
PHYSICAL REVIEW A 86, 053813 (2012)

Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates

Dominic W. Berry,1 Michael J. W. Hall,2 Marcin Zwierz,2 and Howard M. Wiseman2

1Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
2Centre for Quantum Computation and Communication Technology (Australian Research Council), Centre for Quantum Dynamics,

Griffith University, Brisbane, QLD 4111, Australia
(Received 17 September 2012; published 13 November 2012)

The ultimate bound to the accuracy of phase estimates is often assumed to be given by the Heisenberg limit.
Recent work seemed to indicate that this bound can be violated, yielding measurements with much higher
accuracy than was previously expected. The Heisenberg limit can be restored as a rigorous bound to the accuracy
provided one considers the accuracy averaged over the possible values of the unknown phase, as we have recently
shown [Phys. Rev. A 85, 041802(R) (2012)]. Here we present an expanded proof of this result together with a
number of additional results, including the proof of a previously conjectured stronger bound in the asymptotic
limit. Other measures of the accuracy are examined, as well as other restrictions on the generator of the phase
shifts. We provide expanded numerical results for the minimum error and asymptotic expansions. The significance
of the results claiming violation of the Heisenberg limit is assessed, followed by a detailed discussion of the
limitations of the Cramér-Rao bound.
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I. INTRODUCTION

Phase estimation is the basis for much precision measure-
ment. Optical interferometers offer highly accurate measure-
ments of length, and atomic phase measurements provide
highly accurate measurements of time, as well as other
physical quantities like magnetic field [1–5]. In optics, most
measurements are limited by the shot-noise limit, where
the accuracy scales as 1/

√〈N〉, where N is the photon
number operator. In contrast, it is normally assumed that the
fundamental limit is the Heisenberg limit, where the accuracy
scales as 1/〈N〉 [6–8]. This potentially provides far greater
accuracy, but is extremely difficult to achieve in practice
because it requires highly nonclassical states of light, as well
as arbitrarily high efficiencies [9–11]. Any amount of loss will
cause the scaling to revert to 1/

√〈N〉 for large 〈N〉 [11].
Recently, a number of papers suggested that the Heisenberg

limit is not the fundamental limit to accuracy, and that a better
scaling constant or even a higher power of 〈N〉 might be
possible. In Ref. [12], Anisimov et al. gave a proposal for
violating the Heisenberg limit by a small amount. In another
work, Zhang et al. [13] proposed a scheme offering zero phase
uncertainty with finite 〈N〉. Finally, in Ref. [14] Rivas and
Luis presented a proposal for obtaining scaling as 1/〈N〉p
for p > 1. A qualitatively different proposal for violating the
Heisenberg limit is that based on nonlinear interferometry
[15,16]. However, that work differs in its use of terminology;
it does not violate the Heisenberg limit in the sense we use
here (see Sec. VII D) [7].

A common feature of proposals to violate the Heisenberg
limit is that they only work for a limited range of phases.
Additional phase information would be needed to confine the
phase to within the region where the measurement is accurate.
One can consider first using a sequence of measurements to
ensure that the phase lies within a suitable region, then using
the super-Heisenberg measurement. If the overall measure-
ment (consisting of the sequence of individual measurements)
could yield better accuracy than the Heisenberg limit, then
it could be regarded as providing a true improvement. On the

other hand, if the resources required to localize the phase to the
required region result in an overall measurement with accuracy
that is not better than the Heisenberg limit, then the accuracy of
the super-Heisenberg measurements would seem to be illusory.

An analogous situation was seen in considering the
reciprocal-peak-likelihood as a measure of uncertainty. In
Refs. [17,18], a technique was proposed that would apparently
yield super-Heisenberg accuracy in terms of reciprocal-peak-
likelihood. Later work found that, in practice, the proposal
resulted in accuracy that was worse than the Heisenberg
limit [19]. Another example is that of NOON states. NOON
states yield phase information scaling as the Heisenberg limit
but require initial phase information with similar accuracy. In
that case, it is known how to combine measurements from
multiple states to obtain an overall measurement that scales at
the Heisenberg limit [20,21].

To evaluate whether the super-Heisenberg measurements
would be able to yield an overall measurement violating the
Heisenberg limit, we examined the case where the mean-
square error is averaged over all phase shifts. We showed
that the Heisenberg limit provides a rigorous lower bound to
the square root of the average mean-square error (RAMSE) in
such a case [22]. Therefore, no scheme that apparently beats
the Heisenberg limit for a small range of phase could be used
to construct an overall measurement starting from an unknown
phase that beats the Heisenberg limit. An alternative approach
is to determine the bound if the initial phase is restricted to a
given range. In Ref. [23] it was shown that, with such a restric-
tion, the usual Heisenberg limit can be multiplied by a factor
proportional to the phase range, and further results have been
given in Refs. [24–27]. An alternative approach has yielded a
bound on the average of the error at just two locations [28].

The specific result from Ref. [22] is

δ�̂ � k

〈G + 1〉 , (1)

where δ�̂ is the RAMSE, G is the generator of the phase
shifts, which is here assumed to have nonnegative integer
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eigenvalues, and k is a constant. These quantities are explained
in Sec. II below. We have analytically proven that this
inequality holds with k = kA := (2π/e3)

1/2 ≈ 0.5593 [22]. In
Sec. III we give the full proof of that result, as well as a
generalized result in terms of the absolute value of G in the
case where G also has negative integer eigenvalues.

Numerical calculations indicate that the inequality holds
with the larger scaling constant k = kC ≈ 1.3761. We give
the detailed numerical results in Sec. IV, indicating that this
result holds both for the RAMSE and the error estimated
using the Holevo variance. In Sec. V we calculate asymptotic
expansions for the RAMSE, providing strong analytic support
for the scaling constant kC and proving that k = kC is valid
in the asymptotic limit 〈G〉 → ∞. We examine the scaling
with the number of probe states in Sec. VI, then give a
detailed discussion of the papers claiming violation of the
Heisenberg limit in Sec. VII. The Cramér-Rao bound and the
error propagation formula are commonly used in examining
the Heisenberg limit, but have some limitations; these are
discussed in Sec. VIII.

II. FIGURES OF MERIT FOR AVERAGE
PHASE RESOLUTION

There are a number of different figures of merit for phase
measurements. Before describing these, we first introduce
some notation, largely following Ref. [22]. The random
variable for the phase shift of the system is �, and the random
variable for the estimate of that phase shift is �̂. The error in
the phase estimate is � = �̂ − �. We use capital letters for the
random variables; the corresponding values and measurement
outcomes are denoted by the corresponding lower-case letters
(φ, φ̂, and θ ).

We consider a Hilbert space with a phase shift operator
G. In the completely general case, the only restriction is
that the eigenvalues of G must be integers. We may also
consider the specific case where the eigenvalues are all
nonnegative integers, in which case we denote the operator
by N . This includes, for example, the case of photon number.
Alternatively, if the eigenvalues include all integers, such as
for angular momentum, we use the symbol J .

The phase shift is described by the unitary operator
exp(−iG�). That is, the probe state ρ0 becomes ρφ :=
e−iGφρ0e

iGφ . The detection method used to estimate φ is
described by a positive-operator valued measure (POVM)
{Mφ̂}. Hence, the probability distribution is given by p(φ̂|φ) =
Tr(Mφ̂ρφ). Because phase is only defined modulo 2π , we do
not distinguish between φ and φ + 2π or between φ̂ and φ̂ +
2π . This means that p(φ̂|φ) = p(φ̂ + 2πk|φ) for any integer
k, and p(φ̂|φ) is normalized over a (arbitrary) 2π interval.

A. Root-mean-square error

The most common figure of merit for a measurement is
the square root of the mean-square error (MSE). We will
call this the RMSE. For a specific phase shift, φ, the MSE is
given by

(
	

φr

φ �̂
)2

:=
∫ φr+π

φr−π

dφ̂(φ̂ − φ)2p(φ̂|φ). (2)

There is a subtlety in that, for phase, values that differ by
2π are equivalent, which means that a range of 2π must be
specified for the integral. However, the reference phase shift
φr is arbitrary, and the value that is obtained for the MSE will
depend on φr . Ideally, φ should be near the center of the range.
If it is near one of the bounds of the range then the MSE will
be unreasonably large.

To solve this problem, it is convenient to take the difference
φ̂ − φ modulo (−π,π ]. That is, we add or subtract a multiple
of 2π such that the value obtained is in the range (−π,π ]. It
is important to note that this convention can only decrease the
value obtained for the MSE. In this work we are concerned
with placing lower bounds on the MSE. We prove these lower
bounds for the MSE with the difference defined modulo 2π .
Because this MSE is no larger than that obtained without taking
the difference modulo (−π,π ], all results hold for that case as
well. Thus, it is natural to work with the minimum MSE,
given by

(	φ�̂)2 :=
∫ φr+π

φr−π

dφ̂{(φ̂ − φ)mod(−π,π ]}2p(φ̂|φ)

=
∫ φ+π

φ−π

dφ̂(φ̂ − φ)2p(φ̂|φ), (3)

where we have used the fact that p(φ̂|φ) repeats modulo 2π .
It follows that

	φ�̂ ≡ 	
φ
φ�̂ � 	

φr

φ �̂ (4)

for any reference phase φr .
The above 	φ�̂ is a measure of the accuracy of the

phase measurement only for a specific phase shift φ. It is
trivial to see that one can always choose a measurement such
that the MSE can be zero for a specific phase shift φ0: the
trivial measurement that always yields the result φ̂ = φ0. In
reality, for a phase measurement the phase shift is unknown;
otherwise a measurement would be unnecessary. To be useful,
a measurement must give accurate results for a range of phase
shifts.

A rigorous way of taking account of the range of phase is to
average the figure of merit over the phase shift. For the MSE
one would use ∫ π

−π

dφ p(φ)(	φ�̂)2, (5)

where p(φ) is a probability distribution describing the prior
information about the phase shift. In this work we consider
the case that there is no prior information, so p(φ) = 1/(2π ).
Then the average MSE (AMSE) is given by

(δ�̂)2 := 1

2π

∫ π

−π

dφ(	φ�̂)2. (6)

One then finds that

(δ�̂)2 =
∫ π

−π

dθ θ2p̄(θ ) = 〈�2〉. (7)

Here p̄(θ ) is the probability density for the error in the phase
estimate � = �̂ − �, and is defined by

p̄(θ ) := 1

2π

∫ π

−π

dφ p(θ + φ|φ). (8)
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We call δ�̂ the RAMSE, because it is averaged over φ before
taking the square root, whereas the RMSE 	φ�̂ is for a
specific φ.

Equation (7) holds because the mean-square error is a linear
figure of merit. A general figure of merit for the accuracy of a
phase estimate �̂ can be defined as a functional F that takes
as input a probability density in φ̂ and outputs a scalar. In the
case that F is linear, we find that∫ π

−π

dφ p(φ)F ((�̂|φ)) = F (p̄(�)). (9)

This means that, for linear measures, the average figure of
merit and the figure of merit of the average distribution are
equivalent.

More generally, consider a convex figure of merit; that is,
one that satisfies

F (tp1(�̂) + (1 − t)p2(�̂)) � tF (p1(�̂)) + (1 − t)F (p2(�̂)),

(10)

for t ∈ [0,1]. By using Jensen’s inequality, one obtains∫ π

−π

dφ p(φ)F (p(�̂|φ)) � F

( ∫ π

−π

dφ p(φ)p(�̂|φ)
)

= F (p̄(�)). (11)

What this means is that, if the figure of merit is convex, then
placing a lower bound on the figure of merit for the average
distribution also provides a lower bound on the average of
the figure of merit. That is the approach we use in this work;
we find lower bounds on the figure of merit for the average
distribution, which also hold for the average of the figure of
merit.

B. Holevo variance and average bias

There are alternative measures of the spread which are
similar to the MSE but which are specifically defined for
phase. These are typically defined in terms of the average
of the exponential of the phase, 〈ei�̂〉. In the case that the
phase distribution is sharply peaked, then this quantity will be
close to 1. One possibility for quantifying the uncertainty in
the phase is 2(1 − |〈ei�̂〉|) [29]; another is 1 − |〈ei�̂〉|2 [30,31].

A measure of this type with some nice properties is that
proposed by Holevo [32],

VH,φ(�̂) := |〈ei�̂〉φ|−2 − 1, (12)

which has been dubbed the Holevo variance [33]. Here the
subscript φ indicates that the variance is determined for a
specific value of the phase shift. That is,

VH,φ(�̂) :=
∣∣∣∣
〈 ∫ π

−π

dφ̂ eiφ̂p(φ̂|φ)

〉∣∣∣∣
−2

− 1. (13)

In this case there is no ambiguity in choosing the bounds of the
integral, because the argument is clearly periodic modulo 2π .

A minor problem with this definition is that it does not
penalize biased estimates. However, this is easily corrected by
using the modified definition

VarH,φ�̂ := Re〈ei(�̂−φ)〉−2
φ − 1. (14)

If the measurement is “U(1) unbiased” in the sense that

φ = arg[〈ei�̂〉φ], (15)

then these two expressions for the Holevo variance are
equivalent.

The Holevo variance is a convex functional of the probabil-
ity distribution. From Eq. (11), this means that one can place
a lower bound on the average Holevo variance by considering
the Holevo variance of the average distribution. That is,

(δH �̂)2 := (Re〈ei�〉)−2 − 1 (16)

is a lower bound on the average value of VarH,φ(�̂). In this
paper we do not discuss the Holevo variance without averaging
over φ, so we will refer to (δH �̂)2 as the Holevo variance.

In the case that the average distribution p(θ ) is U(1)
unbiased, in the sense that 〈ei�〉 is real and positive,
then

(δH �̂)2 = |〈ei�〉|−2 − 1. (17)

If the average distribution is biased, then it can be modified to
obtain a U(1) unbiased measurement. Taking θav := arg〈ei�〉,
we can replace measurement operators M�̂ with

M ′
�̂

= M�̂+θav
. (18)

Then, for these new measurement operators, p′(φ̂|φ) = p(φ̂ +
θav|φ), so

〈ei�〉M ′ = 1

2π

∫ π

−π

dφ̂

∫ π

−π

dφ ei(φ̂−φ)p(φ̂ + θav|φ)

= 1

2π

∫ π

−π

dφ̂

∫ π

−π

dφ ei(φ̂−θav−φ)p(φ̂|φ)

= e−iθav〈ei�〉M. (19)

Hence this modification of the measurement yields a U(1)
unbiased average measurement.

With this condition, we can bound the mean-square error
by using the following inequality:

|〈ei�〉| = 〈cos �〉 � cos
√

〈�2〉, (20)

where we have used the fact that cos
√

x is a convex function,
along with Jensen’s inequality. There are alternative ways to
bound the mean-square error, but this particular inequality
will be useful in Appendix C. It also has the nice property
that it can be saturated, for a probability distribution that is
just delta functions at ±

√
〈�2〉. Now consider the limit where

the mean-square error (δ�̂)2 = 〈�2〉 is small. Expanding as a
Maclaurin series in this small parameter, we obtain

(δ�̂)2 � (arccos{[(δH �̂)2 + 1]−1/2})2

= (δH �̂)2 − 2
3 (δH �̂)4 + O((δH �̂)6). (21)

This means that, except for higher-order terms, the Holevo
variance lower bounds the AMSE from below, so asymptoti-
cally we have (δH �̂)2 � (δ�̂)2.

We can also use the Holevo variance to bound the AMSE
from above. Using the fact that cos θ � 1 − 2θ2/π2 on the
interval [−π,π ], we have the inequality

〈cos �〉 � 1 − 2〈�2〉
π2

. (22)
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Using this, we have

(δ�̂)2 � π2

2
(1 − [(δH �̂)2 + 1]−1/2)

= π2

4
(δH �̂)2 − 3π2

16
(δH �̂)4 + O((δH �̂)6). (23)

The reason for the factor of π2/4 is that, even for small
variance, the main contribution to the AMSE can be from large
phase errors. The inequality (22) is saturated for a distribution
that has contributions at ±π .

Returning to the asymptotic lower bound (21), its signifi-
cance is that any lower bound on the Holevo variance is also
asymptotically a lower bound on the AMSE. In particular, it
is known that for canonical phase measurements on a single-
mode field there is the tight asymptotic lower bound on the
Holevo variance δH �̂ � kC/〈N〉 with kC := 2(−zA/3)3/2 ≈
1.3761 (where zA is the first zero of the Airy function) [34,35].
This is tight in the sense that, asymptotically, the Holevo
variance is equal to this value with any difference being of
higher order. Because the Holevo variance is asymptotically a
lower bound on the usual AMSE, we must also asymptotically
have the lower bound δ�̂ � kC/〈N〉 for canonical phase
measurements on a single-mode field. It will be shown in
Sec. III that this is in fact a tight lower bound.

C. Entropic length

Another measure of concentration is the entropic length
[36,37]. This is given by

L(�̂) := eH (�), (24)

where H (�) is the entropy of the error probability density,

H (�) = −
∫ π

−π

p̄(θ ) ln[p̄(θ )]dθ. (25)

The entropy takes its largest positive value for a flat distribution
and takes large negative values as the distribution provides
more information about the phase. The negative of the entropy
provides a measure of how much information about the phase
is available. The entropic length is correspondingly small for
a distribution providing a lot of information about the phase.

Similar to the AMSE or the Holevo variance, the entropic
length will be small for a sharply peaked distribution. However,
in contrast to those measures, the entropic length will also
be small if there are multiple sharp peaks, with a value
roughly equal to the total width of those peaks. The entropic
length satisfies several basic properties expected for a length,
discussed in Ref. [36]. It can also be used to provide a lower
bound to the RAMSE via the relation [37]

δ�̂ � (2πe)−1/2L(�̂). (26)

This is because, if one were considering a distribution on
the infinite line, the entropy is maximized for fixed �̂ by a
Gaussian distribution, in which case δ�̂ = (2πe)−1/2L(�̂).
For the case of phase, we are limited to the interval [−π,π ],
which means that the Gaussian distribution cannot be obtained
exactly. Therefore the inequality still holds, but cannot be
saturated except asymptotically.

In contrast to the other measures considered here, the
entropy is not convex. This means that one needs to be cautious

when considering the average entropy. The entropy of the
average distribution does not provide a lower bound on the
average of the entropies. We do not determine the lower bound
on the average of entropies; this is an open problem.

III. OBTAINING UNIVERSAL BOUNDS FROM
NONDEGENERATE BOUNDS

We now present the universal form of the Heisenberg
limit, which was first derived in Ref. [22]. In Sec. III A we
present the theorem showing that bounds which hold for
canonical measurements on nondegenerate systems also hold
for completely arbitrary measurements on general systems.
In optics, a single-mode field is nondegenerate, whereas the
general case includes multimode interferometry. In Sec. III B
we use this to provide our universal form of the Heisenberg
limit. In Sec. IV we will present numerical results indicating
that a better scaling constant is possible.

A. Mapping the general problem to a nondegenerate problem

As discussed at the start of Sec. II, the detection method may
be described by a POVM {Mφ̂}, which gives the probability
distribution via

p(φ̂|φ) = Tr(Mφ̂ρφ). (27)

A particularly useful form of POVM is a covariant POVM.
Whereas for an arbitrary POVM the individual Mφ̂ can be cho-
sen independently of each other (except for the normalization
requirement), for a covariant POVM only one measurement
operator may be chosen, then all others are related via the
generator of shifts. In particular,

Mφ̂ = e−iGφ̂M0e
iGφ̂. (28)

For a covariant POVM, the probability distribution for the error
in the estimate is independent of the phase shift. This may be
shown via

p(θ + φ|φ) = Tr(Mθ+φρφ)

= Tr(e−iG(θ+φ)M0e
iG(θ+φ)e−iGφρ0e

iGφ)

= Tr(e−iGθM0e
iGθρ0). (29)

A particular form of covariant POVM is the canonical
POVM. This can be defined as {e−iGφC0e

iGφ}, with [38]

C0 = 1

2π

∑
d

∑
n,n′∈S;d�D(n),D(n′)

|n,d〉〈n′,d|. (30)

Here we have labeled the states with n and n′ indicating the
eigenvalues of G, and d the degeneracy. The function D(n)
gives the degeneracy for eigenvalue n. S denotes the spectrum
of eigenvalues of G, which we have assumed to be the integers
or a subset thereof. This definition of a canonical POVM is not
unique in general, because it depends on the labeling of the
degenerate states; a fact which was not noted in Refs. [22,38],
and which does not affect the results therein. However, we
will only require the simpler case of no degeneracies in what
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follows, where for this case the POVM is uniquely given by
{e−iG(s)φC

(s)
0 eiG(s)φ}, with

C
(s)
0 = 1

2π

∑
n,n′∈S

|n〉〈n′|. (31)

We use G(s) to denote a generator with the same spectrum of
eigenvalues as G, but nondegenerate.

We now show that any average phase distribution p̄(θ )
can be obtained by a covariant measurement, and that the
covariant measurement result can be obtained by a canonical
measurement on a system without degeneracy. In Ref. [22]
we obtained this result by a three-step process: first that any
average phase distribution p̄(θ ) can be obtained by a covariant
measurement; second that the covariant measurement result
can be obtained by a canonical measurement; and third
that the canonical measurement result can be obtained by a
canonical measurement on a system without degeneracy. Here
we simplify the proof by combining the second two steps.

To express these results it is convenient to modify the
notation slightly. We will use subscripts on the probability
p to indicate the POVM used. In addition, we will indicate
the state used in the probability. In the case of the probability
for the measurement error θ for the covariant POVM, we omit
φ because the probability is independent of φ as discussed
above. Therefore, we replace p(θ + φ|φ) with pM (θ |ρ0).

Expressed in terms of this notation, the first result is as
follows:

Lemma 1. For any POVM {Mφ̂}, there exists a covariant
POVM {Mφ̂} such that for all states ρ0,

pM (θ |ρ0) = p̄M (θ |ρ0). (32)

Proof. This result is well known [32], but we provide a proof
here for completeness. Given the POVM {Mφ̂}, we define the

covariant POVM via

M0 := 1

2π

∫ π

−π

dφ eiGφMφe−iGφ. (33)

Then we find

pM (θ |ρ0) = Tr(e−iGθM0e
iGθρ0)

= 1

2π

∫ π

−π

dφ Tr(e−iGθ eiGφMφe−iGφeiGθρ0)

= 1

2π

∫ π

−π

dφ pM (φ|φ − θ )

= 1

2π

∫ π

−π

dφ pM (φ + θ |φ) = p̄M (θ |ρ0). (34)

In the last line we have shifted the variable of integration. This
shows the relation (32) required. �

The second result, which is a combination of the two steps
given in Ref. [22], is as follows:

Lemma 2. Given any covariant POVM {Mφ̂} and state ρ0,

there exists a state without degeneracies ρ
(s)
0 such that the

probability distribution of G(s) for ρ
(s)
0 is the same as that of G

for ρ0, and

pC(s)

(
θ |ρ(s)

0

) = pM (θ |ρ0). (35)

Proof. Choose the state without degeneracies via

ρ
(s)
0 = 2π

∑
n,n′∈S

|n′〉〈n|
∑

d�D(n),d ′�D(n′)

〈n′,d ′|ρ0|n,d〉

× 〈n,d|M0|n′,d ′〉. (36)

Note that ρ
(s)
0 is indeed a density operator and yields the same

distribution for G(s) as ρ0 does for G. The details for how to
prove these facts are given in Appendix A.

It can be shown that the average phase distributions are also
the same, via

pC(s)

(
θ |ρ(s)

0

) = Tr
(
e−iG(s)θC

(s)
0 eiG(s)θρ

(s)
0

)
= 1

2π
Tr

⎛
⎝e−iG(s)θ

∑
m,m′∈S

|m〉〈m′|eiG(s)θ2π
∑

n,n′∈S

|n′〉〈n|
∑

d�D(n),d ′�D(n′)

〈n′,d ′|ρ0|n,d〉〈n,d|M0|n′,d ′〉
⎞
⎠

=
∑

n,n′∈S

ei(n′−n)θ
∑

d�D(n),d ′�D(n′)

〈n′,d ′|ρ0|n,d〉〈n,d|M0|n′,d ′〉

=
∑

n,n′∈S

∑
d�D(n),d ′�D(n′)

〈n′,d ′|ρ0|n,d〉〈n,d|e−iGθM0e
iGθ |n′,d ′〉

=
∑
n′∈S

∑
d ′�D(n′)

〈n′,d ′|ρ0e
−iGθM0e

iGθ |n′,d ′〉 = Tr(e−iGθM0e
iGθρ0) = pM (θ |ρ0). (37)

This shows the relation (35) required. �
Using these lemmas then enables us to prove our theorem

that the average distribution can always be obtained by a
canonical measurement on a system without degeneracies.

Theorem 1. Any bound on the concentration of the canonical
phase distribution of a nondegenerate system with shift

generator G(s), under some constraint C on the distribution
of G(s), is also a bound on the concentration of the average
phase distribution p(θ ) of an arbitrary phase estimate for any
shift generator G having the same eigenvalue spectrum as G(s),
providing that the probe state satisfies the same constraint C
with respect to the distribution of G.
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Remarks. A measure of the concentration is a functional of
the probability distribution and includes the mean-square error,
the Holevo variance, and the entropic length. For measures that
are convex, such as the mean-square error and Holevo variance,
lower bounds on the measure for the average distribution
provide lower bounds on the average of that measure (see
Sec. II A). By the distribution of G, we mean the probability
distribution for the eigenvalues of G. Examples of constraints
on the distribution of G are a fixed mean 〈G〉, an upper bound
on the eigenvalues, or a fixed mean absolute value 〈|G|〉.

Proof. Consider any state ρ0 that satisfies the constraint
C on the distribution of G. Given an arbitrary measurement
described by a POVM {Mφ̂}, we obtain an average phase
distribution p̄(θ ). Using Lemma 1, we find that there exists a
covariant POVM {Mφ̂} such that the same probability distribu-
tion is obtained with the same state, ρ0. Next, using Lemma 2,
there exists a state without degeneracy, ρ

(s)
0 , such that the

nondegenerate canonical measurement on ρ
(s)
0 produces the

same phase distribution, and the distribution of G(s) is
the same as the distribution of G for ρ0.

Therefore, the distribution of G(s) for ρ
(s)
0 still satisfies

the same constraint C. Furthermore, because the probability
distribution for the canonical measurement pC(s) (θ |ρ(s)

0 ) is
equal to the average phase distribution p̄M (θ |ρ0), any mea-
sure of the concentration of the probability distribution is
unchanged. Because any value of the concentration that can
be obtained for the arbitrary measurement under constraint C
can also be obtained for the concentration of the canonical
phase distribution under the same constraint, the arbitrary
measurement must satisfy the same bound as the canonical
measurement. �

B. Analytic bounds via an entropic uncertainty relation

It is possible to obtain a number of bounds by using entropic
uncertainty relations. The entropic uncertainty relation for
canonical phase measurements and a nondegenerate shift
generator G is given by [39,40]

H (�) + H (G) � ln 2π. (38)

This can then be used to obtain bounds on the RAMSE [22].
In particular, combining Eqs. (24), (26), and (38) yields

δ�̂ � (2πe)−1/2eH (�) � (2π/e)1/2e−H (G). (39)

We first specialize to the case where the eigenvalue
spectrum S includes all nonnegative integers, so we denote
the generator by N . The entropy for fixed mean number is
maximized for the thermal (negative exponential) distribution.
By a straightforward calculation, one can show that this results
in the inequality

H (N ) � ln〈N + 1〉 + 〈N〉 ln(1 + 1/〈N〉). (40)

Because x ln(1 + 1/x) < 1, this yields (for finite expectation
values)

H (N ) < ln〈N + 1〉 + 1. (41)

Substitution into Eq. (39) then gives

δ�̂ >
kA

〈N + 1〉 , (42)

where kA = (2π/e3)1/2 ≈ 0.5593 (defined in the introduc-
tion). Using Theorem 1, this result holds for the RAMSE for
all possible phase measurements, and for any shift generator
with nonnegative integer eigenvalues. Recall that, because the
MSE is a linear measure, the RMSE of the average distribution
is equivalent to the RAMSE [see Eqs. (7) and (9)].

We can also use this result to infer the result in the
more general case where there is some lower bound g on
the eigenvalues of G. Then we can take G = g1 + N , so
〈N〉 = 〈G − g〉. Then one obtains

δ�̂ >
kA

〈G − g + 1〉 . (43)

Note that, for this result, it is not necessary for the spectrum S

to include all integers above g. This is because, in minimizing
δ�̂ for given 〈G − g〉, removing some integers restricts the
possible states and therefore can only increase the AMSE.

An alternative restriction that one may wish to consider
is, instead of a fixed mean, a fixed mean of the absolute
value, 〈|G|〉. This is of particular interest in the case of angular
momentum, where G = J . Then fixed 〈|J |〉 corresponds to a
mean absolute value of the angular momentum. The maximum
entropy for fixed 〈|G − g|〉, where g is any real number, can be
obtained by finding a critical point of the variational quantity


 = −
∑
n∈S

pn ln pn − α
∑
n∈S

pn − β
∑
n∈S

|n − g|pn, (44)

where α and β are variational parameters. As shown in
Appendix B, this yields

H (G) < ln(2〈|G − g|〉 + 1) + 1. (45)

Substitution in Eq. (39) then gives

δ�̂ >
kA

〈2|G − g| + 1〉 . (46)

Once again we note that this result holds both when S includes
all integers, so G = J , and when S does not include all
integers. In the latter cases, the maximum entropy distribution
can not be obtained exactly, but it still provides a bound.

For a given state, one can adjust the value of g in order to
maximize this lower bound. The optimal value is the median;
that is, the value such that there is equal probability for
eigenvalues above and below g.

Another restriction on the distribution that can be consid-
ered is a finite range of eigenvalues. For example, with number
we have a minimum eigenvalue of 0 and can place an upper
bound of nmax on the eigenvalues. Then the entropy is bound
as

H (G) � ln(nmax + 1), (47)

because the maximum entropy is for the flat distribution. Then,
combining with (39) gives

δ�̂ >

√
2π/e

nmax + 1
. (48)

In the specific case of the Holevo variance, there is a well-
known result for canonical measurements [33,41],

δH �̂ � tan

(
π

nmax + 2

)
. (49)
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This result is achievable for arbitrary nmax. Using our theorem,
this result also holds for the average distribution for arbitrary
measurements. Furthermore, because the Holevo variance
is a convex functional of the probability distribution, this
bound holds for the root-mean value of the Holevo variance
(averaging over phase shifts).

IV. OPTIMAL BOUNDS VIA NUMERICAL
CALCULATIONS

The bound in Eq. (42) has a scaling constant of kA =
(2π/e3)1/2 ≈ 0.5593. In contrast, based on the asymptotic
result for Holevo variance [34,35], we expect δ�̂ � kC/〈N〉
with kC = 2(−zA/3)3/2 ≈ 1.3761 for large 〈N〉, where zA is
defined in Sec. II B. This indicates that the scaling constant
of the bound in Eq. (42) is not optimal, and suggests the
conjecture [22]

δ�̂ >
kC

〈N + 1〉 . (50)

In order to test this conjecture, we solved the variational
problem to find the minimum value of the RAMSE or Holevo
variance as a function of 〈N〉. The results supporting this
conjecture are given in this section. In Sec. V the conjecture is
proved analytically for the special case of the asymptotic limit
〈N〉 → ∞.

A. Holevo variance

The case of the Holevo variance is simplest, because the
problem is to maximize |〈ei�〉|. Given a state

|ψ〉 =
∞∑

n=0

ψn|n〉, (51)

we have

|〈ei�〉| =
∣∣∣∣∣

∞∑
n=0

ψn+1ψ
∗
n

∣∣∣∣∣ . (52)

Note that we can upper bound this expression via∣∣∣∣∣
∞∑

n=0

ψn+1ψ
∗
n

∣∣∣∣∣ �
∞∑

n=0

|ψn+1ψn|. (53)

The normalization and 〈N〉 are unaffected by replacing the
coefficients ψn with their absolute values. Therefore, for
maximization of |〈ei�〉|, we can always take ψn to be real
and nonnegative.

From the above, the variational problem is thus to find a
critical point of


 =
∞∑

n=0

(
ψnψn+1 − αψ2

n − βnψ2
n

)
, (54)

where α and β correspond to normalization and mean photon
number constraints. The variational condition ∂
/∂ψn = 0
leads directly to the eigenvalue equation

ψn−1 + ψn+1 = 2(α + βn)ψn (55)

for n � 1 and ψ1 = 2(α + βn)ψ0. To avoid the need to specify
a different equation for n = 0, we can simply define ψ−1 := 0.

B. Root-mean-square error

The problem for minimizing the RAMSE is somewhat more
difficult, because we do not have a simple expression like
Eq. (52). However, any well-behaved function (i.e., satisfying
the Dirichlet conditions) can be expanded in a Fourier series
on the interval [−π,π ] as

f (θ ) =
∞∑

m=−∞
zmeimθ . (56)

For m � 0, the expectation values of the exponentials are given
by

〈eim�〉 =
∞∑

n=0

ψn+mψ∗
n . (57)

For m < 0, the expectation values are just the complex
conjugate of those for positive m.

Unlike the case of the Holevo variance, it is not obvious
at first sight that we can take the state coefficients to be real.
However, if f (θ ) is real and symmetric about θ = 0, then
z−m = z∗

m = zm. Therefore the expectation value of f (�) is
given by

〈f (�)〉 =
∞∑

m,n=0

ψ∗
mZmnψn, (58)

where Z is the real symmetric matrix with coefficients Zmn :=
z|m−n|.

The variational problem is then to find a critical point of


 = 〈f (�)〉 − α − β〈N〉

=
∞∑

m,n=0

ψ∗
m[Zmn − (α + βn)δmn]ψn. (59)

The variational condition leads to
∞∑

n=0

Zmnψn = (α + βm)ψm. (60)

This equation is solved as an eigenvalue equation with α as
the eigenvalue. Because the corresponding matrix Z − βN is
real and symmetric in the number-state basis, the eigenvectors
are real in this basis (up to a global phase factor). This means
that the state coefficients can indeed be taken to be real.

In the specific case of f (θ ) = θ2, the Fourier series is

θ2 = π2

3
+ 4

∞∑
m=1

(−1)m

m2
cos(mθ ). (61)

We then obtain the eigenvalue equation(
π2

3
− βm

)
ψm +

∞∑
n=−m

n�=0

2(−1)n

n2
ψn = α ψm. (62)

Numerical solution of this eigenvalue equation is difficult,
because there are an infinite number of Fourier coefficients.
The problem can be truncated at some maximum number, but
solution still requires finding the eigenvalues of a full matrix.
In contrast, the problem for the Holevo variance is sparse and
can therefore be solved much more efficiently.
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C. Bounding the average mean-square error

As we are interested in testing a lower bound on the AMSE,
we can alternatively use an expression with a finite number of
Fourier coefficients, but that forms a lower bound on θ2. One
alternative is to use f1(θ ) := 2(1 − cos θ ), which is the same
optimization problem as for the Holevo variance. To show
f1(θ ) � θ2 on [−π,π ], we can use a Taylor expansion to third
order with the Lagrange form of the remainder

f1(θ ) = θ2 + f
(3)
1 (ξ )

3!
θ3 = θ2 − 1

3
θ3 sin ξ, (63)

where ξ ∈ [0,θ ]. Because sin ξ has the same sign as θ3, the
remainder term is negative, and f1(θ ) � θ2.

The drawback to this alternative is that it yields results that
do not satisfy the conjectured lower bound. We therefore use
a higher-order approximation given by

f2(θ ) := 5
2 − 8

3 cos θ + 1
6 cos 2θ. (64)

Again expanding in a Taylor series,

f2(θ ) = θ2 + f
(3)
2 (ξ )

3!
θ3 = θ2 − 8

3
θ3(1 − cos ξ ) sin ξ � θ2.

(65)

We can also obtain an upper bound using (see Appendix C)

f3(θ ) := (π2/4 − 1)[2(1 − cos θ ) − (1 − cos 2θ )/2]

+ 2(1 − cos θ ). (66)

In the following we will use (δm�̂)2 := 〈fm(�)〉 for m ∈
{1,2,3}.

D. Numerical results

The minimal Holevo variance, as well as the minimal values
of 〈�2〉 and δ2�̂, have been determined by numerically solving
the eigenvalue equations. In each case, a number cutoff was
used that was about 10 times the value of 〈N〉, or 100 for small
〈N〉. At this point the magnitude of the state coefficients had
fallen to less than 1/106 of the maximum value, and increasing
the cutoff beyond this did not alter the results by more than 1
part in 106. For the results for 〈�2〉, the maximum 〈N〉 was
about 5000, due to the difficulty in finding eigenvalues of a
full matrix. In contrast, for the Holevo variance and for δ2�̂,
the maximum 〈N〉 was over 106.

The results for the Holevo variance are given in Fig. 1. In
this figure the square root of the Holevo variance is plotted
multiplied by 〈N + 1〉. Therefore, if kC/〈N + 1〉 provides a
lower bound to the RAMSE, the curve should be above kC

(also shown in the figures). It is clear from the figure that the
numerical results indicate that kC/〈N + 1〉 provides a strict
lower bound to δH �̂. In this figure δ1�̂ is also shown, and
δ1�̂ < kC/〈N + 1〉 in the range shown.

The results calculated for δ�̂ are shown in Fig. 2. It can be
seen that these results are also above the line for kC , indicating
that δ�̂ > kC/〈N + 1〉. One would like to provide more
easily calculated lower bounds on δ�̂ to test this inequality
more thoroughly. It is clear that δ1�̂ is not useful for this
purpose, because the curve in Fig. 1 is below kC . It is also
possible to obtain a tighter lower bound on δ�̂ using δ1�̂ (see
Appendix C), but this curve is still not above kC for all 〈N〉.
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δ H

Φ

FIG. 1. (Color online) Minimum possible value of 〈N + 1〉δH �̂

plotted as a function of 〈N〉 (solid curve). The case where δ1� is used
instead of δH �̂ is shown as the dashed curve (green). The asymptotic
value of kC ≈ 1.3761 is shown as the horizontal dotted line (blue).

A better lower bound to δ�̂ is δ2�̂, which is also shown in
Fig. 2, and is above the kC line. This quantity can be calculated
more rapidly and reliably than δ�̂, and results are given up to
〈N〉 ≈ 2 × 106. This provides further numerical evidence that
δ�̂ > kC/〈N + 1〉. Results were also calculated for 〈N〉 down
to about 10−6. These are not shown in the figures, but the
curves that are above kC do not cross below kC .

E. Angular momentum calculations

We have also calculated the corresponding results with a
fixed value of 〈|J |〉. The variational problem is exactly the
same as before, except now we sum over positive and negative
values of j (as opposed to n), and replace n with |j |. That is,

10
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1.35
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1.55

1.6

1.65

1.7

1.75

〈N〉

〈N
+

1〉
δΦ

FIG. 2. (Color online) Minimum possible value of 〈N + 1〉δ�̂
plotted as a function of 〈N〉. The dotted curve (green) shows the
values obtained for δ�̂ (i.e., the RAMSE). The solid curve (black)
uses δ2�̂ instead of δ�̂. The dash-dotted curve (red) is the lower
bound using arccos[1 − (δ1�̂)2/2]. The dashed curve (blue) is the
upper bound using δ3�̂ calculated for the state that minimizes δ1�̂.
The asymptotic value of kC ≈ 1.3761 is again shown as the horizontal
dotted line (blue).
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FIG. 3. (Color online) Minimum possible value of 〈2|J | + 1〉δ�̂
plotted as a function of 〈N〉 as the dotted curve (green). The minimum
value of 〈2|J | + 1〉δH �̂ is shown as the solid curve (black), and
〈2|J | + 1〉δ1�̂ is shown as the dashed curve (red). The asymptotic
value of k′

C ≈ 0.7916 is shown as the horizontal dotted line (blue).

the variational problem is to find a critical point of


 = 〈f (�)〉 − α − β〈|J |〉. (67)

As before, for a real function f symmetric about zero we can
assume that the state coefficients are real, so the variational
condition yields

∞∑
m=−∞

amψj+m = (α + βj )ψj . (68)

In the case of f (θ ) = θ2, we obtain the eigenvalue equation

π2

3
ψj +

∞∑
m=−∞
m�=0

2(−1)m

m2
ψj+m = (α + β|j |)ψj . (69)

The eigenvalue equation for the case of f1(θ ) is

ψj−1 + ψj+1 = 2(α + β|j |)ψj . (70)

We will not consider f2(θ ) for this problem.
The results for δ�, δH�, and δ1� were all determined

numerically, and the results are shown in Fig. 3. It will be
shown in the next section that the asymptotic optimal value for
δ1�̂ is

δ1�̂ ∼ k′
C

〈2|J | + 1〉 , (71)

with k′
C = 4(−z′

A/3)3/2 ≈ 0.7916, where z′
A is the first zero of

the derivative of the Airy function. We have therefore plotted
the results for δ�̂ multiplied by 〈2|J | + 1〉 in Fig. 3. It can be
seen in this figure that all the results are above k′

C , supporting
the conjecture that there is strict inequality with the scaling
constant k′

C .

V. ASYMPTOTIC EXPANSIONS

A. Holevo variance

In the specific case of the Holevo variance, it is possible to
obtain analytic results in terms of Bessel functions to provide

further support to the conjecture that δH �̂ > kC/〈N + 1〉. The
recurrence relation (55) has a known solution in terms of Bessel
functions [35]. Bessel functions of the first kind satisfy the re-
currence relation Jk−1(z) + Jk+1(z) = (2k/z)Jk(z). Therefore
the solution is of the form

ψn(x,z) = AJx+n+1(z), (72)

with x := α/β − 1, z := 1/β. Bessel functions of the second
kind can be ignored, because they diverge for large values of
the order. The condition that ψ−1 = 0 implies the restriction

Jx(z) = 0 (73)

on the parameter z, thus confining its allowed values to the
(countable) set of zeros of Jx .

To obtain the smallest Holevo variance for a given mean
photon number, we wish to take the solution for the largest
value of α. This corresponds to the largest solution of Eq. (73)
in terms of x for given z. Conversely, for given x we want the
first positive zero of Jx . The normalization constraint yields

A−2 =
∞∑

n=0

[Jx+n+1(z)]2 =
∞∑

k=1

[Jx+k(z)]2, (74)

and hence one has

〈N〉 = A2
∞∑

n=0

n [Jx+n+1(z)]2 = A2
∞∑

k=1

(k − 1)[Jx+k(z)]2

=
∑∞

k=1 k [Jx+k(z)]2∑∞
k=1[Jx+k(z)]2

− 1, (75)

〈ei�〉 = A2
∞∑

n=0

Jx+n+1(z) Jx+n+2(z)

=
∑∞

k=1 Jx+k(z) Jx+k+1(z)∑∞
k=1[Jx+k(z)]2

. (76)

Using Eq. (55), we have

〈ei�〉 = (α + β〈N〉) = (x + 〈N〉 + 1)/z. (77)

Up until this point, these results for the Bessel functions are
the same as those of Ref. [35]. Reference [35] then uses an
approximation in terms of Airy functions. We have determined
more accurate results using formulas for sums of Bessel
functions (see Appendix D). We find that

|〈ei�〉|−2 − 1 =
5∑

k=1

b2k

〈N + 1〉2k
+ O

(
1

〈N + 1〉12

)
, (78)

where b2 = k2
C , and b2 to b10 are all positive and close to

2. The fact that each bj that has been calculated is positive
strongly supports the conjecture that the Holevo variance is
strictly lower bounded by the first term.

B. Upper bounding the optimal mean-square error

It would be desirable to obtain a similar approximation for
the exact RAMSE δ�. However, the eigenvalue equation does
not have any solution in terms of elementary functions that we
have been able to find. Even the lower bounding quantity δ2�

yields an eigenvalue equation that does not appear to have an
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analytic solution. However, we can place an upper bound on
the optimal value of δ� by using

θ2 � f3(θ ) (79)

for θ ∈ [−π,π ]. We can calculate δ3�̂, except for the state that
minimizes δ1�̂. This value is shown in Fig. 2 for comparison
with δ�̂.

Using the properties of Bessel functions, this leads to the
result that the optimal value of δ�̂ satisfies (see Appendix D)

(δ�̂)2 � k2
C

〈N + 1〉2
+ O

(
1

〈N + 1〉3

)
. (80)

This means that, asymptotically, the optimal value of δ�̂

cannot be larger than kC/〈N + 1〉. Because δ�̂ cannot be
smaller than δH �̂ except for higher-order terms [see Eq. (21)],
this means the optimal δ�̂ must be asymptotically equal to
kC/〈N + 1〉 [i.e., kC is the largest value of k for which Eq. (1)
can be true].

C. Angular momentum calculations

Next we consider the problem with fixed 〈|J |〉. Recall that
the variational problem yields an eigenvalue problem given in
Eq. (70). This is solved by taking [42]

ψj (x,z) = A1 Jx+j (z) (81)

for j � 0, and

ψj (x,z) = A2 Jx−j (z) (82)

for j � 0. In this case we take x := α/β, z := 1/β. We again
may ignore Bessel functions of the second kind, because they
diverge. The restriction that the solutions coincide for n = 0
means that A1 = A2 = A, and

ψj (x,z) = AJx+|j |(z), (83)

for all j . The condition that the recurrence relation holds for
j = 0 means that

Jx+1(z) = x

z
Jx(z) = 1

2
[Jx−1(z) + Jx+1(z)]. (84)

This implies

Jx−1(z) − Jx+1(z) = 0. (85)

Then, using [Jx−1(z) − Jx+1(z)]/2 = J ′
x(z), this means we

must have J ′
x(z) = 0.

Performing series expansions similar to that for the first
case gives (see Appendix E)

2(1 − |〈ei�〉|) =
9∑

k=2

dk

〈2|J | + 1〉k + O

(
1

〈2|J | + 1〉10

)
,

(86)

where d2 = k′
C

2, and coefficients up to d5 are positive, but d6

is negative. This strongly supports the numerical results that
the strict inequality

δ1�̂ � k′
C

〈2|J | + 1〉 (87)

holds. In turn, because δ�̂ � δ1�̂, this also supports the
conjecture that the inequality holds for δ�̂. In addition,

δH �̂ � δ1�̂, so this supports the conjecture that the inequality
holds for δH �̂.

Similarly to the case for fixed 〈N〉, one can use Eq. (79)
to find a series expansion for an upper bound on the optimal
value of δ�̂, giving

(δ�̂)2 � k′
C

2

〈2|J | + 1〉2
+ O

(
1

〈2|J | + 1〉3

)
. (88)

This means that we have upper and lower bounds on the
optimal δ�̂, showing that it is asymptotically equal to
k′
C/〈2|J | + 1〉.

VI. SCALING WITH NUMBER OF PROBE STATES

Another question is what the scaling of the lower bound is
if there are m identical probe states. Normally it is expected
that the MSE will scale like 1/

√
m if there are m copies of the

state. This is because, for estimates formed by the average of
the individual estimates, the standard error scales as 1/

√
m.

Similarly, the Cramér-Rao bound for m identical probe states
yields the following bound for estimates that are unbiased (in
the standard statistical sense, not what we have called U(1)
unbiased in Sec. II B) [32,43]:

	φ�̂ � 1

2
√

m	N
. (89)

We will call this the Helstrom-Holevo bound.
Because of these results one might expect that one could

derive a lower bound to the uncertainty in terms of 〈N〉 of the
form k/(

√
m〈N + 1〉). On the other hand, directly using the

above methods yields a lower bound of

δ�̂ � k

〈mN + 1〉 , (90)

because the overall average number is m〈N〉. Recall that we
have proven this inequality for k = kA and have extremely
strong numerical evidence for the inequality for k = kC .

We can prove that there is no lower bound scaling as
1/(

√
m〈N + 1〉) in the following way. Let m ∈ N, 〈N〉, and

δ > 0 be given. We use μ for the required value of 〈N〉 to avoid
confusion with intermediate states we use in this discussion
with different values of 〈N〉.

Let |χn−1〉 be the state with the minimum phase uncertainty
for mean number 〈N〉 = n − 1, and let |χ ′

n−1〉 be the corre-
sponding state with the same amplitudes, but shifted up by
one. This means that there is no vacuum component, the phase
uncertainty is unchanged, and 〈N〉 = n. We are considering
small δ and large m, so we expect that μδ � m. In that case,
we take n = (mμ)1/(1+δ), and consider m copies of

|ψ〉 =
√

1 − μ/n|0〉 +
√

μ/n|χ ′
n−1〉. (91)

For this state, 〈N〉 = μ. Now consider a phase measurement
that first distinguishes between |0〉 and |χ ′

n−1〉 on all copies of
the state. If the |χ ′

n−1〉 result is found, then a canonical phase
measurement is performed.

The probability of getting the |χ ′
n−1〉 result is μ/n. For

m repetitions, the probability of projecting every single
copy onto the state |0〉 is (1 − μ/n)m � exp(−mμ/n) =
exp[−(mμ)δ/(1+δ)]. This probability scales exponentially in
mμ and may be ignored for asymptotically large mμ. The
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phase uncertainty is therefore (up to an exponentially small
correction) no more than that for |χ ′

n−1〉, which is

δ�̂ = kC/n + O(1/n2)

= kC/(mμ)1/(1+δ) + O(1/(mμ)2/(1+δ)). (92)

For μδ > m, we can just take n = μ, and |ψ〉 = |χ ′
n−1〉.

In this case we have 1/(mμ)1/(1+δ) � 1/μ. Therefore, con-
sidering just the uncertainty for a single copy of the state
gives

δ�̂ = kC/μ + O(1/μ2)

< kC/(mμ)1/(1+δ) + O(1/(mμ)2/(1+δ)). (93)

This provides an upper bound to the uncertainty for m copies
of the state.

Therefore, we find that, for any δ > 0, m ∈ N, and μ =
〈N〉, we can find a state such that the uncertainty is no greater
than kC/(mμ)1/(1+δ) to leading order. Because we can choose
any δ > 0, this means that, for fixed 〈N〉, the lower bound to
the scaling must be arbitrarily close to 1/m.

This result is counterintuitive, because for a state that
does not depend on m, the uncertainty can be expected to
scale as 1/

√
m, similarly to the Helstrom-Holevo bound (89).

However, the Helstom-Holevo bound, in terms of m and 	N ,
holds even for states that depend on m. Similarly, a bound in
terms of m and 〈N〉 must hold for states that are chosen based
on m. We have shown that the potential dependence of states
upon m means that it is not possible to obtain a universal bound
that scales as 1/

√
m for given 〈N〉.

VII. PAPERS CLAIMING VIOLATION
OF HEISENBERG LIMIT

In the following, we present some recent measurement
schemes claiming violation of the Heisenberg limit. We
summarize the techniques used in these schemes, and explain
why they appear to violate the Heisenberg limit. We argue that
the accuracy of these super-Heisenberg measurements should
be considered illusory, primarily because they only work for a
very restricted range of phase.

A. Anisimov et al.

Anisimov et al. [12] describe a noncovariant phase estima-
tion method having a minimum RMSE

	0
φ�̂ = 1

[〈N〉(〈N〉 + 2)]1/2
. (94)

This quantity is for a particular phase shift, as opposed to the
average over the phase shift, δ�̂. Also, the RMSE is here using
a reference phase of 0, rather than the reference phase of φ

that we use (see Sec. II A). This result violates an alternative
definition of the Heisenberg limit, given by Anisimov et al.
as [12]

	0
φ�̂ � 1/〈N〉. (95)

First, it should be noted that this does not give a different
power of 〈N〉 and does not change the scaling constant. It only
violates this form of the Heisenberg limit by an amount which
is significant for small 〈N〉 and is of higher order for large

〈N〉. In later work [44], they have modified their claim to that
of achieving the Heisenberg limit.

In fact, it is easy to see that the above form (95) of the
Heisenberg limit cannot be a strict limit for small 〈N〉. For any
〈N〉 less than 1/π it must be violated, because the maximum
RMSE possible is π2. For the same reason, any bound of the
form k/〈N〉 cannot hold for all 〈N〉. It is for this reason that
we have used 〈N + 1〉 (or 〈G + 1〉 more generally).

Note from Eq. (94) that the minimum RMSE satisfies

	0
φ�̂ >

1

[〈N〉(〈N〉 + 2) + 1]1/2
= 1

〈N + 1〉 . (96)

Hence, the RAMSE δ�̂ trivially satisfies our analytical
lower bound (42). However, the minimum value is below
our conjectured best possible bound (50) by a factor of
kC ≈ 1.3761 in the asymptotic limit. This does not contradict
our conjectured bound, because the conjectured bound is for
δ�̂, whereas the above value is for a specific value of the
phase shift. This is an important aspect of our result. It is
possible to obtain smaller errors for specific values of the
phase shift [23–27], but not when the average is taken over the
phase. That is, the noncovariance of the scheme in Ref. [12]
does allow beating our conjectured bound, in a small range
of phase shifts about φ = 0, but only at the expense of worse
phase resolution over the remainder of possible phase shift
values.

B. Zhang et al.

Zhang et al. [13] propose a superposition state with arbi-
trarily high phase sensitivity but finite average photon number.
They consider a two-mode Mach-Zehnder interferometer
(MZI) system, with a probe state of the form

|ψ〉 :=
∑
n�1

cn|ψn〉, |ψn〉 := 1√
2

[|n,0〉 + |0,n〉]. (97)

That is, |ψ〉 is a superposition of (mutually orthogonal) NOON
states.

They use the quantum Cramér-Rao bound (QCRB) to derive
the ultimate limit to the uncertainty of phase measurement as

	0
φ�̂ � 1√

〈N2〉
, (98)

in contrast to Eq. (95). Also N = Na + Nb is the total photon
number operator for the two modes a and b, rather than just
the number operator Na for the mode passing through the
phase shift. They call Eq. (98) the “proper” Heisenberg limit,
and Eq. (95) the “generally accepted form” of the Heisenberg
limit. This result is similar to the result given in a number
of other works [45,46]. By choosing cn ∝ n−3/2, they obtain
〈N〉 < ∞ and 〈N2〉 = ∞, which gives 	0

φ�̂ � 0. They further
claim in Sec. V of Ref. [13] that this lower bound is achievable
(i.e., that the uncertainty can be zero for finite 〈N〉).

An interesting feature of their result is that the Fisher
information can be infinite for finite 〈N〉. Therefore, it should
not be expected that the QCRB can give a nontrivial lower
bound on the uncertainty for fixed 〈N〉. Furthermore, the Fisher
information is infinite for all φ.

However, there are some problems with the result presented.
First, they give no proof that the lower bound provided by the

053813-11



BERRY, HALL, ZWIERZ, AND WISEMAN PHYSICAL REVIEW A 86, 053813 (2012)

QCRB is achievable. In many cases Fisher’s theorem [47]
allows the QCRB to be achieved asymptotically (i.e., with
a scaling constant of 1/

√
m for m probe states). However,

Fisher’s theorem is not universally applicable, because it
requires a unique maximally likely estimate [48]. In contrast,
here the measurements will yield multiple maximally likely
estimates.

Second, the form of the QCRB given is for unbiased
measurements, but it is unclear how to perform an unbiased
measurement here. For biased measurements this lower bound
does not hold. In fact, the obvious measurement technique is
biased and will only yield zero error for φ = 0 and π , similar
to the example in Sec. VIII C. This can be achieved with a very
simple choice of state.

However, measurements that yield zero error only for
isolated values of φ will not be useful. Further, based on
the results presented here, the average performance of any
two-mode MZI estimate must satisfy

δ�̂ � kA

〈Na + 1〉 , (99)

as a consequence of Eq. (42).

C. Rivas and Luis

Rivas and Luis [14] consider a linear phase estimation
procedure that employs as the probe state the coherent
superposition

|ψ〉 = μ|0〉 + ν|ξ 〉 (100)

of the vacuum |0〉 and a squeezed state |ξ 〉. The authors
consider the case with ν � 1, μ � 1 and also assume that
the phase shift is known to be small: φ � 1. The fixed mean
photon number of the probe state is then given by

〈N〉 = ν2n̄ξ , (101)

where n̄ξ is the (average) number of photons in the squeezed
state. Using conventional error propagation arguments, they
find for this state (

	0
φ�̂

)2 � ν2

4m〈N〉2
, (102)

where m is the number of repetitions of the measurement. The
lower bound here is arbitrarily below the usual Heisenberg
limit by a factor O(ν2).

We note that similar results can be obtained in a simplified
scenario by employing the probe state

|ψ〉 = μ|0〉 + ν|n̄ξ 〉, (103)

where |n̄ξ 〉 denotes a number state with n̄ξ photons. The
interference fringes obtained from this state are high frequency,
but low visibility. A calculation using the error propagation
formula based on the observable X = |0〉〈n̄ξ | + |n̄ξ 〉〈0| yields

(
	0

φ�̂
)2 = (δX)2

|d〈X〉/dφ|2 ≈ ν2

4〈N〉2
. (104)

Taking ν ∝ 〈N〉1−p gives

	0
φ�̂ ∝ 1

〈N〉p , (105)

which, in principle, gives an accuracy that scales arbitrarily
well with 〈N〉 (for large p).

The problem with this scheme is that the high accuracy
predicted by the error propagation formula is given by high-
frequency fringes with low visibility. It would take a great
deal of additional phase information to resolve the ambiguity
in the fringes, as well as many repetitions of the measurement
to obtain a reasonable estimate of the observable X so that the
error propagation formula would become accurate.

The scheme presented in Ref. [14] is a little more com-
plicated (including an analysis of the efficiency), but similar
considerations apply. A quadrature measurement is considered
for a fixed phase, which means that the analysis essentially
gives an estimate of the uncertainty for a given value of the
phase. As we have noted above, it is possible to obtain higher
accuracy for a particular value of the phase shift. For example,
it is trivial to design a measurement that gives zero error for
a single value of the phase shift. The bound (42) must hold
when averaging over the phase shift.

D. Nonlinear interferometry

A qualitatively different type of proposal for beating the
Heisenberg limit is that based on nonlinear interferometry
[15,16]. The basis of these proposals is that the generator
of the phase shifts is nonlinear in the number operator. For
example, G = Nq for some q > 1. It is then found that the
phase uncertainty can scale as 1/〈N〉q . Subtleties involved in
achieving such scalings are discussed in Ref. [27].

These proposals do not contradict the results presented
here; they are just using the terminology differently [7]. In
Refs. [15,16], the Heisenberg limit is given as 1/〈N〉, where
N is the number of particles. In contrast, here we give the
Heisenberg limit in terms of the generator of the phase shifts.
That is, the bound is

δ�̂ � k

〈G + 1〉 = k

〈Nq + 1〉 , (106)

which typically scales as k/〈N〉q . Therefore the results
do not violate the Heisenberg limit (106) given here. In
Refs. [15,16], they call this limit the “quantum limit” rather
than the Heisenberg limit.

VIII. LIMITATIONS OF CRAMÉR-RAO BOUND

The Cramér-Rao bound for the RMSE 	0
φ�̂ is often used

as motivation for the Heisenberg limit, but it has limitations
which mean that it does not provide a rigorous basis for the
Heisenberg limit. There are a number of different variations
of the way the Cramér-Rao bound is used. First, the classical
Cramér-Rao bound (CRB), 1/

√
mFC(φ), is in terms of the

classical Fisher information FC(φ) of a specific probability
distribution, so in quantum mechanics it is calculated for a
given state and measurement.

Second, the quantum Cramér-Rao bound (QCRB) replaces
FC(φ) by the quantum Fisher information, FQ(φ) (correspond-
ing to the classical Fisher information optimized over all
quantum measurements) but is still calculated for a given
state [49]. Third, the Helstrom-Holevo bound (HHB), as in
Eq. (89), is optimized over both the quantum measurement and
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the quantum state, with the optimization being for a given 	N .
Because these bounds use successively more optimization, one
has the ordering CRB � QCRB � HHB. In particular, for any
estimate that is unbiased for phase shift φ, one has

	0
φ�̂ � 1√

mFC(φ)
� 1√

mFQ(φ)
� 1

2
√

m	N
. (107)

The most obvious limitation in using the HHB is that it is a
limit in terms of 	N , whereas the Heisenberg limit is in terms
of 〈N〉. This means that, for states with large uncertainty in N

as compared to the mean value, the HHB does not imply the
Heisenberg limit. This is taken advantage of in Refs. [13,14].

A fixed value of 	N is just a choice of constraint. One could
also consider optimization for fixed 〈N〉 as a method to obtain
the Heisenberg limit. However, it is easily seen that there is no
upper bound on the Fisher information for a given 〈N〉. In the
example of Zhang et al., they find a state with infinite Fisher
information for finite 〈N〉 (see Sec. VII B). Note also that if
there were such a bound, then the CRB would imply a 1/

√
m

scaling for fixed 〈N〉, whereas we have found that such scaling
is impossible (see Sec. VI). The difficulty of using the CRB
was also noted in Ref. [28].

A. Bias in phase estimation

Another major factor that needs to be taken into account
when considering the CRB and related bounds is that of bias.
Note, for example, that the value of 	N in Eq. (107) can be
arbitrarily small, whereas the RMSE cannot be larger than
π . It follows that any phase estimate must be biased for
sufficiently small 	N . In fact, one can show that covariant
phase measurements cannot be unbiased for every phase shift
value, in the sense needed for the QCRB and HHB.

In particular, when considering the RMSE with reference
phase φr , 	

φr

φ �̂, one needs to define the bias function

bφr
(φ) := 〈�̂〉φr

φ − φ, (108)

with

〈�̂〉φr

φ :=
∫ φr+π

φr−π

dφ̂ φ̂p(φ̂|φ). (109)

Then the CRB with bias is [50]

(
	

φr

φ �̂
)2 �

[
1 + b′

φr
(φ)

]2

mFC(φ)
+ bφr

(φ)2. (110)

The QCRB and HHB in Eq. (107) similarly generalizes (see
also [51]).

If one is to use the form of the CRB without bias, then one
needs bφr

(φ) = 0 and b′
φr

(φ) = 0. This is highly problematic
if one is to consider the full range of values of φ with a
fixed reference phase φr . This is because 〈�̂〉φr

φ would need to
change discontinuously at φ = φr + π . But, for finite 〈N〉, it
is easily shown that 〈�̂〉φr

φ is a continuous function of φ (see
Appendix F). Therefore it is not possible for the phase to be
globally unbiased unless 〈N〉 is infinite. Moreover, there must
be a region of size scaling as 1/〈N〉 where the measurement
is biased [this follows from Eq. (F14)].

On the other hand, one can consider applying the CRB to
	φ�̂ in Eq. (3); that is, to the RMSE modulo (−π,π ]. Because

	φ�̂ � 	0
φ�̂ (see Sec. II A), using the CRB to bound 	φ�̂

also yields a bound on 	0
φ�̂. Also, because 	φ�̂ ≡ 	

φ
φ�̂,

the conditions for the measurement to be unbiased become
bφ(φ) = 0 and b′

φ(φ) = 0. It is important to note that b′
φ(φ) is

not the same as d
dφ

bφ(φ). In fact, the restriction d
dφ

bφ(φ) = 0
implies

0 = d

dφr

bφr
(φ)

∣∣∣∣
φr=φ

+ b′
φ(φ)

= 2πp(φ + π |φ) + b′
φ(φ). (111)

That is, if bφ(φ) = 0, then d
dφ

bφ(φ) will automatically be zero,
but b′

φ(φ) will only be zero if p(φ + π |φ) = 0. In fact, for
bφ(φ) = 0, the condition b′

φ(φ) = 0 is equivalent to p(φ +
π |φ) = 0.

The conditions for the measurement to be unbiased (when
applying the CRB to the RMSE modulo (−π,π ]) can therefore
be given as bφ(φ) = 0 and p(φ + π |φ) = 0. The condition
bφ(φ) = 0 can be satisfied relatively easily, because it will be
satisfied whenever the probability distribution for the error in
the phase estimate is symmetric, so p(φ + θ |φ) = p(φ − θ |φ).
However, it is not possible to satisfy p(φ + π |φ) = 0 for all φ

when 〈N〉 is small. This is also the parameter regime where the
HHB without bias must break down, because it would predict
an impossibly large uncertainty.

Hence, the bias of a given estimate is crucial in any
application of the Cramér-Rao bound to the RMSE. This
is in strong contrast to the Heisenberg-type bounds for the
RAMSE derived in this paper, which are independent of the
bias function.

B. Asymptotic achievability

It is often stated that the CRB (and QCRB and HHB) is
asymptotically achievable in the limit of many probe states,
without any further qualification. However, for example, it
is important to note from Eq. (110) that, in the asymptotic
limit m → ∞, the RMSE does not approach zero for a biased
estimate—it is always bounded below by |bφr

(φ)|.
Furthermore, Fisher’s theorem that Eq. (110) is itself

asymptotically achievable, as m → ∞, does not hold in all
cases of physical interest [48]. In particular, this theorem
assumes that there is a unique maximally likely estimate [47].
However, this is not the case for many states considered in
quantum phase estimation, including the NOON states as per
Eq. (97), which are the states that minimize the QCRB. The
reason is of course that there is nothing to distinguish phase
shifts modulo 2π/n, regardless of the number of samples,
unless the phase shift is in fact already known to this accuracy.
That is, there are n maximally likely estimates, so Fisher’s
theorem does not apply.

In contrast, the above qualifications do not apply to the
Heisenberg-type bounds for the RAMSE derived in this paper,
which are independent of the bias of the estimate, and which
are asymptotically achievable in the sense described in Sec. VI.

C. Example

There are obvious phase estimates that are not unbiased,
where the RMSE obtained is qualitatively different from
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what would be expected from the Cramér-Rao bound without
correcting for bias. Consider a simple measurement with a
single photon in a MZI, in the state

ρφ = 1

2
(|0〉〈0| + |1〉〈1|) + v

2
(eiφ|0〉〈1| + e−iφ|1〉〈0|),

(112)

with visibility v < 1. The photon-counting measurement
at the output of the interferometer gives probabilities of
measurement results

p(±|φ) = (1 ± v cos φ)/2. (113)

For the + measurement result, the optimal (least-square-error)
estimate is φ̂ = 0, and for the − measurement result the
optimal estimate is φ̂ = π . With these estimates, the RMSE is
given by

	φ�̂ =
√

φ2(1 + v cos φ)/2 + (π − |φ|)2(1 − v cos φ)/2.

(114)

The absolute value of φ is taken above to take account of the
fact that the difference should be determined modulo 2π . For
v = 1, the error is zero at φ = 0 and φ = π .

In contrast, using the inverse square-root of the Fisher
information (as for the CRB without correcting for bias) would
give the lower bound

	φ�̂ �
√

1 − v2 cos2 φ

v| sin φ| . (115)

In the limit v → 1, the uncorrected CRB gives a result exactly
equal to 1. This is already greater than the actual RMSE for
some φ. For imperfect visibility, the contrast is even stronger.
The uncorrected bound diverges at φ = 0 and π , even though
the actual measurement error is a minimum there. This result is
illustrated in Fig. 4. It is therefore clear that the CRB can give
completely misleading results if it is not corrected for bias.
On the other hand, correcting the CRB for bias, via Eq. (110),
yields a bound exactly equal to the RMSE (114).

The QCRB in Eq. (107), which assumes zero bias, gives
1/v and is also violated near φ = 0 and φ = ±π by the
biased measurements considered here. Similarly, the HHB in
Eq. (107) yields a lower bound of 1 (the same as the QCRB
for v = 1), which is also violated by the biased measurements
considered here. Thus we can see that caution needs to be
employed in using Eq. (107), because it requires unbiased
measurements. Such measurements are impossible in some
cases, and even reasonable measurements can give highly
biased estimates, resulting in a violation of the QCRB and
HHB in Eq. (107).

It is also interesting to compare these results to the error
propagation formula, which is often used to estimate the
measurement error. The error propagation formula leads to
the estimate of the error (using measurement operator X =
|0〉〈1| + |1〉〈0|)

	φ�̂ ≈
√

〈X2〉φ − 〈X〉2
φ∣∣ d

dφ
〈X〉φ

∣∣ =
√

1 − v2 cos2 φ

v| sin φ| . (116)
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FIG. 4. (Color online) MSE for phase measurements with a single
photon using an interferometer with visibility v = 0.99 and photon
counting at the outputs. The actual MSE, as well as the Cramér-Rao
bound with the correction for bias, is given by the solid curve (black).
The uncorrected Cramér-Rao bound, as well as the estimate given by
the error propagation formula, is given as the dashed curve (dark blue).
The horizontal dash-dotted line (green) is the conjectured bound on
the AMSE, k2

C/〈N + 1〉2. The horizontal solid line (light blue) is
the actual AMSE for these measurements (obtained by averaging the
MSE over φ), and the horizontal dotted line (red) is the Helstrom-
Holevo bound, which in this case is only slightly smaller than the
quantum Cramér-Rao bound of 1/v.

Thus the error propagation formula gives an estimate of the
uncertainty that is identical to the uncorrected Cramér-Rao
bound.

IX. CONCLUSIONS

We have rigorously proven that the square root of the
average mean-square error (RAMSE) of phase measurements
is lower bounded by the Heisenberg limit k/〈G + 1〉 [Eq. (1)].
The inequality with k = kA ≈ 0.56 holds in the case where
the generator of the phase shifts has nonnegative integer
eigenvalues. We obtain a very similar result in the case where
G also has negative integer eigenvalues. The result is as in
Eq. (46), where the absolute value of G is used, and the scaling
constant is again kA.

These results mean that the accuracy of super-Heisenberg
measurement schemes is essentially illusory. They may work
for a small range of phases, but if one considers the additional
resources needed to locate an unknown phase to within the
required range, the overall measurement will not violate the
Heisenberg limit.

A distinguishing feature of our form of the Heisenberg limit
is that it holds for all 〈G〉, not just in the asymptotic limit of
large 〈G〉. We achieve this by adding 1 to the denominator. This
modification is necessary, because otherwise the inequality
would indicate that the error must approach infinity in the limit
〈G〉 → 0. This is impossible because phase has a bounded
range.

As well as the analytical result stated above, we have very
powerful evidence for a stronger bound with kA replaced by
kC ≈ 1.38. We have provided extensive numerical evidence
that the inequality holds with this larger scaling constant, both
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in the case of the RAMSE and for the square root of the Holevo
variance. In the case where G has negative eigenvalues, the
numerical results indicate that Eq. (46) holds with the scaling
constant k′

C ≈ 0.79, which is again larger than kA.
These stronger lower bounds are also supported by asymp-

totic expansions of the exact solution for minimal Holevo
variance, both for generators with nonnegative eigenvalues
and generators without this restriction. A similar result for the
RAMSE has also been obtained, via an asymptotic expansion
of a lower bound for this quantity, for the case of a generator
that is not restricted to nonnegative eigenvalues. The case
where the eigenvalues of G are restricted to nonnegative
eigenvalues is a possible area for future study. The asymptotic
expansions also enable us to show that these stronger lower
bounds are asymptotically achievable. That is, the minimum
RAMSE is equal to the lower bounds to leading order.

We showed how various schemes that have been proposed
to break the Heisenberg limit do not break our bound on the
RAMSE. The primary reason for this is that they can only
violate the Heisenberg limit scaling if the phase shift is already
known, not when averaging over the phase shift. Another factor
is that they typically consider the Cramér-Rao bound, which
is problematic for the Heisenberg limit. It cannot provide a
nontrivial lower bound for fixed mean photon number, as
is required for the Heisenberg limit. In addition, it requires
knowledge of the bias. Our alternative approach circumvents
these limitations.

Our bound also differs from the Cramér-Rao bound in that
it scales as 1/m in the number of copies of the state. The
Cramér-Rao bound scales as 1/

√
m, but we have found that

such scaling is impossible for a fixed 〈N〉. This indicates that
it is fundamentally impossible to obtain the Heisenberg limit
from the Cramér-Rao bound.
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APPENDIX A: DETAILS FOR PROOF OF LEMMA 2

There are two results used in the proof of Lemma 2, which
are proven here. First, we show that for this operator the
distribution of G(s) is the same as the distribution of G for ρ0.
The normalization condition for the covariant measurement
gives

1 =
∫

dθe−iGθM0e
iGθ , (A1)

so

δn,n′δd,d ′ =
∫

dθ〈n,d|e−iGθM0e
iGθ |n′,d ′〉

=
∫

dθei(n′−n)θ 〈n,d|M0|n′,d ′〉

= 2πδn,n′ 〈n,d|M0|n′,d ′〉. (A2)

This means that 〈n,d|M0|n,d ′〉 = δd,d ′/(2π ). Then, evaluating
the distribution for G(s) gives

〈n|ρ(s)
0 |n〉 = 2π

∑
d,d ′�D(n)

〈n,d ′|ρ0|n,d〉〈n,d|M0|n,d ′〉

= 2π
∑

d,d ′�D(n)

〈n,d|ρ0|n,d ′〉(2π )−1δd,d ′

= Tr(ρ0Pn), (A3)

where Pn := ∑
d |n,d〉〈n,d| denotes the projection onto eigen-

value n of G. The expression in the last line is the distribution
of G for ρ0.

Second, we must show that ρ
(s)
0 is positive and has trace

one and is therefore a valid density operator. Note one can
always write the positive operators ρ0 and M0 as sums of (not
necessarily normalized or orthogonal) kets:

ρ0 =
∑

λ

|λ〉〈λ|, M0 =
∑

μ

|μ〉〈μ|. (A4)

Hence, for any state |ψ〉 = ∑
n ψn|n〉,

〈ψ |ρ(s)
0 |ψ〉 = 2π

∑
n,n′∈S,d�D(n),d ′�D(n′)

ψnψ
∗
n′

× 〈n′,d ′|ρ0|n,d〉〈n,d|M0|n′,d ′〉
= 2π

∑
λ,μ

|Xλ,μ|2 � 0, (A5)

where

Xλ,μ :=
∑

n∈S,d�D(n)

ψn〈λ|n,d〉〈n,d|μ〉. (A6)

Hence ρ
(s)
0 � 0, as required. Summing Eq. (A3) over n yields

Tr(ρ(s)
0 ) = 1, so ρ

(s)
0 is a valid density operator.

APPENDIX B: DETAILS FOR EQ. (45)

Here we give the details of the derivation of Eq. (45). First,
variation of Eq. (44) gives the optimizing distribution

pn = e−(α+1)e−β|n−g|, (B1)

which is the double exponential (Laplace) distribution found
in Ref. [23]. In Ref. [23] it was assumed that g was an integer,
but here we consider the more general case that g is an arbitrary
real number.

We require β > 0 in order for the distribution to be
normalizable. Then normalization gives the restriction

e−βr + e−β(1−r)

1 − e−β
= eα+1, (B2)

where r = �g� − g. We then find that the mean value is

〈|G − g|〉 = (eβr + e−βr )(1 − r) + (eβ(1−r) + e−β(1−r))r

(1 − e−β)(eβr + eβ(1−r))
,

(B3)

and

H (G) = (α + 1) + β〈|G − g|〉
= ln

(
e−βr + e−β(1−r)

1 − e−β

)
+ β〈|G − g|〉. (B4)
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Without loss of generality we take r ∈ [0,1/2]. The
problem is symmetric about r = 1/2, so these results also
apply to r > 1/2. Then we obtain

2〈|G − g|〉 + 1 − exp

[
βr + ln

(
e−βr + e−β(1−r)

1 − e−β

)]

= (eβ − e2βr )[1 + e2βr + 2r(eβ − 1)]

(eβ − 1)(eβ + e2βr )
� 0. (B5)

This then yields

βr + ln

(
e−βr + e−β(1−r)

1 − e−β

)
� ln(2〈|G − g|〉 + 1). (B6)

It can be shown that

eβ − (1 + β) − e2βr [e−β(1 + 2βr) + β − 1 − 2βr]

= (1 + βr − β〈|G − g|〉)(1 − e−β )(eβ + e2βr ). (B7)

Next, for β > 0 and r � 0 we have

0 < β(1 − 2r)2 + 4r

= 1 + β(1 − 2r) − [1 + 2(β − 2)r − 4βr2]

� eβ(1−2r) − [1 + 2(β − 2)r − 4βr2]. (B8)

This means that
d

dβ
{eβ − (1 + β) − e2βr [e−β(1 + 2βr) + β − 1 − 2βr]}

= (1 − e−β )e2βr{eβ(1−2r) − [1 + 2(β − 2)r − 4βr2]} > 0,

(B9)

for β > 0. This implies that

eβ − (1 + β) − e2βr [e−β(1 + 2βr) + β − 1 − 2βr] > 0,

(B10)

for β > 0, because the left-hand side is zero for β = 0 and has
positive slope for β > 0. Using Eq. (B7), this gives

−βr + β〈|G − g|〉 < 1. (B11)

Now adding Eqs. (B6) and (B11) yields

ln

(
e−βr + e−β(1−r)

1 − e−β

)
+ β〈|G − g|〉

< ln(2〈|G − g|〉 + 1) + 1, (B12)

and substitution into Eq. (B4) gives Eq. (45) as required.

APPENDIX C: INEQUALITY PROOFS

To prove θ2 � f3(θ ), consider the function

	(θ ) =
√

(π2/2)(1−cos θ ) − (π2/4 − 1)(1 − cos 2θ )/2 − θ.

(C1)

Taking the derivative with respect to θ and solving to find the
turning points of 	(θ ) yields only two in the range [0,π ]. One
is at θ = 0, and the other is at θ ≈ 2.23. As 	(θ ) > 0 for
θ ≈ 2.23, and 	(θ ) = 0 for θ = 0 or π , we have 	(θ ) � 0 for
θ ∈ [0,π ]. This proves Eq. (79) for θ ∈ [0,π ], and the result
for θ ∈ [−π,0] follows because Eq. (79) is symmetric.

Next, to prove a lower bound on δ�, we use Eq. (20), which
was

〈cos �〉 � cos
√

〈�2〉. (C2)

Using this, we have

δ�̂ =
√

〈�2〉 � arccos〈cos �〉 = arccos[1 − (δ1�̂)2/2].

(C3)

Now note that, if we have a state that minimizes δ�̂, then it
can not give a value of arccos[1 − (δ1�̂)2/2] smaller than
that for the minimum value of δ1�̂. This means that we
can lower bound δ�̂ by the minimum value of arccos[1 −
(δ1�̂)2/2]. This is a tighter lower bound on δ�̂ than δ1�̂, be-
cause arccos(1 − x2/2) = x + x3/24 + O(x5). Unfortunately
arccos[1 − (δ1�̂)2/2] can still be below kC/〈N + 1〉.

APPENDIX D: ASYMPTOTIC BEHAVIOR
FOR HOLEVO VARIANCE

Here we derive the asymptotic results for the variance given
in Sec. V. Using Eq. (12) of Ref. [52] (with q = p + 1), one
has

∞∑
k=1

Jx+k(z)Jx+k+1(z) = z

2
[J 2

x+1(z) − Jx(z)Jx+2(z)]

= z

2
[Jx+1(z)]2, (D1)

where the second equality follows from Eq. (73).
Second, from Eq. (32) of Ref. [52], one has

∞∑
k=1

[Jx+k(z)]2 = z

2

[
Jx+1(z)

∂Jx(z)

∂x
− Jx(z)

∂Jx+1(z)

∂x

]

= z

2
Jx+1(z)

∂Jx(z)

∂x
, (D2)

where the second equality similarly follows via Eq. (73). We
therefore have

〈ei�〉 = Jx+1(z)

[∂Jx(z)/∂x]
. (D3)

Using Eq. (77) then yields

〈N + 1〉 = zJx+1(z)

[∂Jx(z)/∂x]
− x. (D4)

There are a number of asymptotic results that we can use.
From Refs. [53,54]

z = x + γ x1/3 + 3γ 2

10x1/3
+ 5 − γ 3

350x
− 479γ 4 + 20γ

63 000x5/3

+ 20231γ 5 − 27 550γ 2

8 085 000x7/3
+ O(x−3), (D5)

where γ = |zA|/21/3, and zA is the first zero of the Airy
function. We can invert this relation to give

x = z − γ z1/3 + γ 2

30z1/3
− 5 − γ 3

350z
+ 281γ 4 − 5220γ

567 000z5/3

+ 73 769γ 5 − 3 312 450γ 2

654 885 000z7/3
+ O(z−3). (D6)
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Now from Eq. (9.3.23) of Ref. [55] we have, for z = x + yx1/3,

Jx(x + yx1/3) ∼ 21/3

x1/3
Ai(−21/3y)

(
1 +

∞∑
k=1

fk(y)

x2k/3

)

+ 22/3

x
Ai′(−21/3y)

∞∑
k=0

gk(y)

x2k/3
. (D7)

The functions are given by

f1(y) = − 1
5y, (D8)

f2(y) = − 9
100y5 + 3

35y2, (D9)

f3(y) = 957
7000y6 − 173

3150y3 − 1
225 , (D10)

f4(y) = 27
20 000y10 − 23 573

147 000y7 + 5903
138 600y4 + 947

346 500y, (D11)

g0(y) = 3
10y2, (D12)

g1(y) = − 17
70y3 + 1

70 , (D13)

g2(y) = − 9
1000y7 + 611

3150y4 − 37
3150y, (D14)

g3(y) = 549
28 000y8 − 110 767

693 000y5 + 79
12 375y2. (D15)

Using Eq. (D5) we have

y = (z − x)/x1/3

= γ + 3γ 2

10x2/3
+ 5 − γ 3

350x4/3
− 479γ 4 + 20γ

63 000x2

+ 20 231γ 5 − 27 550γ 2

8 085 000x8/3
+ O(x−3). (D16)

We can then substitute Eq. (D6), which gives

y − γ = 3γ 2

10z2/3
+ 5 + 69γ 3

350z4/3
+ 9361γ 4 + 1180γ

63 000z2

+ 8 691 349γ 5 + 1 484 550γ 2

72 765 000z8/3
+ O(z−3). (D17)

Now to take the derivative with respect to the order, we can
use

∂

∂x
Jx(z) = d

dx
Jx(x + yx1/3) + dy

dx

d

dy
Jx(x + yx1/3)

= d

dx
Jx(x + yx1/3)

−
(

z

3x4/3
+ 2

3x1/3

)
d

dy
Jx(x + yx1/3). (D18)

In the resulting expression it is possible to expand in a series
for y about γ then expand in a series about z.

It is possible to determine a series in z for

zJx+1(z)

[∂Jx(z)/∂x]
− x. (D19)

We can then invert this series, finding a series in 〈N + 1〉
for z. Similarly, it is possible to find a series in z for

Jx+1(z)

[∂Jx(z)/∂x]
. (D20)

Then we can express(
Jx+1(z)

[∂Jx(z)/∂x]

)−2

− 1, (D21)

as a series in z. Substituting the series for z in 〈N + 1〉, the
overall result is as in Eq. (78), with

b2 = 4|zA|3
27

= k2
C ≈ 1.8936, (D22)

b4 = 16|zA|6
1215

≈ 2.1514, (D23)

b6 = 16|zA|6(27 + 40|zA|3)

688 905
≈ 2.0424, (D24)

b8 = 256|zA|9(3 + |zA|3)

4 428 675
≈ 1.9050, (D25)

b10 = 64|zA|9(2673 + 9252|zA|3 + 1120|zA|6)

21 483 502 425
≈ 1.8906.

(D26)

Next, to place an upper bound on the RAMSE for this state,
we use Eq. (79). This equation gives

〈�2〉 � (π2/2)(1 − 〈cos �〉) − (π2/4 − 1)(1 − 〈cos 2�〉)/2.

(D27)

To find the expectation value 〈ei2�〉, we use

〈ei2�〉 = A2
∞∑

n=0

Jx+n+1(z)Jx+n+3(z)

=
∑∞

k=1 Jx+k(z)Jx+k+2(z)∑∞
k=1[Jx+k(z)]2

. (D28)

Again using Eq. (12) of Ref. [52], but now with q = p + 2,
we have

∞∑
k=1

Jx+k(z)Jx+k+2(z) = z

4
[Jx+1(z)Jx+2(z) − Jx(z)Jx+3(z)]

= z

4
Jx+1(z)Jx+2(z). (D29)

That then gives

〈ei2�〉 = Jx+2(z)

2[∂Jx(z)/∂x]
. (D30)

Using this expression, and expanding the Bessel function
solution in a series as above, we obtain

〈�2〉 � (π2/2)(1 − 〈cos �〉) − (π2/4 − 1)(1 − 〈cos 2�〉)/2

= 4|zA|3
27〈N + 1〉2

+ (π2 − 4)|zA|3
54〈N + 1〉3

+ O

(
1

〈N + 1〉4

)
.

(D31)

This results in the inequality given in Eq. (80).
Expanding in a series also gives

(arccos〈cos �〉)2 = 4|zA|3
27〈N + 1〉2

− 16|zA|6
10 935〈N + 1〉4

+O

(
1

〈N + 1〉6

)
. (D32)
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Using Eq. (C3), we therefore have the upper and lower bounds
on (δ�̂)2,

k2
C

〈N + 1〉2
− O

(
1

〈N + 1〉4

)

� (δ�̂)2 � k2
C

〈N + 1〉2
+ O

(
1

〈N + 1〉3

)
. (D33)

APPENDIX E: ASYMPTOTIC BEHAVIOR FOR VARIANCE
WITH FIXED 〈|J|〉

The normalization constraint yields, using Eq. (32) of
Ref. [52],

A−2 = [Jx(z)]2 + 2
∞∑

j=1

[Jx+j (z)]2

= [Jx(z)]2 + z

[
Jx+1(z)

∂Jx(z)

∂x
− Jx(z)

∂Jx+1(z)

∂x

]
. (E1)

We also have

〈|J |〉 = 2A2
∞∑

j=0

j [Jx+j (z)]2,

〈ei�〉 = A2

⎡
⎣2Jx(z)Jx+1(z) + 2

∞∑
j=1

Jx+j (z)Jx+j+1(z)

⎤
⎦ . (E2)

Using Eq. (12) of [52] we have

〈ei�〉 = A2[2Jx(z)Jx+1(z) + zJ 2
x+1(z) − zJx(z)Jx+2(z)].

(E3)

In this case we have

〈ei�〉 = (α + β〈|J |〉) = (x + 〈|J |〉)/z, (E4)

so

〈|J |〉 = z〈ei�〉 − x. (E5)

The first zero of the derivative of the Bessel function is
given by [53,54]

z = x + γ ′x1/3 +
(

3γ ′2

10
− 1

10γ ′

)
1

x1/3

−
(

γ ′3

350
+ 1

25
+ 1

200γ ′3

)
1

x

− 958γ ′9 − 2036γ ′6 − 84γ ′3 + 63

126 000γ ′5x5/3
+ O(x−7/3). (E6)

We have corrected an error in Ref. [53] where “840” was given
instead of “84.” Here γ ′ = |z′

A|/21/3, where z′
A is the first zero

of the derivative of the Airy function. Inverting this series and
performing series expansions similar to that for the first case

gives the series in Eq. (86) with

d2 = 16|z′
A|3

27
= k′

C

2 ≈ 0.6266, (E7)

d3 = 32|z′
A|3

27
≈ 1.2533, (E8)

d4 = 16|z′
A|3(111 − 4|z′

A|3)

1215
≈ 1.4868, (E9)

d5 = 64|z′
A|3(21 − 4|z′

A|3)

1215
≈ 0.9341, (E10)

d6 = 16|z′
A|3(−63 − 40 488|z′

A|3 + 160|z′
A|6)

1 148 175
≈ −0.6292.

(E11)

To determine an upper bound, we need to determine

〈ei2�〉 = A2

⎡
⎣J 2

x+1(z) + 2Jx(z)Jx+2(z)

+ 2
∞∑

j=1

Jx+j (z)Jx+j+2(z)

⎤
⎦

= A2

{
J 2

x+1(z) + 2Jx(z)Jx+2(z)

+ z

2
[Jx+1(z)Jx+2(z) − Jx(z)Jx+3(z)]

}
. (E12)

Expanding in a series then gives

〈�2〉 � 16|z′
A|3

27〈2|J | + 1〉2
+ 32|z′

A|3
27〈2|J | + 1〉3

+O

(
1

〈2|J | + 1〉4

)
. (E13)

Therefore, the MSE is upper and lower bounded as

k′
C

2

〈2|J | + 1〉2
+ O

(
1

〈2|J | + 1〉3

)

� (δ�̂)2 � k′
C

2

〈2|J | + 1〉2
+ O

(
1

〈2|J | + 1〉3

)
. (E14)

APPENDIX F: CONTINUITY OF EXPECTED
PHASE ESTIMATE

Here we show that 〈�̂〉φr

φ is a continuous function of φ.
Defining

Xφr
:=

∫ φr+π

φr−π

dφ̂ φ̂Mφ̂, (F1)

we have

〈�̂〉φr

φ = Tr
(
Xφr

ρφ

)
. (F2)

The expectation value of the phase estimate at φ + ε is

〈�̂〉φr

φ+ε = Tr
(
Xφr

e−iGερφeiGε
)
. (F3)

The difference is∣∣〈�̂〉φr

φ+ε − 〈�̂〉φr

φ

∣∣ = ∣∣Tr
[
Xφr

(e−iGερφeiGε − ρφ)
]∣∣. (F4)

053813-18



OPTIMAL HEISENBERG-STYLE BOUNDS FOR THE . . . PHYSICAL REVIEW A 86, 053813 (2012)

Take |ξj 〉 to be the eigenbasis of Xφr
. Then

∣∣〈ξj |Xφr
|ξj 〉

∣∣ �
∫ φr+π

φr−π

dφ̂ |φ̂|〈ξj |Mφ̂|ξj 〉

� 2π

∫ φr+π

φr−π

dφ̂ 〈ξj |Mφ̂|ξj 〉
= 2π〈ξj |1|ξj 〉 = 2π. (F5)

Using this, we find∣∣Tr
[
Xφr

(e−iGερφeiGε − ρφ)
]∣∣

=
∣∣∣∣∣∣
∑

j

〈ξj |Xφr
|ξj 〉〈ξj |(e−iGερφeiGε − ρφ)|ξj 〉

∣∣∣∣∣∣
� 2π

∑
j

|〈ξj |(e−iGερφeiGε − ρφ)|ξj 〉|. (F6)

Take |ζj 〉 to be the eigenbasis of e−iGερφeiGε − ρφ . Then∑
j

|〈ξj |(e−iGερφeiGε − ρφ)|ξj 〉|

=
∑

j

∣∣∣∣∣
∑

k

|〈ξj |ζk〉|2〈ζk|(e−iGερφeiGε − ρφ)|ζk〉
∣∣∣∣∣

�
∑

k

|〈ζk|(e−iGερφeiGε − ρφ)|ζk〉|

= ‖e−iGερφeiGε − ρφ‖1. (F7)

Hence,∣∣Tr
[
Xφr

(e−iGερeiGε − ρφ)
]∣∣ � 2π‖e−iGερφeiGε − ρφ‖1.

(F8)

Take the state to be given by

ρφ =
∑

j

pj |ψj 〉〈ψj |. (F9)

For |ψj 〉,
〈ψj |e−iGε |ψj 〉 =

∑
k

|ψjk|2e−ikε

= 1 −
∑

k

|ψjk|2(1 − e−ikε). (F10)

Evaluating the distance from 1 gives∣∣∣∣∣
∑

k

|ψjk|2(1 − eikε)

∣∣∣∣∣ �
∑

k

|ψjk|2|1 − e−ikε |

�
∑

k

|ψjk|2|kε| = 〈ψj ||G||ψj 〉|ε|,

(F11)

so

D(|ψj 〉,e−iGε |ψj 〉) = 2
√

1 − |〈ψj |e−iGε |ψj 〉|2

� 2
√

1 − |1 − 〈ψj ||G||ψj 〉|ε||2

� 2
√

2〈ψj ||G||ψj 〉|ε|. (F12)

By the convexity of trace distance

‖e−iGερφeiGε − ρφ‖1 �
∑

j

pjD(|ψj 〉,e−iGε |ψj 〉)

�
∑

i

pi2
√

2〈ψj ||G||ψj 〉|ε|

� 2
√

2〈|G|〉|ε|, (F13)

where 〈|G|〉 = Tr(|G|ρ). Hence,

∣∣〈�̂〉φr

φ+ε − 〈�̂〉φr

φ

∣∣ � 4π
√

2〈|G|〉|ε|. (F14)

Thus the expectation value of the phase estimate must be a
continuous function of φ unless 〈|G|〉 is infinite.
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[53] Á. Elbert, J. Comp. App. Math. 133, 65 (2001).
[54] F. W. J. Olver, Math. Proc. Cambridge Philos. Soc. 47, 699

(1951).
[55] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (U.S. Government Printing Office, Washington, D.C.,
1972).

053813-20

http://dx.doi.org/10.1103/PhysRevA.80.052114
http://dx.doi.org/10.1103/PhysRevA.85.041802
http://dx.doi.org/10.1088/1367-2630/14/3/033040
http://dx.doi.org/10.1088/1367-2630/14/3/033040
http://dx.doi.org/10.1103/PhysRevLett.108.230401
http://dx.doi.org/10.1103/PhysRevLett.108.210404
http://dx.doi.org/10.1103/PhysRevLett.108.210404
http://arXiv.org/abs/arXiv:1204.3761v1
http://dx.doi.org/10.1103/PhysRevX.2.041006
http://dx.doi.org/10.1103/PhysRevX.2.041006
http://dx.doi.org/10.1103/PhysRevLett.108.260405
http://dx.doi.org/10.1103/PhysRevLett.108.260405
http://dx.doi.org/10.1088/0031-8949/1993/T48/019
http://dx.doi.org/10.1088/0305-4470/28/23/034
http://dx.doi.org/10.1119/1.1317562
http://dx.doi.org/10.1119/1.1383599
http://dx.doi.org/10.1103/PhysRevA.56.944
http://arXiv.org/abs/arXiv:quant-ph/0202136v1
http://dx.doi.org/10.1088/0954-8998/3/5/003
http://dx.doi.org/10.1088/0954-8998/3/5/003
http://dx.doi.org/10.1103/PhysRevA.59.2602
http://dx.doi.org/10.1103/PhysRevA.62.012107
http://dx.doi.org/10.1088/1751-8113/41/25/255301
http://dx.doi.org/10.1080/09500349314550841
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.1103/PhysRevA.54.4564
http://dx.doi.org/10.1016/S0375-9601(98)00702-6
http://dx.doi.org/10.1016/S0375-9601(98)00702-6
http://dx.doi.org/10.1088/1464-4266/3/5/309
http://dx.doi.org/10.1088/1367-2630/13/8/083026
http://dx.doi.org/10.1103/PhysRevA.79.033822
http://dx.doi.org/10.1103/PhysRevLett.105.120501
http://dx.doi.org/10.1103/PhysRevLett.105.120501
http://dx.doi.org/10.1017/S0305004100009580
http://dx.doi.org/10.1103/PhysRevLett.99.070801
http://dx.doi.org/10.1103/PhysRevLett.99.070801
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1109/TSP.2006.877648
http://dx.doi.org/10.1016/0375-9601(67)90366-0
http://dx.doi.org/10.2307/2313546
http://dx.doi.org/10.1016/S0377-0427(00)00635-X
http://dx.doi.org/10.1017/S0305004100027158
http://dx.doi.org/10.1017/S0305004100027158



