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Frequency-dependent cavity lifetime and apparent superluminality
in Fabry-Pérot-like interferometers
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Extraordinary group delays shorter than the transit time of light propagating at c through an equal distance
have been experimentally demonstrated in single-Fabry-Pérot (FP) waveguide systems and cascaded-FP structures
under off-resonant conditions. These “superluminal” phenomena are well explained by the multiple-reflection
destructive interference that reduces the intracavity stored energy when operating off resonances. Excellent
agreement between theory and experiment is obtained when the dispersive effects of reflective boundaries are
considered. These results provide further insight into the nature of apparent superluminality in regions of allowed
propagation.
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I. INTRODUCTION

Extraordinary group delays (GD) for wave packets trans-
mitted through various systems have stimulated interest in
the understanding and applications of phenomena classified
as “slow light” [1,2] and “superluminal propagation” [3–11].
Superluminality, featuring group delays shorter than the
normal delay of light traveling with the vacuum speed c,
has been attributed to two major mechanisms: tunneling
[4–8] and steep anomalous dispersion [10,11]. In the 1960s,
Hartman reported that the group delay for tunneling through
a barrier would saturate with the increase of the barrier
width [8], leading to the positive superluminality in the case
of opaque-barrier tunneling. This prediction has been verified
in numerous experiments [7,12,13]. Recently, the underlying
physics of superluminal tunneling was explicitly studied by
Winful under the quasistatic condition [14–16], i.e., the spatial
width of the wave packet should be much wider than the
barrier width. The group delay in single-barrier tunneling was
decomposed into a dwell time and a self-interference time
[15–17], which are associated with the field energy storage
time in the barrier and the self-interference process in front
of the barrier, respectively. The theory was then applied to
regions of allowed propagation, such as high-Q Fabry-Pérot
(FP) cavities implemented by double-barrier systems, where
a previously claimed lack of dependence of group delay
on cavity length (the so-called generalized Hartman effect
[6]) was shown to be a mere artifact [18]. In Ref. [18], it
was assumed for simplicity that there is no dispersion in
the amplitude and phase of the reflection and transmission
coefficients of the cavity boundaries. This assumption makes
the transmission group delay (Eq. (6) in Ref. [18]) exactly
equal to the dwell time (Eq. (9) in Ref. [18]) under qua-
sistatic condition and hence restricts the applicability of the
theory.

This paper follows the work of Ref. [18] and proposes
a complete group delay formula to elaborate the wave
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transmission behavior not only in a single-FP system but
also in the complicated cascaded-FP structure without loss of
generality. The total transmission group delay is decomposed
into the dwell time (excluding the dispersion effect at the
boundaries) and the boundary dispersive time. Dwell time
depicts the time differences between the field energy stored
in and escaping out of the intracavity region, covering the
total group delay proposed in Ref. [18]. Boundary dispersive
time is retrieved in the present paper to supplement the
completeness of Ref. [18]. It originates from the “frequency-
dependent” boundary reflection and transmission coefficients,
describing an effective delay for a wave packet reflected and
transmitted at the boundaries during the multiple-reflection
stage. The GD decomposition clearly demonstrates that
the round-trip destructive interference significantly reduces
the field energy stored in the FP cavity, and thus decreases the
cavity lifetime. It implies that the suppression of storage field
energy by multiple-reflection interference serves as the third
mechanism to realize superluminal delays, complementing the
mechanisms of tunneling and anomalous dispersion.

A proof-of-principle experiment was conducted in a ge-
ometrically discontinuous waveguide system that forms a
multiple-reflection FP interferometer. A broadband superlu-
minality was observed (transmitting length = 11.000 mm,
group delay =8.43 ± 1.24 ps <36.69 ps). Moreover, two
proposed time constituents of total transmission group delay
could be retrieved by measuring the boundary reflection and
transmission characteristics. It shows a very good agreement
between the experimental results and theoretical predictions.

On the basis of single-FP-cavity analysis, an enhanced su-
perluminality was experimentally demonstrated in a cascaded-
FP system with an overall transmitting length of 30.000 mm,
which yielded a group delay = 10.45 ± 1.49 ps, nearly an
order of magnitude shorter than the luminal delay of 100.07 ps.
The boundary dispersive time plays an important role in such a
cascaded system, governing the wave transmission behaviors
under off-resonant interference conditions.

This study lays the ground work for comprehending the
slow-light effect and the superluminal behavior in multi-FP
systems, and leads to a better understanding of controlling
group delay with possible applications in signal transmission
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FIG. 1. (a) Schematic of a single-FP system, where B1 and B2

represent the first and second reflective boundaries, respectively.
(b) Schematics of inward incidence and outward incidence. (c) A 3D
geometrically discontinuous waveguide system, resembling a single-
FP cavity [Fig. 1(a)]. Here, w = 7.112 mm (WR-28 waveguide),
h = 3.556 mm, g = 0.445 mm, d = 0.500 mm, and L = 10.000
mm. (d) Closeup figure of the iris reflective boundary (B1 and B2)
employed in (c).

[19] and wave packet switching for all-optical communica-
tion [20].

II. GROUP DELAY THEORY FOR SINGLE-FP SYSTEM

A single-FP system with three sections is employed for
analysis as depicted in Fig. 1(a). Region I (input) is assumed to
be identical to region III (output), and region II is embedded in
between. Two reflective boundaries are formed at the interfaces
of the adjacent regions. Figure 1(b) describes the inward-wave
incidence from region I to II and outward-wave incidence from
region II to region III or I.

A general expression for the group delay experienced by a
wave packet as it traverses through a FP cavity (or barrier) has
been obtained by Winful [17]:

τT
g = 〈U 〉

Pin
+ Im[FR]

k0

(
k0

ω
− dk0

dω

)
.

Here, 〈U 〉 is the time-averaged stored energy in the region II
occupied by the cavity, Pin is the input power, FR is the overall

reflected field at region I, k0 is the propagation constant in
regions I and III, and ω is the frequency of the electromagnetic
wave. The first term is known as the dwell time and represents
the lifetime of stored energy in the central region (II) that acts
as a cavity, where the field undergoes multiple reflections. The
second term also contains the effects of multiple reflections
through FR as well as the dispersion effect. This term has been
called a self-interference delay in Ref. [17]. However, in this
form its physical significance is difficult to elucidate and it is
also not clear how it lends itself to independent measurement.
When specialized to a single-Fabry-Pérot system with disper-
sionless boundaries of intensity reflectivity R′, the second term
disappears and the group delay becomes identically equal to
the dwell time under quasistatic conditions, which is given
by [18]

τT
g = τd =

[
1 − R′2

1 + R′2 − 2R′ cos(2kL)

]
L

vgII
,

where vgII ≡ dω/dk, and k is the propagation constant in
region II.

In order to clarify the role of the so-called self-interference
term, Yao and Chang included the effects of dispersion at the
reflective boundaries and generalized the simple FP result in
a form that allows the independent measurement of each term
in the expression. In what follows, we outline the group delay
decomposition theory and describe an experiment that allows
the direct measurement of each term.

As a wave encounters a boundary [Fig. 1(a)], it is partially
reflected and partially transmitted, forming the reflected and
transmitted waves that, jointly with the incident wave, satisfy
the boundary conditions. In the inward incidence (from region
I),

√
R (

√
T ) and φr (φt ) describe the magnitude and the

phase of the reflected (transmitted) wave, while
√

R′eiφ′
r and√

T ′eiφ′
t denote the reflected and transmitted waves in the

case of outward incidence (from region II). The injected
signal subsequently bounces back and forth between two
reflective boundaries, thus creating a cavity field after the
multiple reflections. The overall transmitted (reflected) signals
in steady state [FT (FR)] result from the superposition of all
multiple-reflection waves with different numbers of round-trip
bounces and are given by

FT ≡ |FT |eiϕT =
√

T × √
T ′√

1 − 2R′ cos(2φ′
r + 2kL) + R′2 eiϕT , (1a)

ϕT = φt + φ′
t + kL + tan−1

[
R′ sin(2kL + 2φ′

r )

1 − R′ cos(2kL + 2φ′
r )

]
, (1b)

FR ≡ |FR|eiϕR =
√

R + 2
√

R
√

R′|FT | cos(φ′
r − φr + kL + ϕT ) + R′|FT |2eiϕR , (1c)

ϕR = tan−1

[ √
R sin(φr ) + √

R′|FT | sin(kL + φ′
r + ϕT )√

R cos(φr ) + √
R′|FT | cos(kL + φ′

r + ϕT )

]
, (1d)

where k is the wave propagation constant in region II.
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The transmission group delay (τT
g ) describes the time

difference between the time when the peak of the incident
wave packet encounters the first boundary and the time when
the peak of the output wave packet leaves the second bound-
ary [21]. According to the stationary phase approximation
(quasistatic condition) [15–18], τT

g = dϕT /dω. From Eq. (1b),
τT
g is derived as follows.

τT
g =

[
1 − R′2

1 − 2R′ cos(2keffL) + R′2

](
L

vgII

)

+ dφt

dω
+

(
2
dφ′

r

dω

)[
R′ cos(2keffL) − R′2

1 − 2R′ cos(2keffL) + R′2

]

+ dφ′
t

dω
+

[
sin(2keffL)

1 − 2R′ cos(2keffL) + R′2

](
dR′

dω

)
, (2)

where keff = k + φ′
r/L and vgII = dω/dk.

Whenever the multiple-reflection wave travels a round trip
between the two boundaries, it acquires a round-trip phase
change of 2keffL, which has contributions from the wave
propagation (2kL) and boundary effect (2φ′

r ). This phase shift
determines the nature of the interference conditions between
multiple-reflection components. The τT

g can be discussed in
two special cases. One is the on-resonant condition occurring
when 2keffL = 2mπ , where m is an integer. The transmission
group delay becomes

τT (on)
g =

(
1 + R′

1 − R′

)(
L

vgII

)
+ dφt

dω

+
(

2
dφ′

r

dω

)(
R′

1 − R′

)
+ dφ′

t

dω
. (3)

Under this condition, one reflected wave constructively
interferes with the next one that experiences one more round-
trip bounce. The other is the off-resonant condition at 2keffL =
(2m + 1)π , corresponding to destructive interference, and then
τT
g equals

τT (off)
g =

(
1 − R′

1 + R′

)(
L

vgII

)
+ dφt

dω

−
(

2
dφ′

r

dω

)(
R′

1 + R′

)
+ dφ′

t

dω
. (4)

The first term in Eq. (2) is defined as the dwell time (τd )
[17,18]:

τd =
[

1 − R′2

1 − 2R′ cos(2keffL) + R′2

](
L

vgII

)
. (5)

It represents the lifetime of stored field energy escaping
through both ends (B1 and B2) of the FP cavity, assuming there
is no dispersion in the boundary reflection and transmission
coefficients. Equation (5) can be further expressed as

τd = τd0 + (2τd0)fMR, (6a)

fMR = R′ cos(2keffL) − R′2

1 − 2R′ cos(2keffL) + R′2 , (6b)

where τd0 = L/vgII is a single-pass transit time and fMR

represents a multiple-reflection factor. The interference effect
from multiple reflections manifests in 2τd0fMR, which can

either lengthen or shorten the overall dwell time by changing
fMR to modulate the amount of stored energy under different
round-trip phase change (2keffL).

As R′ → 0, fMR (∝R′) turns into zero indicating the
complete transmittance [|FT | → 1, Eq. (1a)], and then τd →
τd0. When R′ → 1, the effects of multiple reflections on dwell
time are most clearly seen under on-resonant and off-resonant
conditions. At the on-resonant state, τ on

d = (1 + R′)/(1 −
R′)τd0 [first term in Eq. (3)]; the injected wave is strongly
trapped between the two boundaries; hence τ on

d increases
dramatically as R′ increases, enhancing the slow-light effect.
Under off-resonant conditions, τ off

d = (1 − R′)/(1 + R′)τd0

[first term in Eq. (4)]; most of the incident wave is reflected
due to destructive interference that significantly reduces the
stored field energy within the cavity. Since the dwell time is
proportional to this stored energy [18], it will have a rather
small value under off-resonant conditions. Consequently, the
dwell time τd becomes relatively small at the condition of
R′ → 1 with off-resonant operation [2keffL = (2m + 1)π ],
facilitating the apparent superluminal effect. However, this
short dwell time must not be construed as a pulse propagating
time from z = 0 to L as it is the consequence of superposition
of multiple round-trip traveling waves, establishing a cavity
field that then decays. The observed superluminality therefore
satisfies causality if one recognizes that at least one round-trip
propagation of the wave front was needed to establish the
interference required for off-resonant transmission.

The remaining four terms in Eq. (2) jointly yield the bound-
ary effects due to dispersion in the amplitude and phase of the
boundary reflection and transmission coefficients, providing a
“boundary dispersive time (τb).” The main contribution to τb

comes from the frequency-dependent phase changes and can
be expressed as

τφ = dφt

dω
+

(
2
dφ′

r

dω

)[
R′ cos(2keffL) − R′2

1 − 2R′ cos(2keffL) + R′2

]

+ dφ′
t

dω
, (7a)

τφ ≡ τφt + 2τφrfMR + τφt , (7b)

where φt = φ′
t (by reciprocity), τφt ≡ dφt/dω, and τφr ≡

dφ′
r/dω. The first (τφt ) and last (τφt ) terms in Eq. (7a)

are the transmission delays for a single pass through each
boundary, while the second term (2τφrfMR) represents the
boundary reflection delay modified by the aforementioned
multiple-reflection interference factor [fMR in Eq. (6b)]. The
contribution of the dispersion in boundary reflectivity (R′) to
τb is given by

τR =
[

sin(2keffL)

1 − 2R′ cos(2keffL) + R′2

](
dR′

dω

)
. (8)

For a single reflective boundary, a frequency-dependent
reflectivity would normally result in pulse distortion but
not change transmission group delay. However, in the pres-
ence of two boundaries and multiple reflections, the phases
of the overall transmitted and reflected waves (ϕT and
ϕR) depend on the reflectivity R′ as shown in Eqs. (1b)
and (1d), respectively. In other words, the interference between
round-trip reflected waves for construction of final output
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field leads to a contribution of reflectivity dispersion to the
total group delay. Note that this contribution vanishes at the
resonant and off-resonant interference conditions, while it
could be enhanced through inserting material with anomalous
dispersion [10,11] into the FP cavity.

The combination of τφ and τR forms the boundary disper-
sive time (τb) that is the result of accumulated time delays
at the boundaries for a wave packet undergoing multiple
reflections. Thus, τb explicitly describes the effective time for
a narrow-band pulse spending on the two-sided boundaries of
a FP system.

Finally, the total transmission group delay can be expressed
as

τT
g = τd + τb = τd + τφ + τR

= (τd0 + 2τd0fMR) + (2τφt + 2τφrfMR) + τR. (9)

III. EXPERIMENTAL DEMONSTRATION OF
SUPERLUMINALITY IN SINGLE-FP SYSTEM

A geometrically discontinuous waveguide system with two
reflective iris boundaries is introduced here [Fig. 1(c)] to
demonstrate both subluminal (“slow-light”) and superluminal
(“fast-light”) group delays based on the multiple-reflection
mechanism. Regions I (input), II (propagating) and III (output)
are identical WR-28 waveguides with width w = 7.112 mm
and height h = 3.556 mm, while the two-sided symmetric
irises (B1 and B2) are undersized waveguides with a greatly
reduced height of g = 0.445 mm, and the same width w (7.112
mm). The cutoff frequency (ωc = cπ/a = 21.076 × 2π Giga-
rad/s) and propagation constant (k = √

ω2 − ω2
c/c) of the

operating mode (TE10) are thus unchanged throughout the
whole E-plane structure, making the system fundamentally
different from that in the previous superluminal tunneling
experiments [5–7,12,13]. The propagation length L and iris
length d are respectively specified as 10.000 and 0.500 mm,
satisfying the condition of kd < 0.1π 	 kL. This condition
prevents intrinsic resonant behavior within a single iris and
therefore ensures that the two-sided irises effectively perform
like the clear-cut reflective boundaries (B1 and B2) depicted in
Fig. 1(a).

The frequency-domain overall transmission and reflection
coefficients [FT and FR as defined in Fig. 1(a)] are shown
in Figs. 2(a) and 2(b) by blue triangles with error bars,
measured by a performance network analyzer (PNA, Aglient
Technologies E8363B). Based on the stationary phase ap-
proximation, the total group delay for a narrow-band pulse
transmitted through this FP system [τT

g , blue triangles in
Fig. 2(c)] can be directly derived by dϕT /dω from the
measured phase information provided in Fig. 2(a). The gray
dashed line in Fig. 2(c) represents the luminal group delay of
τ0 ≡ (L + 2d)/c = 36.69 ps, i.e., the propagation delay for a
wave packet making a single pass through a free space distance
of L + 2d with velocity c. Delays shorter than this are termed
as “superluminal,” whereas longer delays are referred to as
“subluminal.”

At frequencies equal to 27.609 and 38.014 GHz, on-
resonant conditions occur with 2keffL = 4π and 6π , leading
to a maximum transmission of nearly 100% [Fig. 2(a)].
The group delays at these frequencies are 272.97 ± 0.17

FIG. 2. (Color online) Total transmission coefficient (a), reflec-
tion coefficient (b), and transmission group delay (c) of the single-FP
system. The blue (light gray) triangles are the measured data of an
overall system depicted in Fig. 1(c), while the black dots represent
the calculated results based on the proposed theory and the measured
iris boundary characteristics (demonstrated in Fig. 3). The red (dark
gray) curves are the simulation from HFSS.

ps (7.440τ0) and 470.22 ± 3.23 ps (12.815τ0), respectively.
These subluminal delays would correspond to wave packets
propagating with the slow-light velocities of 0.134c and
0.078c, respectively, if the input and output envelope peaks
were related by a simple causal translation over the distance
L + 2d (11.000 mm). A wide-band superluminality appear-
ing from 29.317 to 36.753 GHz [the region below gray
dashed line in Fig. 2(c), 22.51% bandwidth] is observed,
in which the shortest group delay is only 8.43 ± 1.24 ps at
33.242 GHz (2keffL = 5π ), corresponding to the apparent
faster-than-light delay of 0.230τ0. The red curves in Figs. 2(a)–
2(c) represent the simulation results obtained via a three-
dimensional (3D) full-wave solver, high-frequency structure
simulator (HFSS), which show a very good agreement with the
experimental data.

To verify the proposed group delay decomposition [Eq. (9)],
the wave reflection and transmission behaviors at a single-
iris boundary [Fig. 1(d)] must be explicitly characterized due
to their essential role in the multiple-reflection process. The
reflection (

√
R′eiφ′

r ) and transmission (
√

T eiφt ) coefficients of
a single iris are consequently measured and demonstrated in
Figs. 3(a) and 3(b), respectively. The high boundary reflection
rate (|R′| up to about 0.8) and frequency-dependent boundary
transmission and reflection phases (φt = φ′

t and φ′
r ) originate
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FIG. 3. (Color online) (a) The experimental results (black dots)
of the outward-incident reflection coefficient (

√
R′eiφ′

r ) and (b) trans-
mission coefficient (

√
T eiφt ) for individual iris reflective boundary

delineated in Fig. 1(d). The red (dark gray) curves here are the
HFSS simulation results. The time constituents of (c) τφr (dφ′

r/dω),
(d) τφt (dφt/dω), and (e) dR′/dω are derived from the measured
characteristics of the iris boundary shown in (a) and (b). (f) The
single-pass transit time τd0 was measured with a uniform WR-28
waveguide, and (g) is the multiple-reflection factor (fMR).

from the strong modal effect occurring at the geometrically
discontinuous structures [9,22].

Once
√

R′eiφ′
r and

√
T eiφt are well characterized,

τφr (=dφ′
r/dω) and τφt (=dφt/dω) can be subsequently

calculated [shown in Figs. 3(c) and 3(d), respectively],
representing the basic time delays for single-reflection and
single-transmission events within an iris region. Figure 3(e)
shows dR′/dω, which exhibits a frequency dependence similar
to τφr and τφt in the present multiple-reflection system. On
the other hand, the single-pass time delay for a wave packet
traveling from one reflective boundary to the other [τd0 =
L/vgII = Ldk/dω shown in Fig. 3(f)] is directly measured
from a uniform WR-28 waveguide with a propagating length
L = 10.000 mm.

After a substitution of the measured
√

R′eiφ′
r [Fig. 3(a)]

into Eq. (6b), the multiple-reflection factor fMR [Fig. 3(g)] is
obtained, revealing the strong correlation to the extraordinary
group delay in Fig. 2(c). Owing to the positive single-pass
delays, i.e., τφr and τd0 [Figs. 3(c) and 3(f)], the positive
fMR provides an enhancement effect, which increases τT

g

and leads to the slow-light phenomena in the regions of
26.500–29.317 GHz and 36.753–39.224 GHz in Fig. 2(c). On
the other hand, the negative fMR corresponds to a suppression
mechanism due to destructive interference, thus resulting in an

FIG. 4. (Color online) (a) Left-hand panel shows the τd0 [blue
(light gray) triangles] and 2τd0fMR [red (dark gray) squares], which
are the essentialities of dwell time (τd , black dots) illustrated in the
right-hand panel. (b) The boundary transmission time [2τφt , blue
(light gray) triangles] and boundary reflection time [2τφrfMR, red
(dark gray) squares] are demonstrated on the left-hand panel, while
the sum of these two delay times is τφ (right-hand panel). The delay
time associated with the dispersion in boundary reflectivity (τR) is
shown in (c).

ultrashort τT
g for broadband superluminal delays (from 29.317

to 36.753 GHz).
According to the group delay decomposition, the dwell time

[τd , Fig. 4(a)], and the boundary dispersive time [τb = τφ + τR ,
Figs. 4(b) and 4(c)], can be further acquired by employing the
measured iris boundary characteristics demonstrated in Fig. 3.
The sum of τd , τφ , and τR gives the total group delay [Fig. 2(c),
black dots], which perfectly matches with the measured data
of the overall FP system [Fig. 2(c), blue triangles], as well as
the simulation results [Fig. 2(c), red curve].

The τd [Fig. 4(a)] and the τφ [Fig. 4(b)] are linearly
dependent on fMR [Fig. 3(g)], while the τR [Fig. 4(c)] is
relatively small in the present single-FP system due to the
nearly dispersionless reflectivity (R′) of the boundary. At
the first on-resonant state (27.609 GHz), the positive fMR

of 1.811 makes τd achieve 239.07 ± 0.43 ps (consisting of
τd0 = 51.72 ± 0.11 ps and 2τd0fMR = 187.35 ± 0.33 ps), thus
contributing 87.58% of the total transmission group delay
and dominating the slow-light phenomenon. In the vicinity
of 29.317-36.753 GHz, 2τd0fMR turns to a negative value of
− 37.63 ± 0.08 ps and cancels with τd0 (=43.14 ± 0.07 ps),
thus resulting in a small τd of 5.51 ± 0.05 ps, much shorter than
the light propagating time in vacuum over an equal traveling
distance [(L + 2d)/c = 36.69 ps]. This ultrashort dwell time
results from the fact that most of the incident signal is reflected
in front of the FP system under a destructive-interference
condition; hence only a small amount of field energy is injected
into the intracavity region. The less the stored field energy
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is, the shorter the dwell time will be for all stored energy
escaping out of the cavity. If the boundary dispersive time
(τb = τφ + τR) is likewise small, superluminal delays would
be obtained.

During the off-resonant operation (33.242 GHz), the
negative fMR (–0.436) yields a negative 2τφrfMR of
−3.16 ± 0.23 ps, which counteracts the transmission time at
two-sided boundaries (2τφt , 5.97 ± 0.41 ps) to form a tiny τφ

(=2τφt + 2τφrfMR) of 2.81 ± 0.41 ps. The τR in the vicinity of
off-resonant interference is negligible (only − 0.55 ± 0.06 ps)
since it is proportional to sin(2keffL) → 0 under off-resonant
operation. An ultrashort boundary dispersive time (τb) ulti-
mately indicates that the wave packet effectively spends less
time at the boundaries.

The cancellations between τd0 (2τφt ) and 2τd0fMR

(2τφrfMR) make τd and τφ simultaneously drop far below
(L + 2d)/c = 36.69 ps, resulting in the positive superlumi-
nality (τT

g = 7.77 ± 0.42 ps). The slight discrepancy between
the calculated group delay from decomposition theory [7.77 ±
0.42 ps, the black dots in Fig. 2(c)] and the experimental result
measured from the overall system [8.43 ± 1.24 ps, the blue
triangles in Fig. 2(c)] could be well included and explained by
the error bars.

The above experiment demonstrates how multiple-
reflection interference in regions of allowed propagation
results in a modulation of stored field energy and thus yields
a frequency-dependent cavity lifetime. It should be noted that
although the concept of a cavity lifetime is widely used in ap-
plications such as laser dynamics, there is always an unspoken
assumption that the cavity is on resonance. By introducing the
concept of a frequency-dependent cavity lifetime, we are able
to explain the anomalously short group delays on the basis of
the suppression of stored field energy below the cavity-free
values by round-trip destructive interference. We have also
elucidated the contribution of dispersion at the boundaries
to the transmission magnitude and transmission group delay.
It is believed that the boundary dispersion effect could be
further enhanced through multiple-reflection interference. A
cascaded-FP system with strong multiple reflections, revealing
the significance of boundary dispersive time (τb = τφ + τR), is
therefore discussed in the following to distinguish the physical
meanings of the two decomposed time constituents.

IV. GROUP DELAY AND THE GENERALIZED HARTMAN
EFFECT IN CASCADED-FP CAVITIES

A cascaded-FP waveguide system (Fig. 5) consists of two
identical single-FP cavities [CI and CIII defined in Fig. 1(c)]
jointly connected by a bridge (WR-28 waveguide) with length
Lm = 8.000 mm, which forms another cavity (CII) embedded
between CI and CIII. The measured overall transmission coef-
ficient denoted by |Fc

T |eiϕc
T and the transmission group delay

(τT c
g = dϕc

T /dω) of this cascaded-FP system are depicted in
Figs. 6(a) and 6(b) by blue triangles.

The wave behaviors in this FP system can be explicitly
described by an effective two-boundary model graphically
depicted in Fig. 5(b). Cavities CI and CIII are effectively
equivalent to two artificial boundaries (Be1 and Be2), the
characteristics of which are therefore completely determined
by the wave transmission and reflection properties at individual

FIG. 5. (Color online) (a) Schematic of cascaded-FP system in
waveguide system, where L = 10.000 mm and Lm = 8.000 mm.
Notably, the two-sided cavities (CI and CIII) are identical to the single-
FP system specified at Fig. 1(c). (b) An effective two-boundary model
(Be1 + CII + Be2) equivalent to the original four-boundary cascaded-
FP system (B1 + C1 + B2 + CII + B3 + CIII + B4).

single-FP cavity [Fig. 1(c)]. The transmission rate (≡ Teff) and
transmission group delay (≡ τT

g eff) of both effective boundaries
are thus equal to |FT |2 and τT

g = dϕT /dω, while the reflection
rate (≡Reff) and reflection group delay (τR

g eff) should be |FR|2
and τR

g = dϕR/dω. These four critical parameters (|FT |2, τT
g ,

|FR|2, and τR
g ) have been defined in the case of a single-FP

cavity [Fig. 1 and Eq. (1)] and are clearly characterized in
Fig. 2.

According to the single-FP model proposed in Sec. II,
the total transmission group delay in the cascaded-FP
system (τT c

g ) can be derived by employing Eq. (9) with the

FIG. 6. (Color online) Total transmission coefficient (a) and
transmission group delay (b) of the cascaded-FP system. The
measured data of an overall system are presented in blue (light gray)
triangles, while the black dots represent the calculated results based
on the GD decomposition theory with substitution of the measured
characteristics of the single-FP cavity shown in Fig. 2. The red (dark
gray) curves are the simulations from HFSS.
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FIG. 7. (Color online) (a) τ c
d [red (dark gray) squares], (b) τ c

φ

[blue (light gray) triangles], and (c) τ c
R (green crosses). A closeup

figure of (a)–(c) at the single-FP off-resonant region (31–37 GHz)
is demonstrated in (d), in which the black dots represent the total
transmission group delay (τ T c

g = τ c
d + τ c

φ + τ c
R). (e) The multiple-

reflection factor (f c
MR) of this cascaded-FP system.

substitutions L → Lm, τd0 → Lm/vgII, τφt → τT
g eff =

dϕT /dω, τφr → τR
g eff = dϕR/dω, and R′ → Reff = |FR|2,

which yields

τT c
g = τ c

d + τ c
b = τ c

d + τ c
φ + τ c

R =
[

Lm

vgII
+

(
2

Lm

vgII

)
f c

MR

]

+
[

2
dϕT

dω
+

(
2
dϕR

dω

)
f c

MR

]
+ τ c

R, (10a)

f c
MR = |FR|2 cos

(
2kc

effLm

) − |FR|4
1 − 2|FR|2 cos

(
2kc

effLm

) + |FR|4 , (10b)

τ c
R =

[
sin

(
2kc

effLm

)
1 − 2|FR|2 cos

(
2kc

effLm

) + |FR|4
] (

d|FR|2
dω

)
,

(10c)

where kc
eff ≡ k + ϕR

/
L

m
.

The superscript “c” denotes the decomposed delay times as-
sociated with the cascaded-FP system, the frequency responses
of which are explicitly illustrated in Fig. 7. Furthermore, the
sum of τ c

d , τ c
φ , and τ c

R gives the total group delay [black dots in
Fig. 6(b)], which has a very good agreement with the experi-
mental (blue triangles) and simulation (red curve) results.

In the vicinity of the single-FP off-resonance region (e.g.,
33.242 GHz), the group delay is 10.45 ± 1.49 ps (τT c

g )
over a cascaded-transmission length of 2L + 4d + Lm =
30.000 mm. The group delay for light propagating through an
equal distance in free space would be 100.07 ps, and thus we
have nearly an order of magnitude enhancement in the apparent
“group velocity,” achieving 28.7 × 108 m/s. We stress, of
course that nothing is actually propagating with such velocity
inside the cavity and that the group delay here is actually an off-
resonance cavity lifetime. By comparison, the superluminal

group delay in the single-FP system with a shorter transmission
distance of L + 2d = 11.000 mm is 8.43 ± 1.24 ps [Fig. 2(c)],
implying an apparent group velocity of 13.05 × 108 m/s, about
half that of the cascaded system. The enhancement of apparent
superluminality in the cascaded-FP system over the single-FP
structure could be explicitly interpreted through the relation
between dwell time [τ c

d = (1 + 2f c
MR)Lm/vgII, red squares in

Fig. 7(a)] and boundary dispersive time [τ c
b = τ c

φ + τ c
R , with

τ c
φ(=2τT

g + 2τR
g f c

MR) shown in blue triangles in Fig. 7(b),
and τ c

R illustrated in the green crosses in Fig. 7(c)]. These
decomposed components are calculated from Eq. (10) based on
the measured characteristics of an individual single-FP cavity
specified in Fig. 2. The dwell time (τ c

d ) represents the time
delay for the signal staying within the middle cavity (CII),
while the boundary dispersive time (τ c

b ) describes the effective
time accumulated from transmission (∝2τT

g ) and reflection
(∝2τR

g ) delays at the effective dispersive boundaries Be1 and
Be2, i.e., the first and the third cavities (CI and CIII).

During the off-resonance operation of a single-FP cavity
(for instance, 33.242 GHz), the reflectivity of the effective
boundaries [Be1 (CI) and Be2 (CIII)] are quite high [Reff =
|FR|2 ≈ 1 − |FT |2→98%; refer to Fig. 3(a)] due to the
destructive interference. The incident signals would be almost
totally reflected at the first cavity (CI) and therefore only
a rather small part can be transmitted into CII. The stored
energy in the intracavity region (CII) is thus greatly reduced,
implying an ultrashort dwell time (τ c

d ) as shown in Figs. 7(a)
and 7(d). In other words, the wave packet spends most of the
time delay for reflection at the first effective boundary, i.e.,
the cavity CI, which explains why τT c

g (10.45 ± 1.49 ps) has a
large contribution from τ c

φ [8.73 ± 1.60 ps, τ c
φ/τT c

g = 83.54%
in Figs. 7(b) and 7(d)]. Notably, the τ c

R [Figs. 7(c) and 7(d)] is
still negligible at 33.242 GHz due to the nearly dispersionless
boundary reflectivity (|FR|2) ranging between 29.317 and
36.753 GHz. We can conclude that boundary dispersive time
(τ c

b = τ c
φ + τ c

R ∼ τ c
φ) fully dominates the transmission group

delay (τT c
g ) in such a cascaded-FP system under off-resonant

operation due to the strong suppression of dwell time (τ c
d ), as

well as the stored field energy by high boundary reflectivity.
From the mathematical perspective, the multiple-reflection

factor [f c
MR defined in Eq. (10b) and shown in Fig. 7(e)] will

be reduced to − 1
2 under the case of extremely high boundary

reflectivity (Reff = |FR|2 → 1). Meanwhile, the dwell time
in region II is reduced to zero [τ c

d ∝ (1 + 2f c
MR) → 0], and

thus the importance of boundary dispersive time (τ c
b ∼ τ c

φ)
markedly increases, completely in contrast to the situation in
a single-FP system. The length of the middle cavity (Lm)
now certainly becomes an irrelevant parameter for τ c

d , as
well as τ c

φ , because the constant f c
MR(=−1/2) is essentially

independent of Lm. Therefore, the longer the Lm is, the faster
the “apparent group velocity” [vc

g eff ∼ (2L + 4d + Lm)/τ c
φ ∝

Lm] that will be observed in the cascaded-FP system. This lack
of dependence of the group delay on the length in a region of
allowed propagation has been called the “generalized Hartman
effect” [6]. However, as pointed out by Winful [18], this is just
a trivial artifact arising from the fact that there is no energy in
the region to be transmitted due to extremely high boundary
reflectivity. The generalized Hartman effect does not exist. If
energy survives into the middle region (CII), its delay time will
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increase linearly with Lm in the same manner as the case of a
single-FP system with low boundary reflection rate.

V. CONCLUSION

In summary, multiple-reflection interference leading to
the enhancement and the suppression of intracavity stored
field energy has been demonstrated to induce subluminal and
superluminal delays in FP systems without tunneling and
anomalous-dispersion regions. Previous work is generalized
to include the effect of dispersion at the FP boundaries
by a boundary dispersive time, which represents the accu-
mulated delay spending on the boundaries, in addition to

the signal dwell time staying inside the intracavity region.
These two constituents can be independently measured in
experiment and jointly describe the total transmission group
delay. The experimental results show excellent agreement with
the theoretical predictions for both single-Fabry-Pérot and
cascaded-Fabry-Pérot systems.
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