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The spontaneous creation and persistence of ground-state coherence in an ensemble of intracavity Rb atoms
has been observed as a quantum beat. Our system realizes a quantum eraser, where the detection of a first
photon prepares a superposition of ground-state Zeeman sublevels, while detection of a second erases the
stored information. Beats appear in the time-delayed photon-photon coincidence rate (intensity correlation
function). We study the beats theoretically and experimentally as a function of system parameters, and find them
remarkably robust against perturbations such as spontaneous emission. Although beats arise most simply through
single-atom-mediated quantum interference, scattering pathways involving pairs of atoms interfere also in our
intracavity experiment. We present a detailed model which identifies all sources of interference and accounts for
experimental realities such as imperfect prepumping of the atomic beam, cavity birefringence, and the transit of
atoms across the cavity mode.
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I. INTRODUCTION

The interference of scattering amplitudes in quantum
mechanics arises from the indistinguishability of alternative
scattering paths, as in the interference of the paths of a
photon passing through the celebrated double slits of Young.
For example, a modern variation on the Young experiment
[1] shows spatial fringes in the intensity of light scattered
from two trapped ions; but only so long as the scattering
cannot be traced to one ion or the other [2]. Even in the
latter situation, other measurements might be found which
cannot distinguish between the paths, hence recovering the
interference. Typically they involve higher-order moments of
the field [3], or postselection, i.e., partitioning of scattering
events into subensembles [4]. Such a measurement strategy is
termed a “quantum eraser,” since it recovers interference by
“erasing” the information that identifies the path.

A time-domain analog of double-slit interference can occur
inside multilevel atoms, where photon emission via parallel
transitions can result in a modulation of the emission intensity
at the frequency of a level splitting—the phenomenon of
“quantum beats” (see, e.g., [5,6]). A distinction has tradition-
ally been drawn between “Type-I” or “V” atomic systems,
where decay of a superposition of upper levels yields beats at
the transition difference frequency; and the inverted “Type-II”
or “V” systems, where decay to a superposition of lower levels
does not yield beats [7,8]. The typical argument for the latter
outcome is that a measurement of the ground-state population
could always, in principle, determine in which of the two
available states the electron landed; as there is no sum over
alternative paths to one and the same final state, there are no
“ground-state quantum beats” [9,10].

Nevertheless, as with spatial fringes, a quantum eraser-type
strategy can recover time-domain interference in the ground
state. Zajonc [8,11] proposed one such implementation in a
Type-II atomic system, basing his proposal on two-photon

scattering. In this case the second scattered photon erases
the path information written by the first—amplitudes for the
scattering of two photons in sequence interfere.

We recently published experimental results showing quan-
tum beats in spontaneous emission at the frequency of
the ground-state Zeeman splitting in Rb, i.e., ground-state
quantum beats seen in spontaneous emission [12]. Oscillations
appear in the second-order intensity autocorrelation function
only, not in the average intensity, as follows from the indis-
tinguishability requirement above. The presence of a similar
oscillation hidden within the noise of spontaneous emission
was demonstrated in 1955 by Forrester et al. [13]. They
mixed two incoherent light sources—a Zeeman doublet—on
a photocathode, and used a resonant microwave cavity to
enhance the beat signal extracted from the photocurrent noise.
The interference in this case is classical, though the oscillation
is recovered from noise through intensity correlation. More
than 50 years later, using coherent excitation and single-photon
detectors, we have realized a time-resolved measurement of
the ground-state quantum beat recovered from spontaneous
emission noise.

The oscillation in our system arises as a complicated
mixture of quantum eraser-type interferences within single
atoms, pairwise interference between emission from different
atoms, and a homodyne contribution due to the superposi-
tion of a weak coherent background (similar to Ref. [14])
generated by birefringence in the cavity mirrors. By coupling
spontaneous emission into an optical cavity at moderate dipole
coupling strength, we overcome the signal-to-noise limitations
set by a small coherence area in free space [13], and enforce
indistinguishability among different atoms emitting into a
common spatial mode. Moreover, we show below that the
complicated level structure of 85Rb actually aids in the survival
of ground-state coherence, counter to the conventional strategy
of protecting coherence by limiting the state space through
which population can diffuse.
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We distinguish here between ground-state coherences
imposed by an external drive and those arising spontaneously,
selected through the detection process, as in our experiment.
In the former case, an external magnetic or optical drive
couples two ground states directly, with the resulting coherence
read out optically in forward scattering (see [15] for many
examples.) In the latter, levels couple only through the vacuum,
with no external drive to enforce coherence. The fact that
spontaneous decay can generate coherence is evident from
the observation of quantum beats at the intermediate level
splitting in cascade decay [16,17]; that the same process occurs
in transitions to ground or metastable states is not therefore
surprising. Schubert et al. [18] measured such a coherence
in the bichromatic cross correlation of fluorescence from a
single ion, where detection of a first photon left the ion in a
superposition of metastable states. When considering isotropic
emission, however, spontaneously created coherences tend
to vanish on the average, and for this reason are often left
out of density matrix calculations [19]. The recent interest
follows a 1992 paper [20] in which specific measurable
consequences were claimed; various arrangements have been
explored theoretically [21,22]. A publication as recent as
2005 [23] claims evidence of the first serious experimental
consequences of spontaneously generated coherence, this in a
quantum dot system. Other experiments are surprisingly few.
We direct the interested reader to Ref. [24] for an overview.

In this article we expand upon the results presented in
Ref. [12]. In particular, we seek to explain the origin of
the various individual components of the beat signal, show
which experimental conditions are necessary for the robust
survival and detection of beats, and explore their sensitivity
to various experimental controls. The paper is organized as
follows. Section II introduces the theoretical model, starting
with a single atom fixed in space and moving to a full atomic
beam with realistic fluctuations. Section III presents the details
of our experimental method, from the atomic source and
optics to the detection apparatus. Section III B summarizes
the evolution of the beat signal as we explore parameter space
and compares experiment with theory. The paper concludes in
Sec. IV.

II. THEORETICAL MODEL

We consider first the idealized system of one fixed 85Rb
atom, then turn to a realistic atomic ensemble, as realized
in our experiment with a cold atomic beam. The atom has
Zeeman structure in its ground and excited states [Fig. 1(a)]
and interacts through the D2 line with degenerate, orthogonally
polarized cavity modes, designated H (horizontal) and V

(vertical); a weak magnetic field sets the quantization axis in
the vertical direction, and mode V is weakly and continuously
driven [Fig. 1(b)]. The atom is prepared in state |g0〉, from
which it is excited to state |e0〉 by the V mode [Fig. 2(a)]. It may
return to the ground state by emitting a π, σ+, or σ− photon,
or any linear combination conserving angular momentum. In
the assigned geometry, only σ+ or σ− light couples to the
H mode, with the helicity undetermined. We assume that the
probability of reabsorption of an emitted photon is negligible;
it escapes the cavity and its detection places the atom in the
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FIG. 1. (Color online) Experimental setup: (a) π excitation of the
F = 3 to F ′ = 4 transition in Rb showing scattering of a first (red)
and second (blue) photon into the H mode. (b) Schematic of the
apparatus: HWP, half-wave plate; PBS, polarizing beam splitter; BS,
beam splitter, and APD, avalanche photodiode.

superposition [Fig. 2(b)]:

|ψ0〉 = (|g−1〉 + |g+1〉)/
√

2. (1)

The atom is now in the ground state with its angular
momentum perpendicular to the magnetic field, and it performs
Larmor precession. With subsequent reexcitation by the V

mode, the state

|ψ ′
0(t)〉 = (e−iφ(t)|e−1〉 + eiφ(t)|e+1〉)/

√
2 (2)

is reached, with phase ±φ(t) gained through precession in the
ground state [Fig. 2(c)]. From here the atom can decay back
to |g0〉 by emitting a second H -mode photon [Fig. 2(d)]. The
probability for this emission depends on the phase difference,
2φ(t), between the two parts of the superposition. It oscillates
and thus gives rise to beats in the rate of detection of a second
H photon subsequent to the detection of a first.
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FIG. 2. Simplified model of the two-photon quantum eraser
process. (a) π excitation from g0 to e0; (b) spontaneous decay through
σ transitions to a superposition of g−1 and g+1; (c) π excitation to a
superposition of e−1 and e+1; and (d) spontaneous decay through σ

transitions back to g0.
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As depicted in Fig. 2, there are two paths for scattering
a pair of photons into the H mode: |g0〉 → |e0〉 → |g+1〉 →
|e+1〉 → |g0〉 and |g0〉 → |e0〉 → |g−1〉 → |e−1〉 → |g0〉. The
phase gained from the ground-state Zeeman shift (Larmor
precession) is different along the two paths, which interfere to
produce oscillations in the rate of delayed coincidences—i.e.,
in the correlation function g(2)(τ ). Note that after the first
photon is detected, “which path” information is available,
since |g+1〉 and |g−1〉 are distinguishable in principle, and their
orthogonality precludes observation of interference effects in
the average intensity arising from cross terms when taking
the expectation value over Eq. (1). This information is largely
erased by the second photon detection, where the amplitude
for returning to the common final state |g0〉 allows survival
of cross terms in the two-photon intensity expectation value,
corresponding to interference between the two scattering
paths. We note that, as in Ref. [13], the spectrum of scattered
light still exhibits a doublet separated by the beat frequency,
but the random phase relation between the two fields destroys
any first-order coherence in the average intensity.

In the following sections we study the dependence of the
quantum beats on the different features and parameters of
our experimental system: magnetic field strength, number
of atoms, initial state preparation, atomic beam fluctuations,
cavity birefringence, and mixing of the undriven H field with
drive light (V field) outside the cavity before detection. We
first present a detailed theory for the case of one fixed atom
before we move on to the treatment of many atoms and atomic
motion.

A. One fixed atom

The relevant 16-level structure of the atom is depicted in
Fig. 1. Bold black arrows indicate its interaction with the driven
V mode of the optical cavity, and red and blue wavy lines
with the undriven H mode. We calculate the second-order
correlation function of the H mode. We use the quantum
trajectory formalism [25], which provides insight into the
physical processes involved and facilitates efficient numerical
calculations, something of importance when many atoms are
considered. Working in a frame rotating at the frequency of
the drive, the non-Hermitian Hamiltonian governing coherent
evolution between spontaneous emission events (modes other
than H and V ) or photon loss through the cavity mirrors is

HS = H0 + HI + HD + HL, (3)

with free Hamiltonian

H0 = h̄δva
†
vav + h̄δha

†
hah +

3∑
i=−3

h̄δgi
|gi〉〈gi |

+
4∑

i=−4

h̄δei
|ei〉〈ei |, (4a)

interaction and drive

HI = h̄g[a†
v�π + a

†
h(�σ+ + �σ−)] + H.c., (4b)

HD = ih̄E(a†
v − av), (4c)

and non-Hermitian loss term

HL = −ih̄κ(a†
vav + a

†
hah)

− ih̄
γ

2
(�†

π�π + �†
σ+�σ+ + �†

σ−�σ−), (4d)

where av and ah annihilate photons in the V and H modes,
respectively, detunings from the drive δv and δh, E is the
drive amplitude for the V mode, g is the dipole coupling
constant, 2κ is the photon loss rate from each cavity mode,
γ is the spontaneous emission rate, and �π , �σ+ , and �σ−
are dipole lowering operators for π , σ+, and σ− transitions;
atomic energy shifts in the magnetic field and relative to
the drive are h̄δei

, i = −4,−3, . . . ,4 (excited states) and
h̄δgi

, i = −3,−2, . . . ,3 (ground states). Explicit forms for the
dipole operators depend on Clebsch-Gordon coefficients and
are relegated to the Appendix.

The evolution of the system under the non-Hermitian
Hamiltonian HS is calculated numerically, with photon-
number truncation, using the fourth-order Runge-Kutta
method, including step-size correction. At regular intervals
of length �t the atom and the cavity modes are checked for
quantum jumps—spontaneous emission or photon leakage.
If a scattering event occurs, the system state is collapsed
accordingly—jump operators �π , �σ+ , �σ− , av , or ah—before
continuing the coherent evolution. After a time t , we assume
a photon is scattered through the H mode. The system state is
collapsed (jump operator ah) and its conditional evolution,
with the unnormalized correlation function, G(2)(t,t + τ ),
given by the H -mode-photon-number-weighted mean of
the H -mode photon-number expectation in the conditional
states. Normalization by the photon-number averages yields
g(2)(t,t + τ ) = G(2)(t,t + τ )/〈(a†

hah)(t)〉〈(a†
hah)(t + τ )〉.

We consider now a weak drive, such that 〈a†
vav〉 � 1, and

t long enough for the system to reach a quasisteady state
(overlooking the very slow process of optical pumping). If the
initial state is chosen to be any one of the ground states |gi〉, i =
−2,−1,0,+1,+2, the correlation function g(2)(τ ) shows beats,
with beat frequency twice the Larmor precession frequency of
|g±1〉; the frequency does not depend on the chosen initial
state, or the number of atoms when many are included
(Sec. II B).

The visibility of the beat depends, however, on a number of
issues. In the ideal case, the atom is in state |g0〉 when the first
H photon is detected; it is projected to |ψ0〉, and the second
photon is detected as it returns to |g0〉 via |ψ ′

0(t)〉 (Fig. 2). We
note first that, for the level scheme of Fig. 1, the return is not to
|g0〉 but (see the Appendix for the explicit form of the lowering
operator �σ+ + �σ− , for H -mode scattering)

2 cos[φ(t)]

√
5

14
|g0〉 +

√
3

28
(e−iφ(t)|g−2〉 + eiφ(t)|g+2〉). (5)

This brings a reduction of the visibility to a little more than
75%. Beyond this, several trajectories deviate from the ideal
and further reduce the visibility. We divide them into two
groups: (i) those that deviate prior to the detection of the first
photon and (ii) those that deviate between the detection of the
first photon and the second.

Consider first group (i). If the atom is initially in state |gi〉,
i �= 0, then when the first H photon is detected, it is projected
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TABLE I. Quantum beat visibility for one fixed atom and different
initial ground states. The parameters are g/γ = 0.25, κ/γ = 0.5,
E/γ = 0.025, and a Larmor frequency of 2.2γ /3. The time at
which the first H -mode photon is detected is t = 25γ −1. Results
for g−1,g−2,g−3 follow by symmetry. Note that a visibility of zero
(no quantum beat) is predicted for g ± 3 in the absence of optical
pumping prior to t .

Initial state g0 g+1 g+2 g+3

Visibility 0.75 0.5 0.15 0.03

into an unequal superposition of |gi±1〉, with the different
weights given by Clebsch-Gordan coefficients; for example, if
the initial state is |g+1〉, after detection of a scattered photon,
the atom is projected into |ψ〉 = (

√
10|g0〉 + √

3|g2〉)/
√

13.
Table I lists the realized visibilities for all potential initial
states. A maximum visibility of 0.75 is achieved when the
initial state is |g0〉. The visibility decays rather quickly away
from this maximum. Experimentally, we optically pump the
atoms before they enter the cavity; however, the efficiency
of the pumping is not perfect, and the result is generally
a distribution over ground states, peaked around |g0〉. Some
reduction of the beat visibility must follow from the imperfect
optical pumping prior to an atom entering the cavity.

Other processes can redistribute population amongst the
atomic levels and contribute to the loss of visibility. The atom
can spontaneously decay from an excited state |ei〉 to |gi+1〉
or |gi−1〉 with the emission of a photon to the side rather
than into the H mode of the cavity. At higher values of the
drive, this process might be repeated many times, redistributing
population before a first H photon is detected. The distribution
reached through such optical pumping by the drive depends
on the Clebsch-Gordan coefficients, the drive strength, and the
time when the first photon is detected. Table II displays the
distribution reached in the long-time limit. It shows that, even
in the limit, states with i = ±3 have a very small probability
to be populated, and those with i = ±2 are populated at a level
of only about 10%.

The distribution over atomic ground states prior to the
detection of a first H photon strongly affects the state the atom
is projected into on average. If the time of the first detection
is close to zero the atom is projected into |ψ0〉 [Eq. (1)]. As
this time increases, superpositions of, first |g0〉 and |g+2〉 (or
|g−2〉), and then |g±1〉 and |g±3〉 appear. Numerically we have
checked that the state immediately after the first H -photon
detection may be written approximately as

ρc(t) = p0|ψ0〉〈ψ0| + p1(|ψ1〉〈ψ1| + |ψ−1〉〈ψ−1|) + p2�ρc,

(6)

TABLE II. Energy level occupation probabilities for one fixed
atom. The parameters are g/γ = 0.25, κ/γ = 0.5, E/γ = 2, and a
Larmor frequency of 2.2γ /3. The number of V -mode photons inside
the cavity is 〈a†

vav〉 ≈ 15. Results for g−1, g−2, g−3 and e−1, e−2, e−3

follow by symmetry.

State g0 g+1 g+2 g+3 e0 e+1 e+2 e+3

Probability 0.23 0.15 0.04 0.003 0.16 0.09 0.02 0.001
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FIG. 3. Probability for the preparation of superposition state |ψs〉
(solid line) and either of the superposition states |ψ±1〉 (dashed line),
for one fixed atom, as a function of the time of the first H -photon
detection. The parameters are g/γ = 0.25, κ/γ = 0.5, E/γ = 0.3,
and a Larmor frequency of 2.2γ /3.

with

|ψ±1〉 = (
√

10|g0〉 +
√

3|g±2〉)/
√

13, (7)

where pi , i = 0,1, is the probability distribution over |ψ0〉
and |ψ±1〉, and p2 = 1 − p0 − 2p1 is the probability that the
first H photon is scattered out of one of the ground states
with |i| = 2,3; �ρc is the state reached from such scattering
events. As can be seen from Fig. 3, as the wait for the first
H -photon detection becomes longer, the probability to realize
|ψs〉 decreases, while that to realize |ψ±1〉 increases. For the
parameters considered, the sum p0 + 2p1 is close to 0.97,
which tells us that |ψs〉 and |ψ±1〉 cover all relevant prepared
superpositions. An increase in drive strength changes only
the time evolution of the probabilities, not their stationary
values.

We move now to trajectories that deviate from the ideal
after the first H photon is detected [group (ii)]. We assume the
prepared superposition is |ψ0〉. Interaction of the atom with the
driven V cavity mode moves population to the superposition
|ψ ′

0(t)〉 [Eq. (2)]. It is then possible that spontaneous emission
(to the side) moves |ψ ′

0(t)〉 to a superposition of the ground
states |g0〉 and |g+2〉 (or |g−2〉). As the Clebsch-Gordan
coefficient connecting |e∓1〉 to |g0〉 differs from that connect-
ing |e±1〉 to |g±2〉), such an event yields unequal weights
in the ground-state superposition. Nevertheless, this aside,
the described process recovers the initial setup—a ground-
state superposition—but in a manifold of states shifted to
the right or left. Continuing then with the standard story,
the π -polarized drive transfers the superposition of |g0〉 and
|g±2〉 to a superposition of |e0〉 and |e±2〉 in the excited
state. A second H photon can then be emitted via the cavity,
projecting the atom into a superposition of |g±1〉, |g±3〉, and
|g∓1〉 [compare Eq. (5)]. Apart for the changed weight factors,
the quantum eraser process still takes place, only within a
different manifold of atomic states. Of course, the unequal
weights yield a beat with diminished visibility.

Such spontaneous emission events can happen several
times in the interval separating the H -photon detections;
nevertheless, so long as there is no σ+ (σ−) emission at
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FIG. 4. Evolution of spontaneously created coherences for one
fixed atom; off-diagonal matrix elements |〈|g+1|ρ(t + τ )|g−1〉| (solid
line) and |〈g±2|ρ(t + τ )|g0〉)| (dashed line) are plotted as a function of
the time after a first H photon is detected. The parameters are g/γ =
0.25, κ/γ = 0.5, E/γ = 0.3, and a Larmor frequency of 2.2γ /3. The
number of V photons inside the cavity is approximately 0.3.

a time when |e−3〉 (|e+3〉) is part of the superposition in
the excited state, the superposition, with modified weights,
survives. For an atom with six levels, as in Fig. 2, a single
σ+ or σ− spontaneous emission will destroy the prepared
superposition, reducing the observed visibility far more than
in the 16-level case. Our use of the 16-level configuration
produces a particularly robust (against spontaneous emission)
quantum beat.

Figure 4 shows how the spontaneously created coherence
moves between different ground states after the first H

photon is detected. We quantify the coherence by off-diagonal
matrix elements |〈gi+1|ρc(t + τ )|gi−1〉|, i = 0 and 1, which fall
between a maximum of 0.5 (equally weighted superposition)
and zero. The solid line follows |〈g+1|ρ(t + τ )|g−1〉| as a
function of τ . It begins at τ = 0 from approximately 0.46,
which shows that immediately after the photon is detected
the atom is to a good approximation in the superposition
|ψ0〉; p0 ≈ 1 in Eq. (6). As the time to the second photon
detection progresses, p0 decreases as p±1 grows and part of the
coherence is transferred to a superposition of |g0〉 and |g±2〉.
Eventually phase diffusion (decoherence) which accompanies
repeated cycles of excitation and spontaneous emission sets
in, causing both displayed coherences to decay to zero [26].
Coherences between ground states other than those shown in
the figure are negligible.

Before turning to the many-atom case relevant to our
experiment, one final effect might usefully be introduced at
the one-atom level. The mirrors in the experiment show a
small birefringence and mix a little of the V -polarized light
with the H -polarized cavity mode. We attempt to null this
mixing with a half-wave plate placed in the cavity output
[Fig. 1(b)]; alternatively, in some measurements we deliber-
ately enhance it (see Fig. 11). The mixing effectively performs
a homodyne measurement with weak (at the one-photon
level) local oscillator field. Let us make the substitution
ah → ah + ε, where ε is the amplitude of the mixed drive
light, taken for simplicity to be classical, real, and constant.
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FIG. 5. Size of the beat at the Larmor frequency (solid line)
relative to that at twice the Larmor frequency (dashed line), as a
function of the fraction of drive light mixed with the H mode. The
parameters are g/γ = 0.25, κ/γ = 0.5, E/γ = 0.3, and a Larmor
frequency of 2.2γ /3.

The (unnormalized) intensity correlation function is now

G(2)(t,t + τ )

= G
(2)
h (t,t + τ ) + ε2{G(1)

h (t,t) + G
(1)
h (t + τ,t + τ )

+ 2 Re
[
G

(1)
h (t,t + τ ) + G

(a)
h (t,t + τ )

]} + ε4, (8)

where G
(1)
h (t,t + τ ) = 〈a†

h(t)ah(t + τ )〉 is the first-order cor-
relation function of the H mode, and G

(a)
h (t,t + τ ) =

〈a†
h(t)a†

h(t + τ )〉 is the H -mode anomalous correlation. Third-
order correlations vanish for weak drive because scattering a
second photon [blue wavy lines in Fig. 1(a)] leaves the atom
in a manifold orthogonal to that reached after scattering one
photon [red wavy lines in Fig. 1(a)], i.e., one- and two-photon
states entangle with orthogonal atomic states. The anomalous
correlation survives because the manifold reached by scatter-
ing two photons contains the initial state—|g0〉 in Fig. 1(a).

With increasing ε, the frequency of the quantum beat
changes from twice the Larmor frequency to the Larmor
frequency as the third term on the right-hand side of Eq. (8)
comes to dominate the first. Figure 5 illustrates the transition.

B. Many atoms

Our experiment is performed with a cold atomic beam
and therefore the many-atom case must be considered. We
generalize the non-Hermitian Hamiltonian of Eq. (3) by
writing the free, interaction, and nonunitary loss terms for
N arbitrarily located atoms:

H0 = h̄ωva
†
vav + h̄ωha

†
hah

+
N∑

j=1

(
3∑

i=−3

h̄ωgi
|gi〉j 〈gi |j +

4∑
i=−4

h̄ωei
|ei〉j 〈ei |j

)
,

(9a)

HI =
N∑

j=1

h̄gj

[
a†

v�
j
π + a

†
h

(
�j

σ+ + �j
σ−

)] + H.c., (9b)

HL = −ih̄κ(a†
vav + a

†
hah)

−
N∑

j=1

ih̄
γ

2

(
�j†

π �j
π + �j†

σ+�j
σ+ + �j†

σ−�j
σ−

)
, (9c)
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where the dipole coupling constants gj , j = 1, . . . ,N , vary
with the location of the atoms within the cavity mode function.

We aim to write the measured correlation function as a sum
of terms applying to emission pathways for different atoms
and their interference. To this end, we formally integrate the
Heisenberg equation of motion for the H -mode annihilation
operator, including its coupling to the reservoir. This yields
(see, e.g., Ref. [27], p. 206)

ah(t) = ah(0)e−κt +
N∑

j=1

gj

∫ t

0
�

j

h(t − t ′)e−κt ′dt ′ + v.f., (10)

�i
h(t) = �i

σ−(t) + �i
σ+(t), (11)

where v.f. indicates the presence of a vacuum field (reservoir)
noise operator, which may be dropped from the calculation
of a normal- and time-ordered average. We also drop the first
term on the right-hand side of Eq. (10), as we are interested

in times much longer than the cavity decay time. Adding the
mixed drive amplitude ε, as above Eq. (8), the H -mode cavity
output is treated with the substitution

ah(t) →
N∑

j=1

Aj (t) + ε, (12)

Aj (t) = gj

∫ t

0
�

j

h(t − t ′)e−κt ′dt ′. (13)

We further assume that (i) the probability that an emitted H

photon be reabsorbed before leaving the cavity is negligible
and (ii) no additional H photon is emitted in between the
detection of photons at t and t + τ . The assumptions are
justified, respectively, for moderate-to-weak dipole coupling
and weak drive. They allow us to treat the atoms as independent
and write the intensity correlation function as a generalization
of Eq. (8):

G(2)(t,t + τ ) =
N∑

j=1

⎛
⎝G

(2)
j (t,t + τ ) +

N∑
k �=j=1

G
(a)
j (t,t + τ )

[
G

(a)
k (t,t + τ )

]∗
⎞
⎠

+
N∑

j=1

N∑
k �=j=1

{
G

(1)
j (t,t)G(1)

k (t + τ,t + τ ) + G
(1)
j (t,t + τ )

[
G

(1)
k (t,t + τ )

]∗}

+ ε2
N∑

j=1

{
G

(1)
j (t,t) + G

(1)
j (t + τ,t + τ ) + 2 Re

[
G

(1)
j (t,t + τ ) + G

(a)
j (t,t + τ )

]} + ε4, (14)

where we introduce individual atom correlation functions:

G
(2)
j (t,t + τ ) = 〈A†

j (t)A†
j (t + τ )Aj (t + τ )Aj (t)〉, (15a)

G
(1)
j (t,t + τ ) = 〈A†

j (t)Aj (t + τ )〉,
(15b)

G
(a)
j (t,t + τ ) = 〈A†

j (t)A†
j (t + τ )〉.

In order to help with the interpretation of this expression,
let us assume stationarity (correlation functions independent
of t) and identical atoms. Equation (14) then reduces to

G(2)(τ ) = NG
(2)
A (τ ) + N (N − 1)

∣∣G(a)
A (τ )

∣∣2

+ N (N − 1)
[
I 2
A + ∣∣G(1)

A (τ )
∣∣2]

+ 2ε2N
{
IA + Re

[
G

(1)
A (τ ) + G

(a)
A (τ )

]} + ε4, (16)

where IA = G
(1)
A (0) and the subscript denotes any atom. The

result is similar to Eq. (4) in Ref. [28]. The only change is
the anomalous correlation G

(a)
A (τ ), which is retained here

because we consider scattering into a single cavity mode,
not free-space scattering as in Ref. [28]; in the latter case,
the random phases accompanying propagation from randomly
located atoms to the detector cause the anomalous correlation
to vanish. It is also important to recall that G(a)(τ ) is only
nonzero because scattering two H photons places the atom
in a ground-state manifold that is not orthogonal to the initial
state. G(a)(τ ) is therefore intimately related to the erasure of
which-path information by the scattering of a second photon.

Of course it approaches zero as τ → ∞, due to dephasing
induced by spontaneous emission [26]. The time scale for this
is long compared with the transit time through the cavity if the
drive is weak.

Leaving aside the homodyne terms, three correlation
functions contribute to the quantum beat in Eq. (16). There
is first and foremost G

(2)
A (τ ). It records the beat due to the

interference of indistinguishable pathways for scattering two
photons by one atom; there are N such one-atom terms.
There are then N (N − 1) copies of the first-order correlation
function |G(1)

A (τ )|2. These arise from the sum over cross terms
G

(1)
j (τ )[G(1)

k (τ )]∗, k �= j , in Eq. (14). They also exhibit a beat
at twice the Larmor frequency. It records the interference of
indistinguishable pathways for scattering a first H photon from
atom j (k) and a second from atom k (j )—i.e., the interference
of scattering events with reversed time order, when both orders
leave the same two atoms in the same final state. Finally,
there are N (N − 1) copies of |G(a)

A (τ )|2. These anomalous
correlation functions record the many-atom extension of the
G

(2)
A (τ ) quantum beat. They are present because when one

atom scatters two photons, our cavity setup is unable to tell
from which of the N atoms the two photons come.

C. Atomic motion

Our experiment is performed with a slow atomic beam.
The atoms move through the cavity mode function and the
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dipole coupling coefficients gj (t), j = 1, . . . ,N , are randomly
determined functions of time. If we neglect the effect of photon
scattering on the atomic motion, gj (t), for a particular atom,
is defined by a (constant) velocity vj , a time tj , at which the
atom crosses the plane perpendicular to the beam containing
the cavity axis, and a position rj on that plane; the velocity
may be further specified by a speed vj , and polar and azimuthal
angles θj and φj , defined with respect to the cavity axis. The
quantity relevant for our experiment is the time average

G(2)(τ ) = 1

T

∫ T

0
G(2)(t,t + τ )dt (17)

of Eq. (14); we need also, for normalization, the mean intensity

I = 1

T

∫ T

0

N∑
j=1

G
(1)
j (t,t)dt + ε2. (18)

The sums in Eq. (14) may be considered to range over every
atom that enters the cavity during the course of the experiment.
The atoms are uniformly distributed in a beam of rectangular
cross section, height d and extension l along the cavity axis, at
flux density F (number of atoms per second through unit area).
Correlation functions for atom j depend on rj , vj , and the time
difference t − tj . They fall to zero for |t − tj | much larger than
the mean transit time across the cavity, τ0 = w0/〈v〉, where w0

is the mode function waist and 〈v〉 is the mean speed of an atom
along the axis of the atomic beam.

We consider the mean intensity as an illustration of the way
to proceed and then pass directly to the result for G(2)(τ ). For
the time integral on the right-hand side of Eq. (18), we may
write (with t ′ = t − tj )

∫ T

0

N∑
j=1

G
(1)
j (t,t)dt = FT �d

〈∫ ∞

−∞
G

(1)
rj ,vj ,tj (t ′,t ′)dt ′

〉
, (19)

where it is clear that the number of nonzero contributions
arising from the sum is just the mean number of atoms FT �d,
crossing the plane containing the cavity axis during time T ,
while the angle bracket denotes an ensemble average, over rj

and vj , for atoms distributed within the beam cross section; the
ensemble average can be taken numerically. We then define a
mean intensity per (effective) atom normalized to the profile
of the mode function,

IA = �d

π�w0/4

1

τ0

〈∫ ∞

−∞
G

(1)
rj ,vj ,tj (t ′,t ′)dt ′

〉
, (20)

and arrive at

I = N̄effIA + ε2, (21)

where N̄eff = ρπw2
0�/4 is the effective number of atoms (see

Ref. [29], for example), with ρ = F/〈v〉 the atomic density.
The time average of each sum in Eq. (14) is treated in a

similar way. This yields a straightforward generalization of
Eq. (16):

G(2)(τ )= N̄effG
(2)
A (τ ) + N̄2

eff

∣∣G(a)
A (τ )

∣∣2 + N̄2
eff

[
I 2
A + ∣∣G(1)

A (τ )
∣∣2]

+ 2ε2N̄eff
{
IA + Re

[
G

(1)
A (τ ) +G

(a)
A (τ )

]} + ε4,

(22)

with (ξ = 1,2,a)

G
(ξ )
A (τ ) = �d

π�w0/4

1

τ0

〈∫ ∞

−∞
G

(ξ )
rj ,vj ,tj (t ′,t ′ + τ )dt ′

〉
. (23)

We compare experimental results with a numerical evaluation
of Eq. (22) in Sec. III C. In the next section we introduce
simplifications that lead to a closed expression for G(2)(τ ).

D. Bad-cavity and adiabatic limit

We make two simplifying assumptions and focus on the
weak-field limit. First, we assume that the cavity decay rate
κ is sufficiently large compared with all other rates that
the dipole operator may be taken outside the integral in
Eq. (13) (bad-cavity limit [27]), allowing us to write Aj (t) =
gj (t)�j

h(t)/κ . We assume also that the atomic motion is slow
and atomic states follow the changing coupling constants
gj (t), j = 1, . . . ,N , adiabatically. Then noting that the dipole
operator is expected to carry an atomic excitation proportional
to gj (t) in the weak-field limit, which we verify numerically,
we may factor out the gj (t) dependence and write each
individual atom correlation function in the form

G
(ξ )
rj ,vj ,tj (t,t + τ ) =

[
gmax

κ
ḡj (t)ḡj (t + τ )

]iξ

G(ξ )
max(τ ), (24)

with iξ = 2,4,2 for ξ = 1,2,a, where G
(ξ )
max(τ ) is the cor-

relation function, in the long-time limit, for a fixed atom
at maximum coupling strength gmax. The scaled coupling
functions ḡj (t), j = 1, . . . ,N , follow from the cavity mode
function:

ḡj (t) = cos[kzi(t)]e
−[xj (t)2+yj (t)2]/w2

0 , (25)

where k = 2π/λ is the wave number, and xj (t),yj (t),zj (t)
define the trajectory of atom j . We assign the z axis parallel to
the cavity axis and the x axis as the axis of the atomic beam;
at time t ′ = t − tj = 0, we identify rj = (yj (tj ),zj (tj )), and
vj = (ẋj (t),ẏj (t),żj (t)).

With these simplifications, the time integration and average
of Eq. (23) are defined entirely by the prescribed coupling
functions ḡj (t), j = 1, . . . ,N , and the velocity distribution of
the atomic beam. In some simple cases analytical results can
be obtained. The first is when the atoms move along parallel
trajectories perpendicular to the cavity and at a common speed
v. Equations (23) and (24) then yield

G
(2)
A (τ ) = 35

256

g4
max

κ4
e−2τ 2/τ 2

0 G(2)
max(τ ) (26a)

and

G
(1,a)
A (τ ) = 3

8

g2
max

κ2
e−τ 2/τ 2

0 G(1,a)
max (τ ), (26b)

and setting ε = 0, for simplicity, and introducing the normal-
ized correlation functions

g(2)(τ ) = G(2)(τ )

(N̄effIA)2
, g(2)

max(τ ) = G(2)
max(τ )[

G
(1)
max(0)

]2 , (27a)

and (ξ = 1,a)

g(ξ )
max(τ ) = G

(ξ )
max(τ )

G
(1)
max(0)

, (27b)
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FIG. 6. (a) Quantum beat plotted from Eq. (28) in the fixed
atom limit (τ0 → ∞): N̄eff = 35/36 (solid) and N̄eff 
 1 (dashed).
(b) Intensity I (τ ) of the three terms that contribute to make up the
oscillatory part of the solid curve in (a): g(2)

max(τ ) (solid), |g(1)
max(τ )|2

(dashed), and |g(a)
max(τ )|2 (dot-dashed). The parameters are gmax/γ =

0.005, κ/γ = 0.5, E/γ = 0.005, and a Larmor frequency of γ /3.

we arrive at a correlation function with Gaussian transit time
decay:

g(2)(τ ) = 1 + e−2τ 2/τ 2
0
[∣∣g(1)

max(τ )
∣∣2 + ∣∣g(a)

max(τ )
∣∣2

+ 35
36 N̄−1

eff g(2)
max(τ )

]
. (28)

Note how the dominant term is g(2)
max(τ ) (interfering pathways

for two photons emitted by one atom) at small values of N̄eff ,
less than one, whereas for N̄eff 
 1, |g(1)

max(τ )|2 (interfering
time orders for two photons emitted by different atoms) and
|g(a)

max(τ )|2 (interfering pathways for two photons emitted by
one atom or by another) are the dominant terms.

To illustrate the quantum beat we recover the case of
fixed atoms (averaged over locations) by taking τ0 → ∞. Two
examples are shown in Fig. 6(a): the first with all three terms
making equal contributions to the beat, and the second where
|g(1)

max(τ )|2 and |g(a)
max(τ )|2 dominate. Figure 6(b) illustrates the

behavior of each term separately for the former case. All terms
oscillate with the same frequency—twice the ground-state
Larmor frequency—in the weak-drive limit. There is a phase
difference between the oscillations of g(2)

max(τ ) and |g(a)
max(τ )|2

(two-photon amplitudes) and those of |g(1)
max(τ )|2 (one-photon

amplitudes). This arises from different gyromagnetic ratios in
the ground and excited states.

A more realistic modeling of our experiment takes the speed
distribution D(v) of the atoms to correspond to a thermal
effusive source: D(v) = 2α−4v3e−v2/α2

, where α2 = 2kBT /m

[30]. The additional average over speed yields

g(2)(τ ) = 1 +
(

1 + π

4

τ 2

τ 2
0

)−3(∣∣g(1)
max(τ )

∣∣2 + ∣∣g(a)
max(τ )

∣∣2)

+35

36
N̄−1

eff

(
1 + π

2

τ 2

τ 2
0

)−3/2

g(2)
max(τ ), (29)
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FIG. 7. Effect of a mean tilt of the atomic beam relative to the
cavity axis. The envelope of g(2)(τ ) − 1 is plotted for no tilt of the
beam (solid) and a mean tilt 〈θ〉 = 1.3◦ (dashed), with 〈v〉 = 22 m/s,
�v = 2 m/s, and �θ = 0.025◦.

where τ0 = w0/〈v〉 is defined with 〈v〉 = √
8kBT /πm—the

mean speed of an atom in the source.
In practice the atoms do not move perfectly perpendicular

to the cavity axis. We do not have an analytical expression
for this most general case. Figure 7 shows the numerically
calculated envelope of the correlation function for the case
N̄eff 
 1, assuming a triangular distribution for the polar angle
relative to the cavity axis θ and a Maxwell-Boltzmann speed
distribution. The figure shows how the standing-wave structure
of the cavity mode function becomes imprinted on the envelope
of the quantum beats. The local minimum of the dotted curve
corresponds to the delay time when a majority of atoms pass
from an antinode to a node between the detection of the first
and second photons. The spread in angle and speed explains
why this structure does not recur at longer delays.

III. EXPERIMENT AND RESULTS

A. Apparatus

We perform measurements using a slightly modified version
of the apparatus described in Ref. [31]. A sketch of the
experimental setup appears in Fig. 1(b). We probe a small
ensemble of 85Rb atoms coupled to a Fabry-Perot resonator
in vacuum. The 2.2 mm cavity has a 56 μm mode waist and
a finesse of 11 000, with losses shared approximately equally
between mirror transmission and scattering or absorption. The
decay rates of the field and atomic dipole—(κ,γ /2)/2π =
(2.8,3.0) × 106 s−1—are approximately matched, and twice
as large as the dipole coupling strength gmax/2π = 1.5 MHz
on the D2-line F = 3, m = 0 to F ′ = 4, m′ = 0 transition;
this places our system in the intermediate coupling regime of
cavity QED—single-atom cooperativity C1 = g2/γ κ = 0.12
and saturation photon number n0 = γ 2/3g2 = 5.3—with only
a small probability of reabsorption after a photon is emitted
into the cavity mode.

A crossed-polarizer configuration separates the weak H -
mode fluorescence from the much stronger V -polarized drive,
necessitating careful selection and alignment of polarization
elements. We drive the cavity with a laser sideband gener-
ated by a polarization-maintaining single-mode 780 nm fiber
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modulator (EO Space) operated at 230 MHz. Before entering
the mode-matching lens and vacuum chamber, the drive is
linearly polarized—extinction ratio less than 5 × 10−5—after
passing through a Glan-Thompson polarizer and zero-order
half-wave plate (HWP). A second zero-order HWP placed
after the cavity aligns the polarization to a calcite Wollaston
prism for separation of the H - and V -mode light at the
output. The extinction ratio after this splitter is limited by
birefringence in the cavity mirrors, vacuum chamber windows,
and lenses. Its exact value is a function of drive intensity,
likely due to thermoelastic stress-induced birefringence in the
components, but is generally of order 5 × 10−4. The splitting
of H - and V -mode resonance frequencies due to cavity mirror
birefringence is less than 200 kHz.

The separated beams go to two avalanche photodiodes
(APDs, Perkin-Elmer) for photon counting, except when mea-
suring autocorrelation functions, in which case the V -mode
beam is blocked and the H -mode beam is split equally between
the two detectors by means of a separate HWP and polarizing
beam splitter. The pulsed output channel of each detector is
electronically split between a counter unit, for measuring rates,
and a PC time-stamp card (Becker and Hickl DPC-230) for
recording detection times with 164 ps resolution. A typical
time series measurement takes approximately 300 s. The
output of the time-stamp card is written to a text file and
parsed by a C++ program to calculate the cross correlation
between detection events (the autocorrelation of the H mode).
The correlated events are recorded in a histogram, bin width
16.4 ns, extending out to ±16.4 μs. Division by the average
(uncorrelated) bin count yields g(2)(τ ). The power spectrum is
calculated from a discrete fast Fourier transform (FFT) of this
function.

The 85Rb atoms are extracted continuously from a magneto-
optical trap (MOT) operating as a low-velocity intense source
(LVIS) [32] in a chamber directly above the cavity. The atoms
have a mean speed of ∼22 m/s, which yields an interaction
time of a few microseconds. Atoms leaving the MOT are
primarily pumped to the m = 3 ground state, with quantization
axis provided by the residual vertical magnetic field from the
MOT “anti-Helmholtz” coil pair (∼7 G at the location of the
cavity). In order to change the magnetic field in the cavity, a
third coil is added directly below the anti-Helmholtz pair, with
separate currents applied to each of the three coils. We are thus
able to vary the vertical magnetic field in the cavity between
±12 G while maintaining the required gradient for the MOT.
An additional pair of coils is oriented with axis parallel to the
cavity axis to cancel any residual field in that direction.

Before atoms enter the cavity mode they are optically
pumped to the m = 0 ground state using a beam resonant
with the F = 3 to F ′ = 3 transition and polarization parallel
to the vertical magnetic field. The optical pumping beam
is combined with light from the MOT repumper laser in a
50/50 polarization-maintaining single-mode fiber splitter, and
collimated to a waist diameter of 0.5 mm in order to pass
between the top of the cavity mirrors and the upper edge of
the vacuum window. Due to strong scattering from multiple
reflections into the APDs, we are unable to use the beam
in a retroreflected configuration. It therefore imparts a net
momentum kick to the atoms. The intensity of the optical
pumping beam is chosen optimally as a compromise between
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FIG. 8. (Color online) (a) Example of the V -mode absorption
fraction as a function of common laser and cavity detuning from
the central m = 0 to m′ = 0 atomic transition; for a magnetic field
of ∼5G and approximately one photon on average in the cavity.
The optical pumping beam [red (open) circles, “on”; blue (filled)
dots, “off”] shifts the population toward the center. Solid lines are
least-square fits of the data to a Lorentzian line shape. (b) H -mode
count rates measured concurrently with the data in (a).

moving most atoms to m = 0, while not ejecting too many
from the beam, and scattering too strongly into the APDs.

Figure 8 shows a typical measurement sequence used
for optimizing the optical pumping configuration. Frame (a)
shows the absorption fraction (output intensity over input
intensity, denoted X/Y ) as measured from the V -mode count
rates with the cavity and drive frequencies simultaneously
swept across the atomic resonance. The effect of the optical
pumping is to shift and narrow the absorption peak, ideally to
yield a symmetric line shape centered around the resonance
frequency of the F = 3, m = 0 to F ′ = 4, m′ = 0 transition
(0 MHz in the plot). The departure of the center frequency
from zero results from a combination of incomplete optical
pumping and a small drift in the frequency set point of the Rb
saturated absorption spectroscopy reference used for the laser.
In frame (b) count rates for the H -mode light show a similar
effect. We use the center frequency obtained from these scans
as the reference (zero-detuning) point for our measurements.

The extensive optical bistability literature is useful for
understanding and interpreting the effects of absorption and
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detuning in our experiment. When making these connections
(see, for example, [33]) it should be noted that we operate in
the low intensity limit, and simultaneously scan the laser and
cavity in order to address the atoms directly.

B. Results

Frame (a) of Fig. 9 displays a measured correlation function
for a magnetic field of 5 G; its calculated power spectrum
is displayed in frame (b). The main peak near 4.8 MHz
corresponds to the quantum beat resonance. A smaller peak at
half this frequency is also present, though largely obscured by
noise. It is the result of homodyne interference with drive
light mixed in by cavity birefringence [see the paragraph
surrounding Eq. (8)]. The small sidebands on the main peak
correspond to a slight modulation of the beat envelope. The
modulation is visible in frame (a) and results from the small
(1◦–2◦) deviation of the atomic beam from normal incidence
with the axis of the cavity, which introduces sinusoidally
varying coupling strengths gj (t) and amplitude modulation
of the spontaneous emission rate (see Fig. 7).

Figure 10 illustrates the changing frequency of the quantum
beat with increasing magnetic field, where the expected linear
dependence is observed. We note that the beat frequencies also
depend on the intensity of the drive through an anomalous light
shift, which we report elsewhere [26]. Those presented here
are extracted as the zero-intensity (i.e., unshifted) limit of the
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FIG. 9. (a) Measured intensity correlation function g(2)(τ ) and
(b) its FFT power spectrum; for a 5 G magnetic field, N̄eff = 2.9, and
approximately 6.5 photons in the V mode with no atoms present. The
peak in the spectrum is located at ≈4.8 MHz, twice the ground-state
Larmor frequency for 85Rb in a 5 G field.
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FIG. 10. Measured linear dependence of the frequency of the
quantum beat on magnetic field.

measured frequencies for each magnetic field. Our zeroing
of the magnetic field in all three directions is not better than
10 mG. This error in independent calibration makes the small
offset in the figure consistent with zero.

Figure 11 illustrates the change in the observed beat
when the polarization presented to the detector is not taken
orthogonal to that of the drive but allowed to rotate by
a few degrees. The rotation is controlled by changing the
angle of the HWP placed between the cavity and the PBS
[Fig. 1(b)]. This mixes a small amount of drive light with
the scattered light. With increasing mixed-in fraction the
beat is eventually dominated by a homodyne term, which
arises from the correlation of a photon scattered into the H

mode with a photon from the drive [see Fig. 5 and terms
proportional to ε2 in Eqs. (8), (14), (16), and (22)]; thus, as in
the two-atom case, interfering time orders also yield a quantum
beat. This beat oscillates at half the frequency and allows the
correlation function to dip below one. Generally, some drive
light is coupled into the H mode through a small birefringence
of the cavity mirrors. Frames (c) and (d) of Fig. 11 are
recorded at the HWP angle that gives maximum visibility
of the half-frequency beat. Frames (b) and (d) show the
dramatic increase in visibility gained when the driving laser is
slightly detuned from resonance. This is related to a decreased
decoherence rate from quantum jumps (see Ref. [26]).

In Fig. 12 we show how g(2)(τ ) evolves as the number
of effective atoms increases from less than one to nearly
three. For the fewest atoms [frame (a)], fluctuations in the
number interacting with the cavity show up as a broad Gaussian
background peak, reflecting the increase in the scattering rate
when an atom is present (similar to Ref. [31]). The beats sit
on top of this background, with small visibility, a consequence
of optical pumping and spontaneous emission (to modes other
than the cavity mode). The correlation function is dominated
by the contribution from g(2)

max(τ ) in Eqs. (28) and (29). As
the density of the atomic beam grows [frames (b) and (c)] the
background peak disappears as contributions from multiple
atoms become more prominent; contributions from |g(1)

max(τ )|2,
|g(a)

max(τ )|2, and g(2)
max(τ ) contribute with more-or-less weight in

frame (c).
Finally, Fig. 13 shows the change in the spectrum when

the optical pumping beam is added. The effect on the beat
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FIG. 11. Evolution of the measured g(2)(τ ) with homodyne mix-
ing and detuning of the drive: (a) on resonance, maximum extinction;
(b) −6 MHz detuning, maximum extinction; (c) on resonance, HWP
rotated by 2.8◦; and (d) −6 MHz detuning, HWP rotated by 1.2◦.
Data taken for a 5 G magnetic field, N̄eff = 2.9, and approximately
2.0 photons in the V mode with no atoms present.

frequency is minimal, revealing the robustness of the quantum
interference to the initial distribution of the atoms amongst
the ground-state Zeeman levels. The biggest change is in the
low-frequency components of the FFT, which correspond to
atomic motion through the standing-wave mode. This is caused
by the momentum kick imparted by the optical pumping beam.

C. Comparison of theory and experiment

Outside the bad-cavity and adiabatic limit, the normalized
correlation function is given by

g(2)(τ ) = G(2)(τ )/I 2, (30)

with I and G(2)(τ ) defined in Eqs. (21) and (22). For
comparison with experiment, we introduce a global scale
parameter s, writing

g(2)(τ ) = 1 + s

{∣∣g(1)
A (τ )

∣∣2 + ∣∣g(a)
A (τ )

∣∣2 + N̄−1
eff g

(2)
A (τ )

+ ε2

N̄effI + ε2
2 Re

[
g

(1)
A (τ ) + g

(a)
A (τ )

]}
, (31)
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FIG. 12. Evolution of the measured g(2)(τ ) with increasing atomic
beam density. Data taken for a 5 G magnetic field, N̄eff = 0.3,0,9,2.9
[(a), (b), (c)] and approximately 3.1 photons in the V mode with no
atoms present.

where (ξ = 1,2,a)

g
(ξ )
A (τ ) = G

(ξ )
A (τ )

N̄effI + ε2
. (32)

This expression is evaluated numerically by calculating the
one-atom correlation functions from the model of the atomic
beam developed in Sec. II C. The speeds vj are selected from
a Gaussian distribution, and the angles θj and φj from a
triangular distribution.
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FIG. 13. (Color online) Sample power spectrum [FFT of the
measured g(2)(τ )] with (red, dashed) and without (blue, solid) optical
pumping of the atoms prior to entering the cavity.
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FIG. 14. (Color online) Sample comparison of the measured
(points) and calculated (solid line) correlation function (a) and its
FFT power spectrum (b) under conditions where atomic spontaneous
emission dominates the measured photon counts. A flat background is
added to the calculated spectrum in order to account for residual noise
in the detectors. The atomic beam parameters are N̄eff = 3, s = 0.53,
〈v〉 = 17 m/s, �v = 2 m/s, 〈θ〉 = 1.4◦, �θ = 0.9◦, 〈φ〉 = 0◦, and
�φ = 0.7◦. The mean number of scattered photons in the V mode
is 0.63, and the birefringence background ε2 is 1.2% of the driven
V -mode photon number. (c) Sample measured (dashed line) and cal-
culated (points) correlation functions with a small amount of coherent
drive admixed in order to enhance the homodyne signal. Parameters
are N̄eff = 0.55, s = 1, 〈v〉 = 13.5 m/s, �v = 2 m/s, 〈θ〉 = 0.97◦,
�θ = 0.9◦, 〈φ〉 = 0◦, and �φ = 0.7◦. The mean number of scattered
photons in the V mode is 1.2, and the mixed coherent field ε2

is 0.5% of the driven V -mode photon number, which due to the
smaller number of atoms is strong enough to substantially change the
signal.

Figures 14(a) and 14(b) show a fit to the experimental
data and its FFT power spectrum. Experimental error bars are

computed as the square root of the number of photon counts
in each bin. In order to improve the fit, we adjust the mean
speed and angles according to the following considerations.
The experimental data shows a low-frequency modulation at
short delays, the signature of a small mean inclination of the
atomic trajectories away from normal to the cavity axis (see
Fig. 7). Comparing the FFT of the measured autocorrelation
function with simulations at different mean beam angles 〈θ〉,
with 〈φ〉 = 0, we find that 〈θ〉 = 1.4◦ optimizes the fit. For
small angles like this, the main parameter affecting the width
of the peak at twice the Larmor frequency, around 5 MHz in
the figure, is the mean atomic speed. A value of 〈v〉 = 17 m/s
optimizes the fit, consistent with values expected from an
LVIS [32]. The amplitude of the peak around 2.5 MHz is
determined by the value of ε, which is adjusted as another free
parameter.

Frame (a) of Fig. 14 compares theory and experiment in the
time domain. The reduced χ2 value for this fit is 1.3. The major
differences between the calculation and the experiment comes
for delays close to zero; here the measured correlation function
is substantially larger in value compared to the calculated one.
This is at least partially due to the presence of uncorrelated
background light scattered into the detection path (primarily
from the MOT cooling beams). Frame (b) of Fig. 14 shows
the fit in the frequency domain. The calculated spectrum in
fact goes to zero at high frequencies (larger than 7 MHz),
while the experimental one remains flat due to the presence of
background light in the detectors (up to about 200 MHz). With
a flat frequency background added to the calculation to account
for the residual background and shot noise (as shown in the
figure), the reduced χ2 value of the fit is 0.99. Frame (c) shows
a similar correlation function after the addition of a small
amount of coherent drive in order to enhance the homodyne
signal. The simulation accurately captures the pronounced
change in frequency and shape of the signal, with a reduced
χ2 value of 1.6.

IV. SUMMARY AND CONCLUSIONS

We have studied theoretically and experimentally how the
ground-state quantum beats reported in Ref. [12] depend on
different parameters. The fundamental beat frequency occurs
at twice the Larmor frequency and is found to increase linearly
with magnetic field as expected. Mixing of the driving and
scattered fields produces a beat at the Larmor frequency itself.
Increasing the number of atoms brings the minimum of the
oscillation to the shot noise level; this is because the many
pairs of two-atom beats come to dominate the one-atom signal.
The stochastic evolution of coherence within the atomic level
structure shows that the many levels of the F = 3 to F ′ = 4
transition help make the observed quantum beats robust against
optical pumping.
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APPENDIX: DIPOLE OPERATORS

The one-atom dipole operators are given by

�π =
√

1

4
|g−3〉〈e−3| +

√
3

7
|g−2〉〈e−2| +

√
15

28
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