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Covariant photon wave mechanics of evanescent fields
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A photon wave mechanical theory describing evanescent electromagnetic fields, as these appear in p-polarized
total internal reflection from a flat dielectric-to-vacuum interface, is presented. In this first-quantized field theory,
the Lorenz gauge four-potential relates to the wave functions of the transverse (T), longitudinal (L), and scalar (S)
photons. For a homogeneous medium, the source domain (rim zone) of the L photons is shown to coincide with the
longitudinal vector-field parts of an electron sheet current density located at the interface. The identical rim zones
of the T and L photons exhibit one-dimensional (1D) exponential confinement with a spatial decay constant equal
to the magnitude of the incident field’s wave vector along the interface plane. The S-photon 1D localization is
complete (has δ-function character). Dynamical equations are established for the L- and S-photon variables in the
wave-vector–time domain. These Hamiltonian-like equations are easily upgraded to the second-quantized level.
The link to the wave mechanics of near-field photons is made. When extended to the quantum electrodynamic
level, the present theory is an alternative to the pioneering Carniglia-Mandel (CM) triplet-photon description. It
is argued that our theory provides one with an improved physical understanding of the basic role of T photons
in evanescent fields. Wave mechanics of evanescent fields give additional insight in the T-photon localizability
problem. The particular difficulties arising for s-polarized external fields are addressed referring to the rim zone
of quantum wells.
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I. INTRODUCTION

The evanescent field concept originates in a particular mode
representation of the spatial part of a monochromatic (ω) free
electromagnetic field. An introduction to this so-called angular
spectrum representation can be found in various books, e.g., in
[1–4]. The concept may easily be extended to media regarding
which linear optical properties, to a good approximation,
can be characterized by a real dielectric constant, ε(ω).
This is not surprising since such ideal model media electro-
magnetically behave like a vacuum, just with renormalized
speed of light, c/ε1/2(ω). In the angular spectrum repre-
sentation, a two-dimensional plane-wave (wave vector q‖)
expansion of the field is made, and the resulting spatial
mode spectrum consists of waves that propagate without
damping [q‖ < (ω/c)ε1/2(ω)] and decay exponentially [q‖ >

(ω/c)ε1/2(ω)] perpendicular to the plane spanned by the q‖
vectors. The last type are known as evanescent waves. Over
the years evanescent fields have proved their importance in
studies of, e.g., (i) diffraction, image formation, and spatial
resolution problems in classical optics; (ii) propagation of elec-
tromagnetic surface and interface waves; (iii) surface-dipole
interactions; (iv) phase conjugation; (v) spatial dispersion;
(vi) total internal reflection; and (vii) optical tunneling. In re-
cent years, numerous studies in the fields broadly characterized
as near-field optics, nano-optics, and plasmonics, have invoked
the evanescent field concept in one way or another. Many
references to the above-mentioned applications of evanescent
fields can be found in [1–6]. Readers interested in the history
of optics may notice that evanescent fields have played a
prominent role in the development of near-field optics [7] and
optical tunneling [8,9]. The earliest known observation of light
tunneling (between two glass prisms) is due to Newton [10].

Evanescent fields are perhaps most familiar in connection
to total internal reflection (TIR) of light at a dielectric-to-
vacuum interface, and it is this configuration which will be in

focus in our covariant photon wave mechanical description.
The first quantitative experimental studies were carried out
by Quincke in 1866 [11] and Hall in 1902 [12]. Although
quantum electrodynamics entered physics in the period 1925–
1927 [13,14], in all theoretical studies of evanescent fields up
to 1971 the electromagnetic field was treated as a classical
quantity. In that year, Carniglia and Mandel [15] presented for
the TIR configuration a quantization scheme for fields having
evanescent parts. Related work was published by Agarwal [16]
in 1975. Today, the pioneering work of Carniglia and Mandel
stands as the theory for quantization of evanescent fields.

Notwithstanding the pioneering status of the Carniglia-
Mandel paper, it appears that it leaves us with a number
of unanswered physical questions and that the scheme used
may not easily (cannot, perhaps) be generalized beyond its
present scope. Furthermore, the Carniglia-Mandel approach
has apparently not been applied in studies in near-field
optics, nano-optics, and plasmonics, despite the fact that
quantum optical experiments start to emerge in these rapidly
evolving fields. The reason for this might be due to the rather
complicated expressions one reaches for important quantities
using their approach.

Partly motivated by recent developments in the theory
of covariant photon wave mechanics (based on the four-
vector potential) and this theory’s extension to the quantum
electrodynamic level, and the insight these developments have
given us in fundamental near-field electrodynamics [4,17],
we here present a covariant photon wave mechanical (first-
quantized) description of the evanescent field in the TIR
configuration. In a forthcoming paper the theory’s extension
to the second-quantized level is established. It seems that
the covariant quantization scheme for evanescent fields also
provides us with a better understanding of the tunneling
process for single-photon wave packets, as this appears in the
frustrated total internal reflection (FTIR) configuration [17].
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Furthermore, the scheme is quite easily brought in contact
with single-photon tunneling studied on the basis of a Green’s
function formalism for the transverse and longitudinal parts of
the electric field [18]. The fundamental difference between the
Carniglia-Mandel (CM) theory and ours can be highlighted by
the following three [I-III] introductory remarks.

(I) In the CM approach, the medium has a space-
independent (bulk) refractive index, n(r) = n0, and the authors
claim that therefore there are no sources for the photons in
the medium half space, and that the electromagnetic field
hence effectively is a free field. Although we also adopt the
n(r) = n0 approximation, we show that there always is an
electronic source present but that it is located in the interface
(surface) region. Since the thickness of this interface layer
is much smaller than relevant optical wavelengths, it appears
that the entire TIR problem becomes equivalent to a much
simpler problem in which the incident field excites a current
density sheet (located at the interface). Subsequently, the sheet
current gives rise to the emergence of the reflected evanescent
field. We can go beyond the n(r) = n0 model and treat inho-
mogeneous media, because the covariant approach operates
with transverse (T, two types), longitudinal (L), and scalar (S)
photons. The L and S photons are only present if the refractive
index is space dependent, and they always are source-attached
photons (virtual in a certain sense). In our approach the
Carniglia-Mandel triplet-photon picture is not used.

(II) Within the framework of the triplet-photon model,
Carniglia and Mandel establish [what they themselves (and
we) characterize as] rather complicated expressions for the
electric field commutator at two space-time points in the
vacuum half space, in usual notation [Ê(r,t),Ê(r′,t ′)]. They
find that the term in the commutator which refers to evanescent
waves is nonzero off the light cone connecting two events at
r,t and r′,t ′. Carniglia and Mandel claim that this spacelike
lack of Einsteinian causality originates in the fact that the
frequency dependence of the dielectric constant in the region
of anomalous dispersion was neglected. It is correct that
neglect of the Hilbert transform coupling between the real
and imaginary parts of ε(ω) in itself will break the strict
Einsteinian causality, but we do not believe that this fact is the
main reason for the appearance of spacelike coupling in the
evanescent tail. As argued previously on general grounds [4]
and discussed for evanescent fields in Secs. II C and III A,
the spacelike coupling appearing in the analysis of evanescent
fields originates in the inability to localize transverse photons
beyond the spatial extension of the longitudinal part of the
sheet current density. No break of Einsteinian causality is
associated with this interpretation [4,17].

(III) In part VII of the CM paper, Mandel’s earlier-
introduced configuration-space photon absorption operator
V̂(r,t) [19] is extended to cover the triplet mode case. In the
Mandel theory, the integral of V̂†(r,t) · V̂(r,t) over a finite
volume (V ) of linear dimensions, large compared with the
wavelengths of all modes contributing to V̂(r,t), is given
physical significance, representing the configuration-space
photon number operator for the volume V . In the case of
evanescent fields, where the tail field often is much smaller
than the typical wavelengths, the Mandel theory is insufficient
for a fundamental understanding in our opinion. In fact, this
insufficiency already appears indirectly from the conclusion

of the CM paper. Thus, after having obtained the integral
of V̂†(r,t) · V̂(r,t) over V , Carniglia and Mandel conclude
that this (cit.) “integral over a finite volume is less readily
interpreted.” In our fundamental four-potential description of
evanescent fields, this kind of T-photon localization problem
does not appear (cf. [4]).

After a brief review of the standard theory of p-polarized
TIR, supplemented by a calculation and discussion of the trans-
verse and longitudinal parts of the transmitted electric field
and the associated parts of the field momentum (densities),
we determine the source domain (rim zone) of the T photons,
starting from the microscopic Maxwell-Lorentz equations. The
photon wave mechanical description of evanescent fields in the
Lorenz gauge is established next. Special emphasis is devoted
to an analysis of the scalar and longitudinal photon dynamics,
and dynamical equations are set up for these two photon types
in the wave-vector−time domain. The Hamiltonian form of
these equations readily allows one to extend the approach
to the second-quantized level. Previously, one of the present
authors (O.K.) has introduced a near-field photon concept [20].
We establish the dynamical equation for the near-field photon
variable and show that a divergence, present in the T and L
dynamics when the photon wave number coincides with the
vacuum wave number ω/c, disappears in the near-field photon
description. Finally, remarks on the s-polarized case are given
on the basis of a quantum-well picture of the surface response.

II. EVANESCENT FIELDS: TRANSVERSE
AND LONGITUDINAL ELECTRODYNAMICS

A. Total internal reflection of p-polarized light

We begin with a summary of some key formulas describing
the total internal reflection of a monochromatic plane elec-
tromagnetic wave from a flat interface between the vacuum
and a homogeneous medium with a real relative dielectric
constant ε (>1). Although assuming that ε is real and the
medium homogeneous are approximations, these will do for
our purposes. We focus on the case where the electric fields
are polarized in the scattering plane (p polarization), which we
take as the xz plane in a Cartesian coordinate system where
the z axis is directed perpendicular to the interface. Remarks
on the s-polarized case are given in Sec. IV. The scattering
geometry (wave-vector diagram) is shown in Fig. 1 for an
angle of incidence larger than the critical angle. In complex
notation all fields have the common form

F (r,t) = F (z; q‖,ω)ei(q‖·r−ωt), (1)

where ω and q‖ are the angular frequency and the vectorial
wave-vector component parallel (‖) to the interface. It is the
system’s translational invariance along the boundary plane
which makes q‖ common to all the fields. The z dependence
of the incident (i) and reflected (r) electric fields are given by

Ei(z; q‖,ω) = E0
i (q‖,ω)eiq⊥z, (2)

Er (z; q‖,ω) = E0
r (q‖,ω)e−iq⊥z, (3)

where

q⊥ =
[(

ω

c

)2

ε − q2
‖

] 1
2

(4)
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FIG. 1. Wave-vector diagram in TIR. The wave vectors of the
incident (qi) and reflected (qr ) homogeneous waves are real, have
equal components (q‖ex) parallel to the interface plane (xy plane,
here), and the same magnitude (|qi | = |qr |). The wave vector of the
transmitted inhomogeneous wave is complex, with a real part (q‖ex)
along the interface and an imaginary part (κ0

⊥ez) normal to it. In TIR,
ω/c < q‖ < (ω/c)ε1/2.

is the component of the incident wave vector perpendicular
(⊥) to the interface, c being the speed of light in vacuum. The
z dependence of the transmitted (t) electric field has the form

Et (z; q‖,ω) = E0
t (q‖,ω)eiq0

⊥z, (5)

q0
⊥ =

[(
ω

c

)2

− q2
‖

] 1
2

(6)

being the z component of the wave vector of the transmitted
field.

To determine the vectorial amplitudes of the reflected (E0
r )

and transmitted (E0
t ) fields for a given incident field amplitude

(E0
i ) one needs an appropriate set of boundary conditions. In

general, microscopic surface current and charge densities are
created in the scattering process and the choice of “correct”
boundary conditions requires a study of a complicated self-
consistency problem [21,22]. For the present purpose (where
ε is assumed to be real), we may assume that the surface is
passive and hence use the standard boundary conditions for
nonmagnetic media: the electric and magnetic fields parallel
to the surface are continuous. With the sign convention
indicated in Fig. 2, these conditions give E0

i,x + E0
r,x = E0

t,x

and (E0
i,x − E0

r,x)ε = (q⊥/q0
⊥)E0

t,x , respectively. In obtaining
the last relation the Maxwell equation B = (iω)−1∇ × E was
used to eliminate B in favor of E. By eliminating E0

r,x between
these equations, one obtains E0

t,x = [2εq0
⊥/(q⊥ + εq0

⊥)]E0
i,x ,

and with E0
t,z = (−q‖/q0

⊥)E0
t,x the transmitted electric field

becomes

Et (x,z; ω) = 2ε

q⊥ + εq0
⊥

(q0
⊥ex − q‖ez)E

0
i,xe

i(q‖x+q0
⊥z) (7)

in the space-frequency domain. The quantity E0
i,x is the x

component of E0
i . Unit vectors along the Cartesian axes

are denoted by eα , α = x,y,z. Using the Maxwell equation
∇ × E = iωB, the transmitted magnetic field (Bt ) is readily

FIG. 2. Diagram indicating the linear polarization states of the
incident (Ei) and reflected (Er ) electric fields and the clockwise
elliptical polarization of the transmitted electric field (Et ) in TIR.
The polarization states are normalized so that they have the same
z component, q‖ [corresponding to a π/2 rotation of the related
(complex) wave vectors].

determined from Eq. (7). Thus,

Bt (x,z; ω) = 2εωc−2

q⊥ + εq0
⊥

eyE
0
i,xe

i(q‖x+q0
⊥z). (8)

Being interested in understanding the role of the photons in
evanescent fields, we turn our attention towards angles of
incidence above the critical angle where q‖ > ω/c [and, of
course, q‖ < (ω/c)ε1/2]. In the evanescent regime the trans-
mitted wave becomes inhomogeneous (Fig. 1): it propagates
without damping along the surface and decays exponentially
away from the surface. The complex wave vector thus is given
by q‖ex + iκ0

⊥ez, where

κ0
⊥ =

[
q2

‖ −
(

ω

c

)2] 1
2

(9)

is the decay constant in the z direction (κ0
⊥ > 0). The

evanescent fields are obtained by making the substitution
q0

⊥ → iκ0
⊥ in Eqs. (7) and (8). Hence,

Et (x,z; ω) = 2ε

q⊥ + iεκ0
⊥

(iκ0
⊥ex − q‖ez)E

0
i,xe

iq‖xe−κ0
⊥z, (10)

Bt (x,z; ω) = 2εωc−2

q⊥ + iεκ0
⊥

eyE
0
i,xe

iq‖xe−κ0
⊥z. (11)

As indicated in Fig. 2, the transmitted electric field is
elliptically polarized. The reader may recall [or prove by
means of Eqs. (10) and (11)] that the z component of the
cycle-averaged (〈· · ·〉) transmitted Poynting vector St vanishes
in the evanescent regime, i.e.,

ez·〈St 〉(z; q‖,ω) = 1

2μ0
ez · Re[Et (x,z; ω) × B∗

t (x,z; ω)] = 0,

q‖ >
ω

c
, (12)
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where Re means the real part of the subsequent quantity.
Therefore, in the evanescent tail there is no net energy flow
perpendicular to the surface.

B. Transverse and longitudinal fields

It is known that classical electrodynamics can be refor-
mulated in such a manner that it appears as a first-quantized
theory for photons [23,24]. When reinterpreted properly, the
Maxwell-Lorentz theory is called photon wave mechanics,
and upon second quantization one obtains the standard theory
for photons [4,7,23,24]. We consequently expect that traces
of photon dynamics in evanescent fields may emerge upon a
deeper analysis of the standard theory for TIR.

In a sense the photon concept belongs to free space, and the
light quanta here are called transverse photons (T photons).
In the evanescent tail there is no (charged) matter, and at
first sight one might expect the presence of free T photons
here. Although this expectation turns out to be incorrect, let
us see where it leads to. T photons always belong solely
to the divergence-free (here called transverse) part of the
electromagnetic field and they therefore propagate with the
vacuum speed of light [4]. The electric field in Eq. (10) has
both divergence-free [transverse (T)] [ET

t ] and rotational-free
[longitudinal (L)] [EL

t ] parts. The longitudinal part of Et is
obtained letting c → ∞, formally [4]. Hence,

EL
t (x,z; ω) = Et (x,z; ω|c → ∞)

= 2ε

1 + ε
(ex + iez)E

0
i,xe

q‖(ix−z). (13)

From the Maxwell equation ∇ · B = 0, one knows that the
magnetic field never has a longitudinal part. [It also follows
immediately from Eq. (11) that Bt (x,z; ω|c → ∞) = 0, as
required.] In Sec. II C, we shall comment upon the macroscopic
result in Eq. (13). The transverse part of the evanescent electric
field is obtained by subtraction:

ET
t (x,z; ω) = Et (x,z; ω) − EL

t (x,z; ω). (14)

Let us now consider the momentum density gt of the total
electromagnetic field [25] in the vacuum half space. Its cycle-
averaged value, which is given by

〈gt 〉(z; q‖,ω) = ε0

2
Re[Et (x,z; ω) × B∗

t (x,z; ω)], (15)

equals the corresponding Poynting vector divided by c2. The
division of Et into its T and L parts splits 〈gt 〉 into

〈gt 〉(z; q‖,ω) = 〈
gT T

t

〉
(z; q‖,ω) + 〈

gLT
t

〉
(z; q‖,ω), (16)

where〈
gT T

t

〉
(z; q‖,ω) = ε0

2
Re

[
ET

t (x,z; ω) × B∗
t (x,z; ω)

]
(17)

and〈
gLT

t

〉
(z; q‖,ω) = ε0

2
Re

[
EL

t (x,z; ω) × B∗
t (x,z; ω)

]
. (18)

The superscripts T T and LT refer to the vector-field character
of the electric and magnetic fields entering the cross-products.
The integral of gT T

t (r,t) over the vacuum domain relates to
the momentum of the transmitted transverse field [25]. By

FIG. 3. Top: Cycle-averaged momentum densities in TIR. Bot-
tom: Vectorial components of the T T and LT parts of 〈gt 〉. The
oppositely directed z components have the same magnitude. The
transmitted longitudinal electric field (EL

t ) lies in the scattering plane
and is clockwise circular polarized, as indicated.

inserting Eq. (15) into Eq. (12) it appears that

ez · 〈gt 〉(z; q‖,ω) = 0, q‖ >
ω

c
, (19)

in the evanescent regime. This implies that

ez · 〈
gLT

t

〉
(z; q‖,ω) = −ez · 〈

gT T
t

〉
(z; q‖,ω)

= 2ε0ε
2ω

c2(1 + ε)

q⊥
q2

⊥ + (εκ0
⊥)2

∣∣E0
i,x

∣∣2
e−(q‖+κ0

⊥)z,

(20)

where the last expression is obtained by inserting Eqs. (11)
and (13) into Eq. (18). A schematic illustration of the various
cycle-averaged momentum densities is shown in Fig. 3. The
integral ∫ ∞

0
ez · 〈

gT T
t

〉
(z; q‖,ω)dz

= − 2ε0ε
2ω

c2(1 + ε)

q⊥
∣∣E0

i,x

∣∣2

[q2
⊥ + (εκ0

⊥)2](q‖ + κ0
⊥)

(21)

indicates that the transverse field even in the evanescent
regime (q‖ > ω/c) possesses a nonvanishing momentum in
the direction perpendicular to the surface. From the point of
view of T photons, this result is interesting. Naively, one might
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expect a transmitted T photon once generated will escape from
the surface into the vacuum half space, even if the vacuum field
is evanescent. Furthermore, one might perhaps anticipate that
a monochromatic (nonlocalized) photon’s momentum density
would be constant in space. The results in Eqs. (20) and (21)
do not live up to these expectations. Although at least the
time-averaged transverse momentum is space independent, its
z component has the “wrong” sign. (The z component of the
momentum is directed towards the surface, not away from it.)
So if one insists that T photons exist in the evanescent field,
how can they be pulled towards the surface when there is no
current density (from charged particles) in the vacuum? This
is the question to be studied in the next subsection.

C. Rim zone: Source domain of T photons

To address the question above, we generalize the frame-
work for our treatment from macroscopic to microscopic
classical electrodynamics. In the microscopic approach the
electromagnetic field satisfies the Maxwell-Lorentz equations,
and in these the role of matter enters via the microscopic
charge [ρ(r,t)] and current [J(r,t)] densities [25,26]. The
source domain of the divergence-free (called transverse in
what follows) part of the electric field ET (r,t) is known to
be the region in space where the transverse part of the current
density is nonvanishing [4]. Without losing the central point
of the argumentation, we may assume that the microscopic
current density exhibits infinitesimal translation invariance
along the surface plane, i.e., has the form given in Eq. (1)
for monochromatic excitations. The division of a vector field
with the spatial form given in Eq. (1) into its transverse and
longitudinal parts is obtained on the basis of a proper split of
F(z; q‖,ω), namely,

F(z; q‖,ω) = FT (z; q‖,ω) + FL(z; q‖,ω), (22)

where

FK (z; q‖,ω) =
∫ ∞

−∞
δK (z − z′; q‖) · F(z′; q‖,ω)dz′,

K = T ,L, (23)

δK being the transverse (K = T ) and longitudinal (K = L)
δ functions in disk contraction. The sum of the two dyadic δ

functions equals the Dirac δ function multiplied by the 3 × 3
unit tensor (U), that is,

δL(z − z′; q‖) + δT (z − z′; q‖) = Uδ(z − z′). (24)

With q‖ = q‖ex the explicit expression for the longitudinal
delta function is given by [18]

δL(z − z′; q‖ex) = ezezδ(z − z′) + q‖
2

e−q‖|z−z′ |[exex − ezez

+ i(exez + ezex)sgn(z − z′)], (25)

where sgn(z − z′) = +1 for z > z′ and −1 for z < z′. The
expression for δT is obtained by combining Eqs. (24) and
(25). Given the explicit expressions for δK (K = T ,L), the T
and L parts of the microscopic current density are determined
by the spatially nonlocal connection

JK (z; q‖ex,ω) =
∫ ∞

−∞
δK (z − z′; q‖ex) · J(z′; q‖,ω)dz′. (26)

Let us assume that the current density is confined to the half
space z′ < 0, i.e.,

J(z′; q‖ex,ω) ≡ J(z′) = JB(z′)θ (−z′), (27)

where θ is the Heaviside unit step function, and JB(z′) may be
called the bulk (B) current density. With the (model) current
density in Eq. (27), the longitudinal and transverse parts of
J(z) are given by [leaving the reference to q‖ and ω implicit]

JL(z) = −JT (z) = q‖
2

e−q‖z(ex + iez)(ex + iez)

·
∫ 0

−∞
JB(z′)eq‖z′

dz′, z > 0 (28)

in the vacuum half space (Fig. 4, upper part). Although the total
current density J(z) [Eq. (27)] is zero in the vacuum (of course),
its T and L parts do not vanish here because of the spatial
nonlocality in the connection between JK and J. The region
outside matter where JL = −JT �= 0 has been called the rim
zone [20], and here its extension is given by exp(−q‖z) [see
Eq. (28)].

It follows from the considerations above that the source
domain for the transverse part of the electromagnetic field,
and thus also for the T photons [see Sec. III A], extends into
the vacuum half space. We can elaborate on this point by
considering the longitudinal part of the microscopic electric
field EL(z). It appears from the Maxwell-Lorentz equations

FIG. 4. Top: In our model of p-polarized TIR, the bulk current
density is divergence free (J = JT ). In the vacuum half space,
JT + JL = J = 0. The T-photon source domain is exponentially
[∼ exp(−iq‖z)] confined, as indicated. Bottom: Exponentially con-
fined source domain (∼|JL|) of T photons originating in a current
density sheet located at z = 0.
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that one always has

EL(z; q‖,ω) = (iε0ω)−1JL(z; q‖,ω). (29)

The presence of a longitudinal electric field in the rim zone
thus means that the T photons are not free in this zone.
The longitudinal electric field originates in the instantaneous
Coulomb interaction between charges, and this field appears in
the Coulomb gauge formulation of the quantum theory solely
via the dynamical particle variables [4,25].

By combining Eqs. (28) and (29), it follows that the
longitudinal electric field in the vacuum half space (z > 0),
EL(z; q‖,ω) ≡ EL

t (z; q‖,ω) ≡ EL
t (z), is given by

EL
t (z) = q‖

2iε0ω
e−q‖z(ex + iez)(ex + iez)

·
∫ 0

−∞
JB(z′)eq‖z′

dz′. (30)

A comparison of Eqs. (13) and (30) [multiplied by exp(iq‖x)]
shows that the field in both cases has the form

EL
t (x,z,ω) = A(ex + iez)e

q‖(ix−z). (31)

We cannot expect, on the basis of the different frameworks
used, that the amplitude A is the same in the macroscopic
and microscopic approaches. We may conclude, however, that
the perhaps surprising result obtained for the transverse-field
(T-photon) momentum in Sec. II B can be traced back to the
rim-zone coupling between the T field and matter. In reaching
the result in Eq. (13), it was assumed that the macroscopic
medium was homogeneous. Homogeneity implies that the
source region for the T field is not the entire half space
z < 0 plus the rim zone, as one might believe. To illustrate the
consequence of homogeneity, let us return to the microscopic
result in Eq. (30). As it stands, it seems that that the
amplitude of EL(z) contains contributions related to JB(z) in
the entire half space z′ < 0. However, if one assumes that the
medium, even in the microscopic sense, is (approximately)
homogeneous, the current density induced by Ei + Er in the
p-polarized case necessarily must be divergence free, that is,

iq‖JB,x(z) + d

dz
JB,z(z) = 0. (32)

Here the reader may recall that Gauss’ law in the microscopic
Maxwell-Lorentz equations is ∇ · E = ρ/ε0, where ρ is
the microscopic charge density [4,25,26]. The condition in
Eq. (32) allows one to simplify the expression for EL

t . A partial
integration of the term containing JB,z(z′) in the first member
of the equation below thus gives

EL
t (z) = q‖

2iε0ω
e−q‖z(ex + iez)

×
∫ 0

−∞
(JB,x(z′) + iJB,z(z

′))eq‖z′
dz′

= 1

2ε0ω
e−q‖z(ex + iez)

{
JB,z(0)

−
∫ 0

−∞

[
iq‖JB,x(z′) + d

dz′ JB,z(z
′)
]
eq‖z′

dz′
}
. (33)

The integral in Eq. (33) vanishes because of Eq. (32). From
our final expression for EL

t , viz.,

EL
t (z) = JB,z(0)

2ε0ω
e−q‖z(ex + iez), z > 0, (34)

it thus appears that the longitudinal field in the rim zone has
the bulk current density at the interface JB,z(0) as source. The
longitudinal electric field in the entire space is given by [18]

EL(z) = JB,z(0)

2ε0ω
e−q‖|z|[ex + iez sgn(z)] (35)

in the homogeneous case, as the reader may show by
combining Eqs. (25)–(27), and remembering the presence of
the contact term ezezδ(z − z′) for z < 0. Note that circular
polarization directions of EL(z) are opposite in the two half
spaces. It thus appears from Eqs. (25), (26), (29), and (35) that
the rim zone is that of a current density sheet located at z = 0.
See also Fig. 4, lower part.

III. PHOTON WAVE MECHANICS
IN EVANESCENT FIELDS

A proper reinterpretation of the microscopic Maxwell-
Lorentz equations allows one to consider these as a wave me-
chanical (first-quantized) theory for photons. In the covariant
description, three types of photons appear, viz., transverse (T),
longitudinal (L), and scalar (S) photons. The wave functions of
these photons species relate to the transverse, longitudinal, and
scalar parts of the four-potential. From a fundamental point of
view, the covariant photon theory has a number of advantages
compared the other first-quantized theories [17], and below we
shall see how the theory may deepen our understanding of the
physics of evanescent fields. In Part III, references to T, L, and
S fields are moved from superscripts to subscripts.

A. Evanescent four-potential in the Lorenz gauge

The potential formulation of the Maxwell-Lorentz theory
takes a particularly simple form in the Lorenz gauge [4,25], and
for vectors of the form given in Eq. (1), the components (μ =
0 − 3) of the (covariant) four-current density {Jμ(z; q‖,ω)} ≡
{Jμ(z)} and the (covariant) four-potential {Aμ(z; q‖,ω)} ≡
{Aμ(z)} are connected by the integral relation

Aμ(z) = μ0

∫ ∞

−∞
g(z − z′)Jμ(z′)dz′, (36)

where

g(z − z′) = i

2q0
⊥

eiq0
⊥|z−z′| → 1

2κ0
⊥

e−κ0
⊥|z−z′ | (37)

is the scalar (Huygens) propagator. The expression after the
arrow gives the form of g(z − z′) in the evanescent (q0

⊥ → iκ0
⊥)

regime. In the absence of a current density, the net effect
of the longitudinal and scalar photons vanishes, whereas the
transverse photon can “exist” in free space. The L- and S-
photon dynamics is closely connected to the physics in the rim
zone, and let us therefore first consider the related vector and
scalar potentials.
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The longitudinal vector potential [AL(z)], which satisfies
the integral relation

AL(z) = μ0

∫ ∞

−∞
g(z − z′)JL(z′)dz′, (38)

can be determined from a knowledge of the longitudinal
current density distribution [JL(z)]. From Eqs. (29) and (35) it
appears that

JL(z) = i

2
JB,z(0)e−q‖|z|[ex + iez sgn(z)]. (39)

In the evanescent (q‖ > ω/c) region, we hence have

AL(z)= iμ0

4κ0
⊥

JB,z(0)
∫ ∞

−∞
e−κ0

⊥|z−z′ |e−q‖|z′|[ex + iez sgn(z′)]dz′.

(40)

Although a bit tedious, it is a straightforward matter to
calculate the integral for all z. The final result can be written
as follows:

AL(z) = iμ0

2κ0
⊥

JB,z(0)[θ (z)I>(z) + θ (−z)I<(z)], (41)

where [with q0 = ω/c, κ0
⊥ = (q2

‖ − q2
0 )1/2]

I>(z) = q−2
0

[
(q‖ex + iκ0

⊥ez)e
−κ0

⊥z − κ0
⊥(ex + iez)e

−q‖z
]
(42)

and

I<(z) = q−2
0

[
(q‖ex − iκ0

⊥ez)e
κ0

⊥z − κ0
⊥(ex − iez)e

q‖z
]
. (43)

In a manner to be described in Sec. III B, the longitudinal
vector potential AL(z) exp[i(q‖ · r − ωt)] relates to the spatial
spectrum of longitudinal photons at a given frequency (ω). The
longitudinal current density distribution is the source of the L
photons, and it appears from Eq. (39) that JL(z) decays expo-
nentially away from the surface (z = 0) plane to both sides, the
decay constant being q‖. The expressions for I>(z) and I<(z),
given in Eqs. (42) and (43), tell us that also the longitudinal
vector potential AL(z) decreases with the distance from the
z = 0 plane. The falloff is characterized by a superposition
of two exponential functions exp(−q‖|z|) and exp(−κ0

⊥|z|).
The polarization states of the two contributions are circular
(ex ± iez) and elliptical (q‖ex ± iκ0

⊥ez), respectively, and the
rotation directions are opposite in the two half spaces. Let us
denote the part of AL(z) which relates to the exp(−q‖|z|) term
by AL(z; [q‖]) and the remaining part by AL(z; [κ0

⊥]), i.e.,

AL(z) = AL(z; [q‖]) + AL(z; [κ0
⊥]). (44)

A comparison of Eqs. (39) and (41)–(43) now shows that

iωAL(z; [q‖]) = (iε0ω)−1JL(z) = EL(z), (45)

the last member coming from Eq. (29).
In order to understand the reason behind the simple

connection in Eq. (45), we first calculate the scalar part of the
four-potential, A0(z; q‖,ω) ≡ A0(z). It appears from Eq. (36)
[for μ = 0] that

A0(z) = μ0

∫ ∞

−∞
g(z − z′)J0(z′)dz′. (46)

Remembering that J0(z) = cρ(z), where ρ(z) ≡ ρ(z; q‖,ω) is
the charge density, it is easy to obtain the scalar potential. The
charge density is calculated from the equation of continuity,
which here amounts to

iωρ(z) =
(

iq‖ + ez

d

dz

)
· [JB(z)θ (−z)], (47)

since the current density is confined to the half plane z < 0
[see Eq. (27)]. For our divergence-free bulk current density,
Eq. (47) leads to

ρ(z) = i

ω
JB,z(0)δ(z) (48)

in view of Eq. (32), and because dθ (−z)/dz = −δ(z). The only
present charge hence is a surface charge, with a singular density
given by Eq. (48). The source of the S photon, therefore,
is confined to the surface plane. By inserting Eq. (48) into
Eq. (46), and using the explicit form of the scalar propagator,
one finds the following result for the scalar potential in the
evanescent regime:

A0(z) = iμ0

2κ0
⊥q0

JB,z(0)
[
θ (z)e−κ0

⊥z + θ (−z)eκ0
⊥z

]
. (49)

The result in Eq. (45) now can be explained. From the
general relation between the longitudinal electric field and the
four-potential, namely,

EL(r,t) = − ∂

∂t
AL(r,t) − c∇A0(r,t), (50)

one obtains the connection

EL(z) = iωAL(z) − c

(
iq‖ex + ez

d

dz

)
A0(z). (51)

By inserting here the expressions for AL(z) [Eqs. (41)–(43)]
and A0(z) [Eq. (49)], it appears that

EL(z) = iωAL(z; [q‖]). (52)

The circular polarized contribution, which decays according
to exp(−q‖|z|), thus relates to the longitudinal electric field in
the rim zone. Furthermore, light can be thrown on this result
by studying the regime (q‖ > q0). The longitudinal and scalar
potentials in this regime are readily written down by making
the substitution κ0

⊥ → −iq0
⊥ in Eqs. (41)–(43) and Eq. (49).

The nonpropagating part

AL(z; [q‖]) = − i

2ε0ω2
JB,z(0)[θ (z)(ex + iez)e

−q‖z

+ θ (−z)(ex − iez)e
q‖z] (53)

is unchanged by the substitution, and the propagating parts
AL(z; [κ0

⊥ → −iq0
⊥]) and A0(z; [κ0

⊥ → −iq0
⊥]), which both

propagate to infinity (±∞), together give no longitudinal
electric field outside the rim zone. This cancellation of course
also occurs in the evanescent regime. A schematic illustration
of the results obtained for the L and S potentials is presented
in Figs. 5 and 6.

The transverse vector potential is given generally by

AT (z) = μ0

∫ ∞

−∞
g(z − z′)JT (z′)dz′, (54)
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FIG. 5. Schematic illustration showing that the sheet fields
AL(z; [κ0

⊥]) and A0(z) have the same spatial decay constant (κ0
⊥).

The decay constant (q‖) for AL(z; [q‖]) is larger. The elliptical
polarizations of AL(z; [κ0

⊥]) and Et (z), and the circular polarization
of AL(z; [q‖]), in the two half spaces (z < 0, z > 0), are indicated in
the lower part of the figure.

and in the vacuum half space this gives in the evanescent
regime

AT (z) = μ0

2κ0
⊥

e−κ0
⊥z

∫ 0

−∞
eκ0

⊥z′
JB(z′)dz′ − AL(z). (55)

Outside the rim zone, where EL(z) = 0, one obtains

AT (z) = (iω)−1E(z), (56)

and for current densities with finite support in space-time the
T photons related to AT are free once the source has stopped
its activity.

B. Scalar-photon dynamics

In the covariant theory of photon wave mechanics, the
dynamical variable of the scalar photon is identical to the

FIG. 6. Using a normalization constant N = μ0|JB,z(0)|/(q2
0

√
2),

the quantities |AL(z; [q‖])|/N = exp(−mq0|z|) [full line], and√
2|A0(z)|/N = (m2 − 1)−1/2 exp[−(m2 − 1)1/2q0|z|] [dashed line]

are plotted as a function of q0z for two values of m = q‖/q0.

positive-frequency part of the scalar potential [4], properly
normalized. In the present context the S-photon dynamical
variable is given by

A0(r,t) = A0(z)ei(Q‖x−ωt), (57)

where

A0(z) = iμ0

2κ0
⊥q0

JB,z(0)e−κ0
⊥|z|. (58)

For notational uniformity (see below), we have made the
replacement q‖ → Q‖. To go from the space representation
above to the wave-vector (∼momentum) representation, we
need the Fourier-integral transform of A0(z), viz.,

A0(Q⊥) =
∫ ∞

−∞
A0(z)e−iQ⊥zdz = iμ0JB,z(0)

q0[Q2
⊥ + (κ0

⊥)2]
. (59)

Introducing the wave number

Q = (Q2
‖ + Q2

⊥)
1
2 (60)

belonging to the plane-wave mode exp[i(Q‖x + Q⊥z)], the
scalar photon variable takes the form

A0(Q; t) = iμ0JB,z(0)

q0
(
Q2 − q2

0

)e−iωt (61)

in the wave-vector representation. The expression for A0(Q; t)
can be rewritten in a useful manner which relates to the Fourier-
integral transform of the sheet charge density in Eq. (48),
namely,

ρ(Q⊥) =
∫ ∞

−∞
ρ(z)e−iQ⊥zdz = i

ω
JB,z(0) ≡ ρ̃, (62)

a wave-number (Q⊥) independent quantity. In terms of the
associated current density

J0 = cρ̃, (63)

we finally obtain

A0(Q; t) = μ0J0

Q2 − q2
0

e−iωt . (64)

The scalar photon variable in Eq. (64) satisfies the dynamical
equation(

cQ − i
∂

∂t

)
A0(Q; t) = J0

ε0(ω + cQ)
e−iωt . (65)

In free space (J0 = 0), Eq. (65), after multiplication by
Planck’s constant (divided by 2π ) h̄, is reduced to the quantum-
mechanical-wave equation for the scalar photon, written in
Hamiltonian form, namely,

ĤA0(Q; t) = ih̄
∂

∂t
A0(q; t), (66)

where Ĥ = ch̄Q is the Hamilton operator in the wave-vector
(Q) representation. The results in Eq. (65) are in agreement
with the wave mechanical theory for scalar photon wave
packets composed of positive-frequency components in the
monochromatic (ω > 0) limit [with regularization at t =
−∞]; see Eq. (5.11) in [20].
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C. Longitudinal-photon dynamics

The dynamical variable of the longitudinal photon in the
covariant theory of photon wave mechanics is obtained from
the positive-frequency part of the longitudinal vector potential.
For our evanescent field we thus have

AL(r,t) = [AL(z; [Q‖]) + AL(z; [κ0
⊥])]ei(q‖x−ωt), (67)

where [from Eqs. (41)–(43)]

AL(z; [Q‖]) = − iμ0

2q2
0

JB,z(0)[ex + iez sgn(z)]e−q‖|z| (68)

and

AL(z; [κ0
⊥]) = iμ0

2κ0
⊥q2

0

JB,z(0)[Q‖ex + iκ0
⊥ez sgn(z)]e−κ0

⊥|z|.

(69)

The Fourier-integral transforms of the expressions in Eqs. (68)
and (69) are given by

AL(Q⊥; [Q‖]) = − iμ0JB,z(0)

q2
0Q2

(Q‖ex + Q⊥ez) (70)

and

AL(Q⊥; [κ0
⊥]) = iμ0JB,z(0)

q2
0

(
Q2 − q2

0

) (Q‖ex + Q⊥ez). (71)

The sum of the contributions in Eqs. (70) and (71) may be
written in the form

AL(Q) = μ0q0J0

Q2
(
Q2 − q2

0

) (Q‖ex + Q⊥ez). (72)

The longitudinal photon variable in Q space AL(Q; t), calcu-
lated from

AL(Q; t) = eQ · AL(Q)e−iωt (73)

where

eQ = 1

Q
(Q‖ex + Q⊥ez), (74)

is a unit vector in the Q direction and hence becomes

AL(Q; t) = μ0q0J0

Q
(
Q2 − q2

0

)e−iωt . (75)

The longitudinal photon variable in Eq. (75) satisfies the
dynamical equation(

cQ − i
∂

∂t

)
AL(Q; t) = J0

ε0(ω + cQ)

q0

Q
e−iωt , (76)

which in free space reduces to the Hamiltonian form of the
wave equation in Q space for the longitudinal photon, viz.,

ĤAL(Q; t) = ih̄
∂

∂t
AL(q; t). (77)

The result in Eq. (76) agrees with that of the general theory
for L-photon wave packets in the monochromatic limit (with
regularization at t = −∞) [see [20], and combine herein
Eqs. (5.10), (6.1), (6.6), and (6.7)].

It may be useful to remind the reader that the energy(H )-
momentum(p) relation for a free massless relativistic particle
(here the photon) is H = cp = ch̄Q. In operator form one
thus obtains Ĥ = ch̄Q, since Q̂ = Q in the wave-vector

representation. The Hamilton operator is the same for the S
and L photons [Eqs. (66) and (77), respectively].

D. Near-field photon dynamics

The potential formulation of photon wave mechanics given
above refers to the Lorenz gauge, in which the S and L wave
functions are coupled by the gauge condition

icQAL(Q; t) + ∂

∂t
A0(Q; t) = 0. (78)

The reader may check that the wave functions in Eqs. (61) and
(75) do satisfy the Lorenz gauge condition. Although the S
and L wave functions do not vanish in free space, the gauge
condition in Eq. (78) implies that the two wave functions are
identical in free space:

Afree
L (Q; t) = Afree

0 (Q; t). (79)

At this point one must remember that the wave equations in
Eqs. (65) and (76) have the complete solutions

AI (Q; t) = Afree
I (Q; t) + Ainh

I (Q; t), I = S,L. (80)

It is the inhomogeneous (inh) solutions that relate to the
surface current density J0, which we have discussed in
Secs. III A and III B.

In near-field electrodynamics in general [4] and for the
evanescent field case studied here, Eq. (79) makes it useful
to introduce a so-called near-field (NF) photon dynamical
variable ANF(Q; t) by the definition [20]

ANF(Q; t) = i√
2

[AL(Q; t) − A0(Q; t)]. (81)

In free space the near-field photon wave function Afree
NF (Q; t)

vanishes. Furthermore, ANF(Q; t) is invariant against gauge
transformations within the Lorenz gauge [20]. By combining
Eqs. (64), (75), and (81) one obtains

ANF(Q; t) = μ0J0

i
√

2Q(Q + q0)
e−iωt . (82)

The Q dependence of A0, AL, and ANF are compared in Fig. 7.
The ANF(Q; t) variable satisfies a dynamical equation of the
form (

cQ − i
∂

∂t

)
ANF(Q; t) = J0

i
√

2ε0cQ
e−iωt (83)

with the constraint that Afree
NF (Q; t) = 0. The importance of

the near-field photon concept for studies of evanescent fields
(and near fields as such) is closely related to the fact that
the right-hand side of Eq. (83) (multiplied by

√
2) equals the

projection of the longitudinal electric field on the Q direction.
Thus,

EL(Q; t) ≡ eQ · EL(Q⊥)eiωt

= iωeQ · AL(Q⊥; [Q‖])e−iωt = J0

iε0cQ
e−iωt , (84)

as the reader may verify using Eqs. (52), (62), (63), and (70),
and hence(

cQ + i
∂

∂t

)
ANF(Q; t) = 1√

2
EL(Q; t), (85)
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FIG. 7. Normalized (with M = μ0J0/q
2
0 ) plots of the scalar

(A0), longitudinal (AL), and near-field (i
√

2ANF) photon variables
as functions of Q/q0. Note that the NF variable is not singular at the
vacuum wave number, i.e., for Q = q0.

as anticipated [20]. In near-field optics the coupling between
the transverse and longitudinal electric fields in the rim zone
plays a crucial role, and Eq. (85) therefore forms a good starting
point for field-quantized studies in this subfield of quantum
electrodynamics. The plus sign between the operators cQ and
i∂/∂t in Eq. (85) ensures that near-field photons do not exist
in free space [4,20].

IV. OUTLOOK: QUANTUM-WELL RIM ZONE

It appears from the foregoing analysis that the electron
dynamics near the surface plays an important role in the
photon wave mechanics of the evanescent field in TIR, at least
in the p-polarized case. It is also clear that the conclusions
reached were based on a model for the induced current density,
which in many aspects is hopelessly oversimplified. However,
the model, a divergence-free bulk current density terminated
abruptly at the surface, indicates that a deeper understanding
of the photon wave mechanics of evanescent fields in TIR
requires some sort of self-consistent microscopic description
of the electrodynamic surface-bulk interaction. To avoid the
many complications one is confronted with in such a study,
we suggest that one turns from the TIR configuration to
quantum-well (QW) systems. Usually, the thickness of a QW
will be orders of magnitude smaller than the characteristic
wavelength(s) of the external electromagnetic field exciting
the electrons in the well. In relation to photon wave mechanics,
the QW therefore may often be considered as an electric-dipole
(ED) receiver and emitter [22].

Some of the key problems one needs to address in the photon
wave mechanics of QWs may be illustrated by considering a
QW ED current density of the following simple form:

J(r; ω) = Ieye
i(q‖+Gx )xeiGyyδ(z). (86)

The current density in Eq. (86) is the one induced in the direc-
tion perpendicular to the scattering (xz) plane by an arbitrarily
polarized external field. The amplitude I which relates to
the microscopic conductivity of the QW must be calculated
quantum mechanically. In the framework of linear response
theory, the structure of I will contain the (many-body)

transition current densities between various bound states in the
well, the eigenenergies of these states, and the probability
that the given state is occupied. In the TIR analysis it was
assumed that the system exhibits translational invariance in
all directions parallel to the surface plane. A corresponding
assumption has not been made in Eq. (86). Thus, the J(r,ω)
above relates to a given spatial 2D Fourier component G =
(Gx,Gy,0) of the QW structure. The amplitude I depends on
the selected G, of course. To determine the source region for
T photons emitted from the QW, the spatial Fourier transform
of Eq. (86), viz.,

J(Q,ω) = (2π )2Ieyδ(q‖ + Gx − Qx)δ(Gy − Qy), (87)

is multiplied by the Q-space longitudinal δ function QQ/Q2,
and the product then taken back to direct space by an inverse
Fourier transformation. The two δ functions in Eq. (87)
immediately allow one to obtain the following 1D integral
expression for the longitudinal part of the QW current density:

JL(r; ω) = Iei(q‖+Gx )xeiGyyey ·
[ ∫ ∞

−∞
ee eiQzz

dQz

2π

]
, (88)

where

e = (q‖ + Gx)ex + Gyey + Qzez[
(q‖ + Gx)2 + G2

y + Q2
z

] 1
2

. (89)

Since

ey · ee = Gy[(q‖ + Gx)ex + Gyey + Qzez]

(q‖ + Gx)2 + G2
y + Q2

z

, (90)

the integral over Qz is carried out easily, giving finally

JL(r; ω) = I

2a
Gy[(q‖ + Gx)ex + Gyey + iaez sgn(z)]

× e−a|z|ei[(q‖+Gx )x+Gyy], (91)

where

a = [
(q‖ + Gx)2 + G2

y

] 1
2 . (92)

It appears from Eq. (91) that the source domain of the T
photon is exponentially confined in the direction perpendicular
to the QW plane, the decay constant being a. For G → 0
[I (G → 0) ≡ I0] one obtains asymptotically,

JL(r; ω) = I0Gy[ex + iez sgn(z)]eq‖(ix−|z|). (93)

The result in Eq. (93) puts the TIR analysis in perspective.
Using the simple model current density in Eq. (27), with
a divergence-free bulk current density [see Eq. (32)], we
concluded that the source region for the transverse photon,
JT (z) = −JL(z), had the form given by Eq. (39). The presence
of an evanescent tail, ∼ exp(−q‖z), in the vacuum half space
is necessary to explain the T-photon tunneling process in
p-polarized FTIR [18]. It is known [9] that photon tunneling
also occurs with s-polarized fields. In a classical perspective
this is in agreement with the fact that evanescent fields
also occur in s-polarized TIR. The photon-wave mechanical
connection is a bit more subtle in the s-polarized case, however.
A standard classical calculation for s-polarized scattering
analogous to the one summarized in Sec. II A shows that
the transmitted electric field decays as ∼ exp(−κ0

⊥z) in the
evanescent regime, but in this case the model current density,
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J(z) = JB(z)eyθ (−z), has no longitudinal part [cf. Eq. (28)].
Extended to the photon wave mechanical level, the source
domain of the T photon hence does not extend into the vacuum.
Is this conclusion erasing the picture of T-photon tunneling
as due to lack of spatial photon localization? No. It tells
us that the naive model which works for p-polarized fields
cannot be employed in the s-polarized fields case. The reason
originates in the fact that the model for p-polarized gives
us a necessary charge density at the surface [Eq. (48)]. With
the model current density J(x,z) = JB(z)eyθ (−z)eiq‖x comes
no (surface) charge density. From a fundamental microscopic

point of view, an s-polarized external field inevitably gives
rise to an induced movement of the electrons also normal to
the surface region. The simple extension of the s-polarized
model current density to the form in Eq. (86), asymptotically
(G → 0), provides us with the needed nonvanishing longitudi-
nal current density [Eq. (93)]. The (circular) polarization and
spatial dependence of the longitudinal current densities now
are in agreement for the p-polarized [Eq. (44) multiplied by
exp(iq‖x)] and s-polarized [Eq. (93)] cases. A comparison of
the model amplitudes (i/2)JB,z(0) and I0Gy is meaningless, of
course.
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