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We analyze nonlinear effects associated with the spatiotemporal propagation of few-cycle optical pulses
in nonlinear dispersive media, including nonlinearity-induced self-phase modulation, generation of higher
harmonics, and the effects of diffraction. First, we discuss the nonlinear equations governing the spatiotemporal
propagation of short pulses in dispersive and diffractive nonlinear media and demonstrate a link between the
field equation and the cubic nonlinear Schrödinger equation employed for describing the evolution of the pulse
envelope. Then, for several different regimes of competitive scales, we study the self-action effects of few-cycle
pulses and describe, both analytically and numerically, the pulse self-modulation and self-focusing, including
the transformation of the spectral density and harmonic generation in the cases of weak and strong dispersion.
Finally, we analyze the effect of the beam diffraction on self-action of the Gaussian few-cycle pulses.

DOI: 10.1103/PhysRevA.86.053822 PACS number(s): 42.65.Ky, 42.65.Jx, 42.65.Re

I. INTRODUCTION

Recent progress in the advanced methods of ultrafast
nonlinear optics led to the generation and control of very
short pulses with durations of a few optical cycles (see, e.g.,
the review paper [1] and references therein). The study of
the propagation of intense short optical pulses has opened
a door to the analysis of novel effects of the so-called
extreme nonlinear optics [2,3] and attosecond physics [4]
allowing one to control and measure few-cycle light pulses
and employ them for various applications in the problems of
light-matter interaction. Advances with experimental studies
of nonlinear effects with few cycles toward subcycle field
structures motivate the expanding theoretical studies of related
problems. Since the conventional slowly varying envelope
approximation is not valid for describing the evolution of the
electric-field profiles of ultrashort pulses containing only a
few field oscillations, various authors derived the generalized
nonlinear equations for describing the evolution of the pulse
envelope [5–10] and also applied the generalized Schrödinger
equation to study few-cycle optical solitons [11,12].

When the pulse becomes shorter, the nonlinearity leads
to the pulse steepening effects, which are not well described
by the approach employing the pulse envelope. To analyze
the problem of the competition between spatial and temporal
scales in the problem of the spatiotemporal self-phase modu-
lation of few-cycle optical pulses, we should analyze the full
equations, not reducing them to the wave dynamics of the
envelope. This idea motivated the development of equations
directly for the electric field of an optical pulse (see a recent
review in Ref. [13]). The so-called short-pulse equations can be
expressed in a rather simple form in the case of unidirectional
propagation [14–23], and the models taking into account the
beam diffraction can describe complex spatiotemporal dynam-
ics [24–32]. The field equations have been used, in particular,
to study self-focusing and spatiotemporal collapse dynamics of
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optical pulses [27–29,31–33]. However, detailed investigation
of self-phase modulation phenomena and harmonic generation
of few-cycle pulses in the framework of the field equations has
not been performed.

Here, we summarize the results of our systematic analytical
and numerical analysis of optical harmonic generation in
the process of few-cycle optical pulse self-action in cubic
nonlinear dispersive media. We discuss several different
regimes of competition between spatial and temporal scaling
parameters and also the relation between the field equations
and the conventional equations for the pulse envelopes. In
particular, we study numerically the self-action of few-cycle
pulses such as self-modulation and self-focusing and analyze
the transformation of the spectral density and harmonic
generation in the cases of weak and strong dispersion. Finally,
we analyze the effect of the beam diffraction on the self-action
and harmonic generation by few-cycle pulses.

The paper is organized as follows. Section II is devoted to
the discussion of the model that is a reduced model for the uni-
directional paraxial spatiotemporal evolution of optical pulses
in a nonlinear medium; this model was derived earlier [24,25].
Here we describe the reduction of this model to the equation
for the wave envelope as well as discuss the generalization of
this model to describe the generation of the third harmonics.
In Sec. III we study the pulse propagation in media with weak
dispersion and diffraction, when many results can be obtained
analytically, by means of the perturbation theory. This includes
also the analysis of the third-harmonic generation and the
dependence of this process on the pulse duration. Section IV is
devoted to the analysis of dispersion on the pulse self-action,
whereas Sec. V summarizes our results on the effect of the
diffraction. Finally, Sec. VI concludes the paper.

II. EQUATIONS FOR THE FIELD DYNAMICS
IN NONLINEAR MEDIA

We now formulate the model equation to simulate the
evolution of a linearly polarized optical beam in an isotropic
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FIG. 1. (Color online) Example of the propagation of a single-
cycle paraxial beam in a nonlinear medium. The beam undergoes
strong temporal reshaping and diffracting in space.

dielectric medium with instant Kerr-type nonlinear response,
accounting for spatiotemporal effects, as schematically il-
lustrated in Fig. 1. We consider the unidirectional paraxial
propagation corresponding to a beam width much larger
than the optical wavelength, and assume that the wavelength
spectrum is within the region of the normal group-velocity
dispersion. Under such conditions, the following equation
has been derived for the electric field of an optical wave
E(x,y,z,t) [25]:

∂E

∂z
+ K0E + N0

c

∂E

∂t
− K1

∂2E

∂t2
− a

∂3E

∂t3
+ gE2 ∂E

∂t

= c

2N0
�⊥

∫ t

−∞
Edt ′, (1)

where z is the distance along the propagation direction, �⊥ =
∂2/∂x2 + ∂2/∂y2 is the transverse Laplace operator, t is time,
and c is the speed of light in a vacuum. It is straightforward
to determine the frequency dispersion of the linear refractive
index associated with Eq. (1) by substituting a plane-wave so-
lution E(z,x,y,t) = (1/2) exp[ik(ω)z − iω0t] + c.c. (where
c.c. stands for a complex conjugate) and neglecting nonlinear
terms. We obtain

k(ω) = kr (ω) + iki(ω)

= (N0ωc−1 + aω3) + i(K0 + K1ω
2), (2)

and accordingly the optical refractive index is found as
n0(ω) = k(ω)cω−1:

n0(ω) = (N0 + acω2) + i(K0cω
−1 + K1cω). (3)

We see that the coefficients N0 and a define the real part of
the optical refractive index n0, whereas K0 and K1 define the
imaginary part of n0 associated with the medium absorption.
Coefficient g characterizes the Kerr-type nonlinear response,
and it is related to the cubic nonlinear susceptibility n2

as [34]

g = 2n2/c. (4)

We underline that Eq. (1) is formulated for the electric field
E of the optical wave, and it is suitable for theoretical modeling
of ultrashort pulse evolution with a very broad spectrum,
including the case of pulses with few field oscillations. We
note that Eq. (1) can be considered as a form of the cubic
generalized Kadomtsev-Petviashvili equation [32]. Below, we
will use this equation to model the dynamics of few- and
single-period pulses in nonlinear optical media.

Before progressing with our study, it is instructive to discuss
a connection between Eq. (1) and the equations for the electric-
field envelopes which were originally derived for narrow-band
or quasimonochromatic pulses [35]. The envelope equations
with additional terms [1,6] are nowadays often used to simulate
evolution of pulses with few optical-field oscillations. Since in
our study we investigate the process of harmonic generation, it
is instructive to derive the envelope equations accounting for
the generation of the third optical harmonic. For this purpose,
the electric field can be written as

E(z,x,y,t) = 1
2Eω0 (z,x,y,t)eikr (ω0)z−iω0t

+ 1
2E3ω0 (z,x,y,t)eikr (3ω0)z−3iω0t + c.c. , (5)

where Eω0 (z,x,y,t) and E3ω0 (z,x,y,t) are the complex en-
velopes of quasimonochromatic pulses with the carrier fre-
quencies ω0 and 3ω0, respectively. After substituting Eq. (5)
into Eq. (1) and making simplifications according to the
assumption of slowly varying envelopes, we obtain the well-
known coupled equations for the envelopes of the fundamental
and third-harmonic wave envelopes [35] with additional terms
accounting for diffraction:

∂Eω0

∂z
+ ki(ω0)Eω0 + 1

Vω0

∂Eω0

∂t
+ i

βω0

2

∂2Eω0

∂t2
− iγ

[(∣∣Eω0

∣∣2 + 2
∣∣E3ω0

∣∣2)Eω0 + (
E∗

ω0

)2E3ω0e
i�krz

] = i

2k0
�⊥Eω0 ,

∂E3ω0

∂z
+ ki(3ω0)E3ω0 + 1

V3ω0

∂E3ω0

∂t
+ i

β3ω0

2

∂2E3ω0

∂t2
− iγ

[
3
(∣∣E3ω0

∣∣2 + 2
∣∣Eω0

∣∣2)E3ω0 + E3
ω0

e−i�kr z
] = i

6k0
�⊥E3ω0 , (6)

where

�kr = kr (3ω0) − 3kr (ω0), Vω0,3ω0 =
(

∂k(ω)

∂ω

)−1

ω0,3ω0

,

βω0,3ω0 =
(

∂2k(ω)

∂ω2

)
ω0,3ω0

, γ = gω0/4. (7)

This illustrates the fact that the model in Eq. (1) is very general.
In particular, under appropriate approximations, it can be

simplified to obtain the well-known equations for the complex
envelopes of multifrequency signals [Eqs. (5) and (6)], while
taking into account additional terms which become important
for short pulses containing only a few oscillations of the
electric field.

Importantly, the physical medium dispersion can be well ap-
proximated by the dispersion dependence [Eq. (3)] associated
with Eq. (1), since we consider a spectral region away from
medium resonances [5,7,10]. As an example, we consider the
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FIG. 2. (Color online) Dispersion of stoichiometric
MgO:LiNbO3 crystal: (a) real part of the refractive index
Re(n0) and (b) absorption coefficient ki vs the frequency. Solid
line: experimental data according to Ref. [42]. Dashed blue
line: approximate dependence based on Eq. (3) with parameters
N0 = 4.734, a = 2.224 × 10−38 s3 cm−1, K0 = 1.55 cm−1, and
K1 = 1.32 × 10−26 s2 cm−1. Grey shading: characteristic spectrum
(|G|) of a single-period pulse with the central frequency 1 THz.

terahertz frequency range. Indeed, generation of single-cycle
terahertz pulses with amplitudes exceeding 1 MV/cm was
reported [36]. Self-phase modulation of high-energy [37,38]
and single-cycle [39–41] THz pulses was recently observed
experimentally. We use the experimental data for the frequency
dispersion of the optical refractive index in stoichiometric
MgO:LiNbO3 crystal from Ref. [42], considering light polar-
ization parallel to the optical axis of the crystal, and determine
the values of dispersion parameters N0, a, K0, and K1, which
provide the best fitting using the least-squares method. The
plots in Fig. 2 show that the theoretical dispersion can give
an accurate approximation of experimental data in a broad
frequency region. This approximation is expected to provide
good accuracy for our study of harmonic generation; however,
we note that fine structure of the dispersion dependencies
would need to be taken into account for the modeling of optical
precursors [10].

It is now convenient to normalize Eq. (1), which simplifies
the classification of different parameter regions and pulse
evolution regimes for the analytical analysis and numerical
simulations presented below. Specifically, we introduce the
following dimensionless variables:

Ẽ = E

E0
, t̃ = 4t

T0
, x̃ = x

r0
, ỹ = y

r0
, (8)

where E0 is a characteristic electric-field amplitude, T0 is the
characteristic (central) period of electric-field oscillations, and
r0 is the transverse beam width at the input of the nonlinear
medium. In new variables, Eq. (1) takes the form

∂Ẽ

∂z
+ 1

Labs,1
Ẽ + 1

Lwave

∂Ẽ

∂t̃
− 1

Labs,2

∂2Ẽ

∂t̃ 2

− 1

Ldisp

∂3Ẽ

∂t̃ 3
+ 1

Lnl
Ẽ2 ∂Ẽ

∂t̃
= 1

Ldif
�⊥

∫ t

−∞
Ẽdt ′. (9)

Here Lwave = λ0/4 is the characteristic distance at which
the field amplitude varies from zero to a maximum value,
Ldisp = π2λ0N0/16�ndisp is the dispersion length, Ldif =
8r2

0 /λ0 is the diffraction length, Lnl = λ0N0/16�nnl is the
nonlinear length, Labs,1 = 1/K0 and Labs,2 = T 2

0 /(16K1) are
the absorption lengths, λ0 = cT0/N0 is the central wavelength,
�ndisp = acω2

0 is a modification of the refractive index at the

central wavelength due to dispersion, �nnl = (1/2)n2E
2
0 is a

nonlinearly induced change of the optical refractive index, and
ω0 = 2π/T0 is the central optical frequency. To simplify the
notations, in the following we will often omit the tilde symbol
(˜) where this does not lead to confusion.

Under the variable normalization according to Eq. (8),
the input pulse parameters are effectively scaled to unity.
On the other hand, the lengths Lnl, Ldisp, Labs,1, Labs,2,
and Ldif depend on the physical input pulse and medium
characteristics, and the relation between these lengths will de-
termine which effects of nonlinearity, dispersion, absorption,
or diffraction primarily determine the initial stages of the pulse
evolution.

It is useful to provide estimates of the parameters corre-
sponding to practical conditions. As an example, we con-
sider the experimental study of the self-phase modulation
of a single-period THz pulse in LiNbO3 crystal [40]. The
crystal dispersion corresponding to the experimental spectral
region is shown in Fig. 2, which was discussed above. The
nonlinear medium coefficient was determined experimentally
[40] as n′

2 = 5.4 × 10−12 cm2/W, which can be expressed
in electromagnetic centimeter-gram-second (CGS) units [43]
as n′

2 [cm2/kW] = (4π/3N0)n2 [CGS]. The nonlinear self-
phase modulation was registered for pulses with intensity
I = 108 W/cm2, which can be expressed in electromagnetic
CGS units as I [kW/cm2] = (3N0/8π )E2

0 [CGS]. The central
pulse period was T0 = 10−12 s. For the transverse beam width
of r0 = 10λ0 (this parameter was not specified in Ref. [40]),
we obtain Lnl � 35 mm, Ldisp � 7 mm, Labs,1 � 7 mm,
Labs,2 � 47 mm, and Ldif � 51 mm. These length values
can be changed by varying the input intensity and beam
width.

In the following we analyze the cases when
Lnl,Ldisp,Ldif � Labs,1,Labs,2. Considering such conditions,
which physically correspond to spectral regions away from
medium resonances [5,7,10], we neglect the effects of absorp-
tion.

III. PULSE PROPAGATION WITH WEAK DISPERSION
AND DIFFRACTION

A. Perturbation theory

First we analyze the case when the dispersion and diffrac-
tion lengths are much larger than the nonlinear length:

Lnl � Ldisp,Ldif. (10)

Then, considering the propagation distances z < Ldisp,Ldif, we
neglect the effects of dispersion and diffraction and simplify
Eq. (9) as

∂E

∂z
+ 1

Lwave

∂E

∂t
+ 1

Lnl
E2 ∂E

∂t
= 0. (11)

We now obtain an approximate solution of Eq. (11)
using Picard’s method of successive approximations [44]. We
consider Lwave/Lnl as a small parameter and seek approximate
solutions in the form

E = E(0) + Lwave

Lnl
E(1) +

(
Lwave

Lnl

)2

E(2) + · · · . (12)
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Keeping the first two terms in the expansion over the small
parameter, we obtain the following equations:

∂E(0)

∂z
+ 1

Lwave

∂E(0)

∂t
= 0, (13)

∂E(1)

∂z
+ 1

Lwave

∂E(1)

∂t
+ (E(0))2

Lnl

∂E(0)

∂t
= 0. (14)

Solution of Eq. (13) has the form [45]

E(0) (z,t) = E(0)

(
t − z

Lwave

)
. (15)

Solution of Eq. (14) can be expressed in quadratures after
making a variable transformation z′ = z/Lwave and τ = t −
z/Lwave:

E(1)(z′,τ ) = −1

3

∫ z′

z′
0

∂

∂τ
[E(0)(τ )]3dz′′

= −1

3

{
∂

∂τ
[E(0)(τ )]

3
}

(z′ − z′
0), (16)

where z′
0 is the boundary of the nonlinear medium. With no

loss of generality, we set z′
0 = 0 in the following.

B. Single-period pulse evolution and harmonic generation

We now consider an evolution of an incident one-period
pulse of the form

E(0)(0,t) = E0

(
t

τp

)
exp

(
− t2

τ 2
p

)
, (17)

where E0 is the characteristic field amplitude and τp is the
input pulse duration. The expression in Eq. (17) provides a
good approximation of terahertz emission from semiconductor
interfaces illuminated with femtosecond optical pulses [46].
The temporal spectrum of such a pulse is

G(0) (0,ω) =
∫ ∞

−∞
E(0) (0,t) e−iωtdt

= −i

√
π

2
E0τ

2
pω exp

(−τ 2
pω2/4

)
. (18)

According to this expression, the spectral peak is at the
frequency ωmax = √

2/τp.
We now apply the normalization according to Eq. (8) with

T0 = 2π/ωmax = √
2πτp. Then, the normalized field of the

single-period pulse and its spectrum is written as

Ẽ(0)(0,t̃) = π

2
√

2
t̃ exp

(
−π2 t̃ 2

8

)
, (19)

G̃(0)(0,ω̃) =
∫ ∞

−∞
Ẽ(0)(0,t̃) e−iω̃t̃ d t̃

= −i4π−3/2ω̃ exp(−2ω̃2π−2). (20)

The normalized frequency is defined as ω̃ = ωT0/4 =
ω

√
2πτp/4. Based on Eq. (20), we determine the position

of the maximum of spectral distribution as ω̃max = π/2. It is
therefore convenient to introduce the notation


 = ω/ωmax = ω̃/ω̃max = 2ω̃/π, (21)
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FIG. 3. (Color online) (a) Electric-field profile of a single-cycle
light pulse defined by Eq. (19) and (b) its spectrum according to
Eq. (20).

such that the normalized frequency 
 = 1 corresponds to the
spectral peak, and we will use 
 as the frequency axis in plots.
We show the electric-field profile and its spectrum according
to Eqs. (19) and (20) in Figs. 3(a) and 3(b), respectively. We
calculate the scale of the field amplitude change between the
pulse center and the main field maximum as �Ẽ/�t̃ ≈ 0.7,
where �t̃ is the position of the maximum and �Ẽ is the peak
amplitude as illustrated in Fig. 3(a). We note that the total
field oscillation 2�Ẽ, the central field gradient, the spectral
peak frequency, and the peak spectral amplitude are all of the
order of unity, which indicates that our choice of normalization
is suitable for such single-cycle optical pulses and justifies
the classification of pulse dynamics based on the normalized
characteristic lengths Ldisp, Ldif, and Lnl.

We calculate the first-order correction to the pulse profile
by substituting Eq. (19) into Eq. (16),

Ẽ(1)(z′,τ ) = −π3z′τ 2

16
√

2

(
1 − π2τ 2

4

)
e−3π2τ 2/8, (22)

and then we find its spectrum:

G̃(1)(z′,ω̃) = − 2
√

π

9
√

3π2
z′ω̃2

[
1 −

(
2ω̃

3π

)2]

× exp

(
−2ω̃2

3π2

)
e−iω̃z′

. (23)

We show these corrections in Figs. 4(a) and 4(b). According to
Eq. (23) the nonlinearly induced spectral correction vanishes
at the third harmonic of the input pulse spectral peak
frequency, ω̃ = 3π/2 = 3ω̃max, and this is also clearly visible
in Fig. 4(b). This is a remarkably surprising result, since the
third-harmonic generation is one of the fundamental effects
in optical media with Kerr-type nonlinearity. However, our
finding indicates that the process of third-harmonic generation
can be dramatically modified for single-period optical pulses.

We combine, according to Eq. (12), the first two pertur-
bation series terms, which define the total iterative solution:

Ẽ(z′,τ ) = Ẽ(0)(τ ) + Lwave

Lnl
Ẽ(1)(z′,τ )

= πτ

2
√

2
exp

(
−π2τ 2

8

) [
1 − Lwave

Lnl

π2z′

8
τ

×
(

1 − π2τ 2

4

)
exp

(
−π2τ 2

4

)]
, (24)
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FIG. 4. (Color online) Nonlinearly induced change of temporal
and spectral structures of a single-cycle optical pulse. (a and b)
Nonlinearly induced corrections to (a) field (Lwave/Lnl)Ẽ(1) and (b)
modulus of spectrum (Lwave/Lnl)G̃(1) calculated based on Eqs. (22)
and (23), respectively. (c and d) The total field and spectrum resulting
field according to Eqs. (24) and (25), respectively. The propagation
distance is z′ = 7 and Lwave/Lnl = 0.5.

which is found as

G̃(z′,ω̃) = G̃(0)(0,ω̃) + Lwave

Lnl
G̃(1)(z′,ω̃)

= −i
4
√

π

π2
ω̃ exp(−iω̃z′) exp(−2ω̃2/π2)

×
{

1 − i
Lwave

Lnl

z′ω̃

18
√

3

[
1 −

(
2ω̃

3π

)2]
e4ω̃2/3π2

}
.

(25)

The characteristic pulse profile and spectrum calculated
according to these expressions are shown in Figs. 4(c) and 4(d),
respectively. Results are plotted for Lwave/Lnl = 0.5. Although
this parameter should be small for the perturbation series
analysis to be formally valid, we choose a relatively large value
for it to make the difference between the perturbed [Figs. 4(c)
and 4(d)] and input [Figs. 3(a) and 3(b)] pulse profile and
spectrum more clearly visible in the plots.

We observe in Fig. 4(c) that the field maxima and minima
get delayed in time due to nonlinear self-action, whereas in
linear media and in the absence of dispersion the pulse shape
would be the same as at the input (note that we plot in
the moving-frame coordinates) [cf. Fig. 3(a)]. The overall
shape of the pulse also gets distorted. In the pulse spectrum, the
self-action is evident as the generation of higher frequencies is
visible in Fig. 4(d), whereas in linear media the modulus of the
spectrum would be the same as at the input [cf. Fig. 3(b)]. We
again emphasize that the nonlinear spectral correction vanishes
at the third harmonic of the peak input spectral frequency, and
the maximum of the correction appears at around 
 ≈ 4.5
[see Fig. 4(b)].

C. Field evolution and harmonic generation
for different pulse durations

After revealing the intriguing effect of suppressed third-
harmonic generation for single-cycle optical pulses, we
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FIG. 5. (Color online) (a and c) Field of a Gaussian optical pulse
and (b and c) the corresponding optical spectrum calculated according
to Eqs. (28) and (29), respectively. The normalized pulse duration
τp/T0 is (a and b) 2 and (c and d) 0.3. The Gaussian pulse envelope
is shown by a dashed line in (a).

perform a systematic investigation of the effect of input pulse
duration on generation of optical harmonics. For this purpose,
we consider input pulses with Gaussian envelopes:

E(0)(0,t) = E0 exp
(−t2/τ 2

p

)
sin(ω0t), (26)

where τp is the pulse duration and ω0 is the central frequency.
The pulse spectrum is found as

G(0) (0,ω) =
√

πE0τp

2i

{
exp

[−τ 2
p(ω − ω0)2/4

]
− exp

[−τ 2
p(ω + ω0)2

/
4
]}

. (27)

In normalized units according to Eq. (8), the pulse profile and
spectrum are defined as

Ẽ(0)(0,t̃) = exp

[
−

(
T0 t̃

4τp

)2]
sin

(π

2
t̃
)

, (28)

G̃(0) (0,ω̃) = 2
√

πτp

iT0

{
exp

[
− 4τ 2

p(ω̃ − π/2)2

T 2
0

]

−exp

[
− 4τ 2

p(ω̃ + π/2)2

T 2
0

]}
. (29)

We plot the characteristic pulse profiles and spectra for differ-
ent pulse durations in Fig. 5. For a long pulse containing many
field oscillations under the envelope [Fig. 5(a)], the spectrum
is confined around the central frequency [Fig. 5(b)]. For a
shorter pulse which contains only one strong field oscillation
[Fig. 5(c)], the spectrum is much broader [Fig. 5(d)]. The pulse
profile and spectrum in the latter case are very similar to those
of a single-period pulse considered in the previous section
[cf. Figs. 3(a) and 3(b)]. We also present the pulse profiles and
spectra for a range of durations using density plots in Figs. 6(a)
and 6(b), respectively.
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Next, we determine the nonlinear correction to the pulse profile by substituting Eq. (28) into Eq. (16):

Ẽ(1)(z′,τ ) = exp

(
−3T 2

0 τ 2

16τ 2
p

)
z′

[
3T 2

0 τ

32τ 2
p

sin

(
π

2
τ

)
− π

8
cos

(
π

2
τ

)
− T 2

0 τ

32τ 2
p

sin

(
3π

2
τ

)
+ π

8
cos

(
3π

2
τ

)]
, (30)

and its spectrum is

G̃(1)(z′,ω̃) = −
√

π

3

τp

6T0
z′ω̃ exp(−iω̃z′)

{
3 exp

[
−τ 2

p (2ω̃ − π )2

3T 2
0

]
− 3 exp

[
−τ 2

p (2ω̃ + π )2

3T 2
0

]

− exp

[
−τ 2

p (2ω̃ − 3π )2

3T 2
0

]
+ exp

[
−τ 2

p (2ω̃ + 3π )2

3T 2
0

]}
. (31)

We show the nonlinear corrections to the pulse profile
and spectrum in Figs. 6(c) and 6(d), respectively. We see
that the profile correction [Fig. 6(c)] has a different (even)
symmetry compared to the odd input pulse profile [Fig. 6(a)],
which would lead to the distortion of the pulse profile in
nonlinear medium. The spectral correction has two maxima,
and we show the frequency where the correction completely
vanishes with the white line in Fig. 6(d). We see that, for
a long pulse duration (e.g., τp/T0 = 2), there is no second-
harmonic generation while the third harmonic is generated
efficiently, which fully agrees with the well-known results for
quasimonochromatic pulses. However, as the pulse duration
is reduced, the spectral maximum and minimum get shifted
to higher frequencies. For a pulse duration of τp/T0 ≈ 0.29,
the third-harmonic generation vanishes, and this case corre-
sponds to the situation which was identified in the previous
section.

To confirm our predictions based on analytical perturbation
theory, we perform direct numerical simulations of the model
Eq. (9). We perform a series of simulations for different
input pulse durations and summarize results in Fig. 7. We
choose the propagation distance equal to the nonlinear length,
to check the pulse evolution when nonlinear effects are

FIG. 6. (Color online) (a and b) The Gaussian pulse (a) field and
(b) spectrum vs the normalized duration τp/T0 according to Eqs. (28)
and (29), respectively. (c and d) Nonlinearly induced corrections to the
pulse (c) field and (d) spectrum vs the normalized duration according
to Eqs. (30) and (31), respectively. The white line in (d) marks the
minimum of the spectral correction.

very strong, going beyond the formal applicability of the
perturbation theory. The calculated output pulse field and
spectrum are presented in Figs. 7(a) and 7(b), respectively.
We then find the differences between the output and in-
put profiles and spectra, which are shown in Figs. 7(c)
and 7(d), respectively. We observe that the nonlinearly induced
pulse change predicted analytically [Fig. 6(c)] shows a
very good qualitative agreement with the numerical results
[Fig. 7(c)]. In the spectrum, numerical modeling shows the
generation of higher optical harmonics [Fig. 7(d)], which
occurs due to cascaded nonlinear processes which were
not taken account in the analytical analysis [Fig. 6(d)].
Nevertheless, we find that the key analytical prediction of
harmonic suppression at certain harmonics remains—we mark
those frequencies with the white line in Fig. 7(d), and this
line position closely resembles the analytical dependence in
Fig. 6(d).

The analytical and numerical results presented in this
section demonstrate that harmonic generation very strongly
depends on the pulse duration: on the one hand, higher
harmonics are generated, yet on the other hand the gen-
eration of intermediate harmonics can become completely
suppressed.

FIG. 7. (Color online) Numerical simulation of pulse propagation
for different input durations τp/T0. (a and b) The output pulse
(a) field and (b) spectrum. (c and d) Differences between the output
and input (c) field and (d) spectrum. The white line in (d) marks the
minimum of the spectral correction. Parameters are Lnl = 7 mm and
Ldisp = Ldif = ∞. Propagation distance is z = 7 mm.
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IV. EFFECT OF DISPERSION ON NONLINEAR
PULSE SELF-ACTION

In the previous section, we have analyzed pulse self-action
while under the conditions when the dispersion and diffraction
effects can be neglected. We now consider the effect of
dispersion, while still considering the propagation of wide
beams which exhibit weak diffraction:

Lnl ∼ Ldisp � Ldif. (32)

Under such conditions, the model Eq. (9) can be simplified by
neglecting diffraction:

∂E

∂z
+ 1

Lwave

∂E

∂t
− 1

Ldisp

∂3E

∂t3
+ 1

Lnl
E2 ∂E

∂t
= 0. (33)

This equation is known in the literature as the Korteweg-de
Vries equation, and it was previously derived for the intense
optical pulses propagating in media with Kerr nonlinearity
in the regime of normal group-velocity dispersion in Ref. [47]
and then further analyzed in a number of papers (see the recent
review [13]).

We perform numerical simulations for the case when the
propagation distance is equal to both the nonlinear and disper-
sion lengths, such that nonlinearity and dispersion both play a
strong role. We calculate the dependence of the output field and
spectrum on the input pulse duration, presented in Figs. 8(a)
and 8(b), respectively. We also perform simulations in the
linear regime (taking Lnl = ∞) and calculate a difference
between the nonlinear and linear outputs, which is shown in
Figs. 8(c) and 8(d). Similar to the case of zero dispersion,
we find that the nonlinear spectral correction vanishes for
the second harmonic for long pulses. For shorter pulses, the
zero of spectral correction shifts to higher frequencies, as
marked with the white line in Fig. 8(d). Additionally, there
appear several minima in the spectral correction, and one
such minimum is shown by another white line in Fig. 8(d).
Therefore, the zero of the third harmonic can appear for several

FIG. 8. (Color online) Numerical simulation of pulse propagation
for different input durations τp/T0. (a and b) The output pulse (a)
field and (b) spectrum under the effects of nonlinear self-action and
dispersion, Lnl = Ldisp = 7 mm. (c and d) Nonlinear corrections for
the output (c) field and (d) spectrum calculated as a difference between
results in (a and b) and linear simulations when Lnl = ∞. For all the
plots Ldif = ∞, and the propagation distance is z = 7 mm. The white
lines in (d) mark the minima of the spectral correction.

FIG. 9. (Color online) (a and c) Electric fields and (b and d)
spectra for the case Ldisp = 7 mm, Lnl = 7 mm. (e–h) The nonlinear
correction to the fields and output spectra for the cases Ldisp = 7 mm,
Lnl = 7 mm and Ldisp = 7 mm, Lnl = ∞. (a, b, e, and f) Output
profiles at z = 7 mm. (c, d, g, and h) Density plots showing evolution
along the propagation direction z. For all the plots the input pulse
duration is τp/T0

∼= 0.71.

pulse durations, which is different from the case of zero dis-
persion considered in the previous case when third-harmonic
generation vanishes for one particular value of the pulse
duration. Here, we identify that the third-harmonic component
vanishes, for example, for the normalized input pulse duration
τp/T0 ≈ 0.71. This value is different than in the case of
zero dispersion considered in the previous section due to
dispersion.

We now perform a detailed analysis of harmonic generation
during the propagation of the pulse with duration τp/T0 ≈
0.71. We show the output field and spectrum in Figs. 9(a)
and 9(b) and their evolution along the propagation direction in
Figs. 9(c) and 9(d). We also present the differences between
the nonlinear and linear propagation in Figs. 9(e)–9(h). We
observe a complex pulse transformation due to the combined
effects of dispersion and nonlinearity. We observe that the
third-harmonic generation is at a series of positions along the
propagation direction [see Fig. 9(h)].

Finally, we perform a series of numerical simulations for
varying dispersion length, while keeping other parameters
fixed. The results are presented in Fig. 10. We see that disper-
sion leads to increased pulsed broadening, and the electric-field
profile becomes strongly asymmetric [see Fig. 10(a)]. The
effect of dispersion on harmonic generation is visualized
in Fig. 10(d). We see that as the dispersion is increased
the maximum of spectral nonlinear correction is moved to
lower frequencies. This occurs because dispersion leads to
pulse broadening, and for longer pulses generation of higher
harmonics is less efficient. Another observation is that for the
chosen pulse and nonlinearity parameters the third-harmonic
generation is suppressed for zero dispersion; however, for an
intermediate dispersion value the spectral maximum becomes
centered exactly at the third harmonic. Therefore, an interplay
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FIG. 10. (Color online) Numerical simulation of pulse propa-
gation for different dispersion strengths defined as inverse disper-
sion length L−1

disp. (a and b) The output pulse (a) field and (b)
spectrum under the effects of nonlinear self-action, Lnl = 7 mm.
(c and d) Nonlinear corrections for the output (c) field and (d)
spectrum calculated as a difference between results in (a and b)
and linear simulations when Lnl = ∞. For all the plots Ldif = ∞,
the pulse duration is τp/T0 = 0.3, and the propagation distance is
z = 7 mm.

between dispersion and nonlinearity can offer rich possibilities
to suppress or enhance the generation of particular optical
harmonics by ultrashort pulses.

V. SPATIOTEMPORAL NONLINEAR PULSE DYNAMICS

We now analyze the spatiotemporal pulse dynamics and
harmonic generation under the combined effects of nonlinear-
ity, temporal dispersion, and spatial diffraction. Specifically,
we consider the regime when Ldisp ∼ Ldif ∼ Lnl.

First, we consider the propagation of an ultrashort pulse
when Ldisp = Lnl = Ldif and present characteristic simulation
results in Fig. 11. We observe a strong distortion of the wave
front, which is a signature of spatial self-focusing [see the
field profiles in Figs. 11(c) and 11(e)]. The corresponding
spectra are presented in Figs. 11(d) and 11(f). We observe
that the beam is strongly broadened at low frequencies, which
is a feature of linear diffraction. On the other hand, higher-
harmonic generation occurs on the beam axis, where optical
intensity is the highest. We notice the presence of several peaks
and minima in the higher-harmonic amplitudes, which is due
to the interplay of dispersion and nonlinearity, as we identified
in the previous section. We note that the multipeak spectrum is
a generic feature, which also appeared in previous simulations
for the case of anomalous dispersion [32], whereas in our
analysis we consider normal dispersion.

Next, we analyze the same pulse propagation, but with
increased intensity corresponding to a shorter nonlinear length
of Lnl = 7 mm (see Fig. 12). We see that the self-focusing and
harmonic generation is increased compared to the previous
example in Fig. 11. Interestingly, for an intermediate prop-
agation length the third-harmonic generation is suppressed
[Fig. 12(d)], whereas the third harmonic appears at a longer
distance [Fig. 12(f)]. This is also a feature identified in the
previous section as due to the interplay of dispersion and
nonlinearity.

FIG. 11. (Color online) (a, c, and e) Spatiotemporal evolution
of the electric-field and (b, d, and f) corresponding spatiospectral
profiles of the spectrum modulus at distances (a and b) z = 0,
(c and d) z = 15 mm, and (e and f) z = 30 mm. Input pulse duration
is τp/T0 = 0.3 and the width of the Gaussian transverse profile is
r0 = 8.3λ0. Parameters are Ldisp = Lnl = Ldif = 35 mm.

FIG. 12. (Color online) (a, c, and e) Spatiotemporal evolution of
the electric-field and (b, d, and f) corresponding spatiospectral profiles
of the spectrum modulus at distances (a and b) z = 0, (c and d) z = 4
mm, and (e and f) z = 8 mm. Input pulse duration is τp/T0 = 0.3 and
the width of the Gaussian transverse profile is r0 = 8.3λ0. Parameters
are Ldisp = Ldif = 35 mm and Lnl = 7 mm.
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FIG. 13. (Color online) (a, c, and e) Spatiotemporal evolution
of the electric-field and (b, d, and f) corresponding spatiospectral
profiles of the spectrum modulus at distances (a and b) z = 0,
(c and d) z = 2.5 mm, and (e and f) z = 5 mm. Input pulse duration
is τp/T0 = 1.0 and the width of the Gaussian transverse profile is
r0 = 8.3λ0. Parameters are Ldisp = Ldif = 35 mm and Lnl = 7 mm.

Finally, we perform a comparison with a longer pulse
propagation (see Fig. 13). In this case, the lower frequencies
are essentially absent [see Figs. 13(b), 13(d), and 13(f)].
The higher-harmonic generation naturally occurs at the
beam axis.

VI. CONCLUSION

We have analyzed the effects of weak nonlinearity and
dispersion on the spatiotemporal dynamics of few-cycle opti-
cal pulses, emphasizing the interplay of different competitive
spatial and temporal scales. In particular, we have discussed
nonlinearity-induced self-phase modulation, generation of
higher harmonics by a few-cycle pulse, and the effects of the
beam diffraction. We have demonstrated that in dispersive and
diffractive nonlinear media the nonlinear equations governing
the spatiotemporal propagation of short pulses can be reduced
to the cubic nonlinear Schrödinger equation only in the special
limit of long pulses. Using a general model, we have studied
self-action effects of few-cycle pulses and described, both
analytically and numerically, the pulse self-modulation and
self-focusing, including the transformation of the spectral
density and harmonic generation in the cases of weak and
strong dispersion.
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