption of two
photons each time from each channel.

This scheme can be generalized to an atom with n

intermediate levels, where the two signal fields are replaced
by two bunches of signal fields, which obey the following
resonance condition:

ωab =
n∑

j=0

νj± − (n − 1)ω±. (16)

As explained above, under the condition δt 	 1 and γ t <

1, any interchange of photons between the two excitation
branches will result in a loss of resonance and any nonresonant
processes can be neglected. This relation ensures that the atom
absorbs n photons from one branch of the signal beams (ν+
or ν−) and emits (n − 1) photons of frequency ω+ or ω−.
By applying the phase shift ϕ to one of the signal fields
and φ to the other as illustrated in Fig. 3, and assuming that
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|b

|a

ν1±

ω±

ν2±

νn±

ϕ φ

ν+ ν−

ω±

FIG. 3. Two signal fields with frequencies ν+ and ν− are shifted
by the unknown phase ϕ and the controllable phase φ, respectively.
The drive fields ω± assist the directional resonance of n photon
absorption.

(k+ − k−)x = 0, we obtain

Pa(t |ϕ,φ) = 2�2
eff t

2{1 + cos[n(ϕ − φ)]} (17)

with

�eff ≡ �n
S�

n−1
D∏n−1

j=1 �2j−1�2j

, (18)

and the generalized perturbative regime is �eff t 
 1. There-
fore, the probability distribution Pa behaves the same way as
the probability distribution, Eq. (1), of a NOON state used for
measuring the unknown phase ϕ, but only with the factor u

being fixed to an even number. However, if we know the result
of the function

1 + (−1)u cos[n(ϕ − φ)] (19)

for u = even, we are able to calculate it for u = odd, as we
explained in Sec. II. As a consequence, we can use Pa in
the same way that Berry et al. use P (�un|ϕ) to estimate the
unknown phase ϕ. This is the main result of our paper.

In quantum phase measurement with entangled states, the
generation and detection processes of entangled states are
required separately. On the other hand, in our scheme, the
multiphoton frequency-selective measurement using classical
light generates and detects an effective NOON state simul-
taneously, which makes it easier to implement the scheme
experimentally.

Another difference between the two schemes is that the
measurement result of the Mach-Zehnder interferometer,
which is u and not the probability distribution P (�un|ϕ), is
restricted to u = even or odd. We note that in our approach, we
measure the excitation rate R(2n−1) ≡ d

dt
Pa(t |ϕ,φ), which can

assume every number between 0 and the maximal excitation
rate given by R(2n−1)

max ≡ 8�2
eff t . This gives us more information

about the unknown phase ϕ. However, if we want to follow
the phase-measurement scheme described in Ref. [7] exactly,
then an excitation rate higher than half the maximal rate would
correspond to u = even, and an excitation rate lower than half
the maximal rate would correspond to u = odd.

IV. DETECTION RATE SCALING AND ERROR
ESTIMATION

A. Detection rate scaling

Now we investigate the scaling of the maximal excitation
rate in our scheme compared with the one in Ref. [7] and
obtain the accuracy in supersensitive phase measurement of
our scheme. The phase-measurement scheme described in
Ref. [7] is a realization of the POVM

F (ϕ̂) ≡ |ϕ〉〈ϕ|, |ϕ〉 ≡ 1

NK

NK∑
j=0

eijϕ̂|j 〉 (20)

performed on the state

|ψ〉 ≡ 1

(NK + 1)M/2

⎛
⎝ NK∑

j=0

eijϕ|j 〉
⎞
⎠

⊗M

. (21)

Here, NK is given by NK = 2K+1 − 1. Therefore the number
of resources is given by N ≡ NKM . If the reference phase φ

is chosen adaptively and for M � 4, this phase-measurement
algorithm scales like the Heisenberg limit. Our proposed
scheme is just another realization of the same POVM and
therefore also scales like the Heisenberg limit.

In order to find whether it is better to realize with
NOON states or classical light, we investigate the resources
and problems needed for our realization of the POVM and
compare it to the NOON-state approach. For the NOON-state
realization, we have to create the NOON states (|2,0〉 +
|0,2〉)/√2, (|22,0〉 + |0,22〉)/√2, . . ., (|2K,0〉 + |0,2K〉)/√2,
which is very difficult, and two multiphoton detectors with a
high efficiency. If the probability of detecting one photon is
given by η, then the probability of detecting all photons of
the NOON state (|n,0〉 + |0,n〉)/√2 is given by ηn [21,22].
As a consequence, the detection rate decreases exponentially
with n. As mentioned above, Steuernagel pointed out [10]
that the detection rate of entangled photons arriving at one
point will be even lower since the photons are spatially
unconstrained. Furthermore, the detectors c0 and c1 need to
detect and discriminate between the states |0〉, |1〉, . . ., |n〉. In
Ref. [7] the authors do not explain how to achieve this task.

For the realization with classical light, we need an atom
with a multilevel structure. The maximal excitation rate scales
as

R2n−1
max = 2

∣∣∣∣�S�D

�2±

∣∣∣∣
2n∣∣∣∣2�2

±
�D

∣∣∣∣
2

t = 2

∣∣∣∣2�2
±

�D

∣∣∣∣
2

ηnt (22)
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with

η ≡
∣∣∣∣�S�D

�2±

∣∣∣∣
2

. (23)

As a consequence, the excitation rate decreases exponentially
with n similar to the photon detection rate of the NOON-state
approach. However, since a large number of photons exist
in classical light, although spatially unconstrained, there are
enough photons to arrive at one point to excite the atom (the
detector). Therefore, the spatial distribution of the photons
does not affect the excitation rate in our case.

B. Error estimation

Now we derive, in the following, possible errors in our
scheme from resonant higher order terms and from non-
resonant terms in a general case. For large n, strong Rabi
frequencies can be used to improve the excitation rate. We
find a trade-off in using strong Rabi frequencies such that
resonant higher order terms and nonresonant terms cannot
be neglected. First, we obtain, for the second-order resonant
term from perturbation theory [21] (which corresponds to a
five-photon process) as Rabi frequencies increase,

a(2)(t |ϕ,φ)

=
(

− i

h̄

)5 ∫ ∫ ∫ ∫ ∫
dt5〈a|HI (ϕ,φ,t1)HI (ϕ,φ,t2)

×HI (ϕ,φ,t3)HI (ϕ,φ,t4)HI (ϕ,φ,t5)|b〉
≡ i�2

S�Dt

(
e2iϕ

�1+�2+
+ e2iφ

�1−�2−

)
(ir1 − ir2 − r3)

(24)

with

r1 ≡ �2
St

�1+
+ �2

St

�1−
, r2 ≡ �2

St

�2+
+ �2

St

�2−
, (25)

and

r2 ≡ �2
D

�1+�2+
+ �2

D

�1−�2−

+ �2
D

�1±(�2∓ ± δ)
+ �2

D

(�1∓ ± δ)�2±
. (26)

Here HI (ϕ,φ,t) is obtained from Eq. (11) by replacing k±x

with ϕ and φ, respectively. The second-order result is obtained
by multiplying Rabi oscillation factors (rj ), which describe
additional two-photon processes between intermediate levels,
by the first-order contribution a(1)(x,t) in Eq. (14). The Rabi
oscillation factors are the tendency of resonant higher order
terms, and therefore they have to be much smaller than unity
for perturbation theory to work. We solve this trade-off by
choosing opposite one-photon detunings, �j+ = −�j−, such
that r1 = r2 = 0, while the signal Rabi frequency |�2

St/�±|
can be high. We choose �2

D 
 |�(2j−1)±�2j±| to suppress the
other Rabi oscillation factor r3. Therefore, under the above
conditions of Rabi frequencies and one-photon detunings,
resonant higher order terms can be neglected and the excitation
rate can be improved.

We discussed the nonresonant terms of a four-level atomic
system in the previous section and now we extend this to a

2n−level atomic system. In general, the nonresonant terms
result from the absorption of n − k photons of frequency ν+
and k photons of frequency ν−. The leading term comes from
the exchange of one photon, and therefore the probability
amplitude of state |a〉 is given by

a(t |ϕ,φ) = �eff t

[
einϕ + einφ + n

eiδt − 1

iδt

× (ei(n−1)ϕ+iφ + eiϕ+i(n−1)φ)

]
(27)

with �eff ≡ �n
S�

n−1
D /�2n−2

± . Provided that n sin(δt)/(δt) 

1, the probability of finding an atom in the excited state is
given by

P (t |ϕ,φ) = 2(�eff t)
2

{
1 + cos[n(ϕ − φ)] + 4

n sin(δt)

δt

× cos

[
n

2
(ϕ − φ)

]
cos

[
n − 2

2
(ϕ − φ)

]}
. (28)

Assuming that the unknown phase ϕ is given by ϕ ≡
π (ϕ0 + ϕ1/2 + ϕ2/22 + · · ·) with ϕn ∈ {0,1}, and by applying
the phase-measurement algorithm described in Ref. [7], the
accuracy of obtaining the supersensitive phase ϕn with a
detection process involving n photons of frequency ν± is given
by

1

1 + 2n sin(δt)
δt

< 1. (29)

Despite these possible errors, we think that our realization
of the phase measurement is more useful than the one using
NOON states, because we think it is easier to find an atom
with the right level structure than to create NOON states with
many photons and to find the appropriate detector.

V. DISCUSSION AND CONCLUSION

We have shown in this paper that the substitution of NOON
states with classical light in multiphoton frequency-selective
measurement (as suggested for subwavelength lithography in
Ref. [11]) is applicable to the phase-measurement scheme
described in Ref. [7] to obtain an accurate phase-measurement
limit. We have found that our scheme is easier to implement
in two ways compared to that in Ref. [7]. The first advantage
is that the multiphoton process using classical light in our
scheme generates and detects a NOON state at the same
time, while the quantum phase measurement with entangled
states requires the generation and detection of entangled states
separately. The second advantage is that, in our scheme, the
multiphoton absorption rate with classical light is not affected
by the spatial distribution of the photons as is that in the
scheme using entangled states. Therefore, we conclude that our
scheme with multiphoton frequency-selective measurement
using classical light provides an alternative and better adaptive
phase measurement method.
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