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Pulse propagation in a medium of �-type atoms
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The propagation of a weak-field pulse through a medium of three-level atoms is considered. Each atom has a
�-type level scheme in which the two lower levels are stable. A strong control field drives one of the electronic
transitions while the signal field drives the coupled transition under conditions where EIT (electromagnetically
induced transparency) is usually operative. The input pulse is slowed and compressed as it enters the medium,
adiabatically following the EIT solution. However, if the control field is changed suddenly when the pulse is in
the medium, the signal field is transformed into two pulses, one of which propagates as a normal EIT pulse and
the other with a different speed and an amplitude that oscillates in time. The temporal oscillations are transformed
into both spatial and temporal oscillations as the pulse exits the medium. An analytic expression is derived for
the pulse intensity which provides a good approximation to the exact result at all times. It is shown that the
oscillating component of the exiting pulse can be spatially compressed in comparison with the input pulse.
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I. INTRODUCTION

In a recent article [1], we derived a rather peculiar result.
We showed that if a weak, off-resonant pulse is launched from
within a low-density medium of two-level atoms having index
of refraction approximately equal to unity, there are always two
possible propagation speeds, symmetrically centered about
vg = c/2, neither of which corresponds to the normal group
velocity associated with the propagation of an off-resonant
pulse in the medium. However, things somehow return to
“normal” for a pulse that is sent into the medium from vacuum.
In this limit, the atoms and the field remain adiabatically in a
dressed state of the atom-field system that propagates with the
normal group velocity.

The propagation of off resonant light with reduced group
velocity in a medium of two-level atoms is but one example of
the way in which a medium can alter the propagation of light.
Over the past twenty years or so, there has been increased
interest in light-matter interactions that lead to significantly
reduced group velocities for the light (slow light) [2]. This
work was stimulated in large part by the demonstration of
EIT (electromagnetically induced transparency) [3] in atomic
vapors [4,5], but since has also led to the observation of slow
light in a variety of condensed-matter systems [6], including
pure crystals [7], doped crystals [8], optical fibers [9], semi-
conductor quantum wells [10], photonic crystal waveguides
[11], fiber gratings [12], and coupled resonators [13]. The
question then arises as to whether or not the propagation
effects predicted in Ref. [1] will also manifest themselves in
these systems. In this article, we consider pulse propagation
in a medium of three-level atoms whose levels are in a �

configuration. Such a medium serves as a prototypical example
in which both EIT and slow light can be observed. We show that
effects related to, but not identical with, those in Ref. [1] can
be observed in this EIT geometry. Moreover there is a simple
way to observe the modified pulse dynamics by changing the
amplitude or phase of the control field when the pulse is in
the medium. We believe that similar effects should be observ-
able in other systems exhibiting slow light, but each system
must be considered on a case by case basis. For example, we

expect the modified pulse dynamics to be somewhat different
in systems where the slow light is produced by preparing a
medium in which a spectral hole has been burned at the central
frequency of the incoming pulse [14,15].

In the conventional EIT geometry that we consider, a weak
or signal pulsed field and a cw control field drive coupled
transitions in a three-level � scheme (see Fig. 1) [3]. The signal
field is resonant with the 1-2 transition and the control field
with the 2-3 transition. The two lower states of the � configu-
ration do not decay. In standard treatments of this problem [3],
there is an adiabatic approximation invoked that results in the
signal pulse propagating with a group velocity equal to

vg1 = c

1 + α2

|χ ′|2
, (1)

where χ ′ is one-half the Rabi frequency associated with the
control field and

α2 = Nω21

2h̄ε0
|μ21|2 (2)

is related to a so-called cooperativity parameter. The quantity
N is the atomic density and μ21 is a dipole matrix element.
For α � |χ ′|, the signal corresponds to “slow light,” since
vg1 � c.

We will show that pulse propagation in this medium
generally consists of two components, owing to the fact
that the adiabatic approximation fails as soon as the group
velocity of the EIT component deviates significantly from the
speed of light. One component propagates with the usual EIT
propagation speed vg1 , and the other with speed

vg2 = 1

2

c

1 + |χ ′|2
α2

. (3)

Moreover, the field amplitude of the pulse having group
velocity vg2 oscillates as a function of time with frequency
(|χ ′|2 + α2)1/2/2 as it propagates in the medium.

Although two propagation speeds are possible, it turns
out that under typical EIT conditions a signal pulse sent
into the medium from vacuum adiabatically stays in the

053812-11050-2947/2012/86(5)/053812(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.053812


P. R. BERMAN AND C. H. RAYMOND OOI PHYSICAL REVIEW A 86, 053812 (2012)

FIG. 1. (Color online) A signal pulse is sent into a medium of
three level atoms, each of whose level schemes is shown in the figure.
A cw control field is also present. The quantity χ0 is one half the
maximum Rabi frequency associated with the signal field χ (X,t),
whose central frequency is ωs = ω21. The quantity χ ′ is one-half the
Rabi frequency associated with the control field, whose frequency is
ωc = ω23.

state associated with normal EIT propagation. However, by
suddenly varying the control field amplitude or phase when
the pulse is in the medium, we can convert the EIT pulse into
a superposition of pulses propagating at the two speeds vg1

and vg2 . In fact, for a phase shift of π (sudden change in the
sign of the control field amplitude) and for χ ′ = α, the signal
pulse is entirely converted from an EIT pulse to the temporally
oscillating pulse propagating with speed vg2 . When this pulse
exits the medium, the temporal oscillations are converted into
both spatial and temporal oscillations of the pulse intensity.
Moreover, for a proper choice of system parameters, the spatial
envelope of the emerging pulse associated with propagation at
speed vg2 in the medium can be narrower than that of the initial
pulse. If the initial pulse is a single-photon pulse, we have
the possibility of creating a somewhat unusual single-photon
output pulse. We should note that Matsko et al. [16] discussed
the problem of nonadiabatic switching in EIT. Their emphasis
was on information storage and retrieval related to the EIT
component of the pulse, rather than on the pulse dynamics of
the component propagating with speed vg2 .

We first derive equations characterizing the system in the
slowly varying amplitude and phase approximation. We then
follow the pulse as it enters the medium, propagates inside the
medium, and leaves the medium. When the pulse enters the
medium, it adiabatically stays in the state associated with nor-
mal EIT. As such, it is spatially compressed by vg1/c inside the
medium and propagates at speed vg1 with negligible dispersion.
If we left this pulse on its own it would decompress as it exits
the medium and reproduce the initial pulse profile. However,
when the pulse is in the medium, we suddenly change the
(complex) control field amplitude, breaking the adiabatic fol-
lowing that is associated with EIT. As a consequence, the EIT
pulse is split into two components, one propagating with the
EIT speed vg1 and the other with speed vg2 . These components
emerge from the medium and are decompressed by factors
of c/vg1 and c/vg2 , respectively. The temporal oscillations
of the pulse having group velocity vg2 are converted into
both spatial and temporal oscillations of the outgoing pulse

intensity. For an initial pulse having a Gaussian spatial profile,
we derive a simple analytic expression for the pulse amplitude
that accurately follows the exact solution at all times.

II. GENERAL FORMALISM

We consider the propagation of a weak signal pulse into a
medium of stationary, three-level atoms (see Fig. 1) that are
uniformly distributed with density N in a cylinder of length L

(centered at X = 0) having cross sectional area σ . The signal
pulse drives the 1-2 transition having frequency ω21 while a
cw control drives the 2-3 transition having frequency ω23. The
pulsed signal and cw control electric-field vectors are given by

Es(X,t) = 1
2 ε̂sA(X,t)eiks (X−ct) + c.c., (4a)

Ec(X,t) = 1
2 ε̂cEce

ikc(X−ct) + c.c., (4b)

where the signal field pulse amplitude A(X,t) is a slowly
varying function of X and t compared with eiks (X−ct), the
control field amplitude Ec is constant, ωs = ksc is the signal
field carrier frequency, ωc = kcc is the control field frequency,
and the ε̂’s are the field polarizations. We neglect all modes
of the radiation field having propagation vectors in other than
the x̂ direction; that is, we limit our discussion to an effective
one-dimensional problem in which scattering into transverse
modes of the field is not significant. Although the control field
amplitude is taken to be a constant, we will allow for a sudden
change in its (complex) amplitude at a time when the signal
pulse is in the medium. The index of refraction of the medium
is assumed to be equal to unity for the range of frequencies in
the input pulse, which is a good approximation under typical
EIT conditions.

In a field interaction representation in which density matrix
elements are written as [17]

ρ12(X,t) = ρ̃12(X,t)e−iks (X−ct), (5a)

ρ32(X,t) = ρ̃32(X,t)e−ikc(X−ct), (5b)

ρ13(X,t) = ρ̃32(X,t)e−i(ks−kc)(X−ct), (5c)

and in the dipole and rotating wave approximations, the
full evolution equations for density-matrix elements and the
signal field amplitude are given in the Appendix. We are
interested here in a more restrictive problem in which the
signal field is weak, justifying a perturbation theory approach.
In this limit ρ22(X,t) ≈ ρ33(X,t) ≈ ρ̃23(X,t) ≈ 0; ρ11(X,t) ≈
1. Spontaneous decay can be neglected as well, provided
γ2L/c < 1, where γ2 is the excited state decay rate. With
these approximations and, in addition, assuming that the fields
are resonant with their respective transitions, ωs = ω21 and
ωc = ω23, the full equations reduce to

∂ρ̃31(X,t)/∂t = −iχ ′∗ρ̃21(X,t), (6a)

∂ρ̃21(X,t)/∂t = −iχ ′ρ̃31(X,t) − iχ (X,t), (6b)
∂χ (X,t)

∂t
+ c

∂χ (X,t)

∂X
= −iα2ρ̃21(X,t)G(X), (6c)

where

χ (X,t) = −μ21A(X,t)

2h̄
, (7a)

χ ′ = −μ23Ec

2h̄
(7b)
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are one-half the Rabi frequencies associated with the signal
field and control field transitions, respectively, μ23 is a dipole
matrix element,

G(X) = �(L/2 + X)�(L/2 − X) (8)

restricts the atom-field interaction to the volume of the
medium [�(X) is a Heaviside function], and α2 is given by
Eq. (2). Equation (6c) is the propagation equation for the field
amplitude, obtained in a slowly varying amplitude and phase
approximation [17]. Although not included in Eqs. (6), we will
allow for a sudden change in the (complex) amplitude of the
control field or the introduction of a phase shift φ on ρ̃13 at
a time when the pulse is in the medium. It should be noted
that the density-matrix elements appearing in Eqs. (II) are
single-particle density-matrix elements for an atom located at
position X.

Equations (6) can be solved numerically for the signal field.
The initial conditions are chosen such that the signal pulse
is centered at X = −X0 � −L/2, that is, to the left of the
medium, and all atoms are in state |1〉. Correspondingly, the
initial conditions are

ρ̃21(X,0) = ρ̃31(X,0) = 0, (9)

along with some initial pulse profile χ (X,0) centered at X =
−X0. For example, we can choose the initial pulse amplitude
to be the Gaussian

χ (X,0) = π−1/4χ0e
−(X+X0)2(�k)2/2, (10)

where χ0 (assumed real) is one-half the maximum Rabi
frequency associated with the signal field transition and c�k

is the pulse bandwidth. Consistent with conventional EIT, we
assume that the bandwidth is small compared with the control
field Rabi frequency,

c�k � |χ ′|, (11)

and that the signal field is weak,

χ0 � c�k. (12)

It is sometimes convenient to re-express Eqs. (6) as a single-
partial differential equation. Taking two partial time derivatives
of Eq. (6c), and using Eqs. (6a) and (6b), we find

∂3χ (X,t)

∂t3
+ c

∂3χ (X,t)

∂t2∂X
+ |χ ′|2 ∂χ (X,t)

∂t
+ c|χ ′|2 ∂χ (X,t)

∂X

+α2 ∂χ (X,t)

∂t
G(X) = 0, (13)

subject to the initial conditions, obtained from Eqs. (6) and (9),

∂χ (X,0)

∂t
= −c

∂χ (X,0)

∂X
; (14a)

∂2χ (X,0)

∂t2
= −α2χ (X,0)G(X) + c2 ∂2χ (X,0)

∂X2
. (14b)

Although we have an exact equation of motion describing pulse
propagation into and out of the medium, this equation must be
solved numerically. Moreover, the numerical solution becomes
time intensive with increasing α and χ ′. It turns out, however,
that we can derive a relatively simple analytic expression
for the pulse amplitude that is in excellent agreement with
the exact solution. The method for obtaining this solution is

discussed in the following sections. The analytic expression
enables us to understand in a simple manner all the features of
pulse propagation in this problem if the control field amplitude
is changed suddenly when the pulse is in the medium.

It will prove convenient to introduce the following dimen-
sionless variables:

τ = c�kt, (15a)

X̃ = �kX, (15b)

X̃0 = �kX0, (15c)

L̃ = �kL, (15d)

α̃ = α/ (c�k) , (15e)

χ̃ ′ = χ ′/ (c�k) , (15f)

χ̃(X,t) = χ (X̃,τ )/ (c�k) , (15g)

χ̃0 = χ0/ (c�k) , (15h)

β1 = vg1/c. (15i)

It is assumed that

χ̃ ′ � 1, (16)

consistent with the need for a transparency window in EIT
that is large compared with the pulse bandwidth. In terms of
dimensionless variables, condition (12) is

χ̃0 � 1. (17)

III. THE PULSE ENTERS THE MEDIUM—EIT SOLUTION

When the pulse enters the medium, it stays adiabatically
in the state associated with EIT. To prove this, we start from
Eq. (13),

∂3χ̃ (X̃,τ )

∂τ 3
+ ∂3χ̃ (X̃,τ )

∂τ 2∂X̃
+ |χ̃ ′|2 ∂χ̃ (X̃,τ )

∂τ
+ |χ̃ ′|2 ∂χ̃(X̃,τ )

∂X̃

+ α̃2 ∂χ̃(X̃,τ )

∂τ
G(X̃) = 0 (18)

with the initial conditions given by Eqs. (14). The solution
outside the medium, when G(X̃) = 0 is that of a pulse
propagating in vacuum. Inside the medium, where G(X̃) = 1,
the adiabatic approximation corresponds to the neglect of
the ∂3χ̃(X̃,τ )

∂τ 3 + ∂3χ̃(X̃,τ )
∂τ 2∂X̃

terms in the equation, since these are
smaller than the other terms by a factor of 1/|χ̃ ′|2 � 1. In this
adiabatic limit Eq. (18) reduces to

∂χ̃(X̃,τ )

∂X̃
+ 1

β1

∂χ̃(X̃,τ )

∂τ
= 0, (19)

where β1 = vg1/c.

In this section, we limit the discussion to propagation into
the medium and consider the two regions

X < −L/2;
∂χ̃1(X̃,τ )

∂τ
+ ∂χ̃1(X̃,τ )

∂τ
= 0, (20a)

−L/2 � X � L/2;
∂χ̃2(X̃,τ )

∂X̃
+ 1

β1

∂χ̃2(X̃,τ )

∂τ
= 0.

(20b)

The solution of these equations must be formulated
such that χ̃2(−L̃/2,τ ) = χ̃1(−L̃/2,τ ). With this boundary
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condition, the solution is

χ̃1(X̃,τ ) = χ̃ (X̃ − τ,0); X < −L/2,
(21a)

χ̃2(X̃,τ ) = χ̃

[
(X̃ − β1τ )/β1 + β0L̃

2β1
,0

]
;

−L/2 � X � L/2, (21b)

where

β0 = 1 − β1 = α̃2

α̃2 + |χ ′|2 . (22)

Equations (21) corresponds to a pulse that is compressed
spatially by an amount β1 as it enters the medium and then
propagates in the medium with group velocity vg1 .

It is convenient to have the pulse maximum at the center of
the medium when τ = 0, since we want to change the control
field amplitude at this time. To do so we change the initial time
from τ = 0 to τ = τ0 with

τ0 = −
[(

X̃0 − L̃

2

)
+ L̃

2β1

]
= −

(
X̃0 + β0L̃

2β1

)
. (23)

The incident pulse is centered at −X̃0 � −L/2 at τ = τ0. The
net effect of the shift of the time origin is that the solution (21)
is changed to

χ̃1(X̃,τ ) = χ̃ [X̃ − (τ − τ0),τ0]; X < −L/2, (24a)

χ̃2(X̃,τ ) = χ̃

[
[X̃ − β1(τ − τ0)]/β1 + β0L̃

2β1
,τ0

]
;

−L/2 � X � L/2. (24b)

We assume that the pulse is entirely in the medium at τ = 0,
but the theory can be modified easily to allow for the more
general case where the pulse compression is not sufficient to
guarantee this possibility.

Using Eq. (23), we find that inside the medium

χ̃2(X̃,τ ) = χ̃

(
X̃

β1
− τ − X̃0,τ0

)
. (25)

For the initial Gaussian pulse

χ̃ (X̃,τ0) = χ̃0π
−1/4e−(X̃+X̃0)2

/2, (26)

centered at X̃ = −X̃0 < −L̃/2 at τ = τ0, we obtain

χ̃2(X̃,0) = χ̃0π
−1/4e−X̃2/(2β2

1 ). (27)

As desired, the pulse is centered at X̃ = 0 when τ = 0. For
χ̃ ′ � 10, the difference between the exact solution, obtained
from Eq. (13) and the approximate solution (25) is negligible.

Moreover, it follows from Eqs. (25), (6c), and (6b) that

ρ̃21(X̃,0) ∼ −iπ−1/4 χ̃0

|χ̃ ′|2
X̃

β1
e−X̃2/(2β2

1 ) ≈ 0;

(28)

ρ̃31(X̃,0) ≈ − χ̃2(X̃,0)

χ̃ ′ ,

the standard EIT results. In the following section, Eqs. (26)
and (28), with some modification, are used as initial conditions
for a pulse centered at X = 0 in the medium.

IV. PULSE INSIDE AND EXITING THE
MEDIUM—CHANGING THE CONTROL

FIELD AMPLITUDE

Now that the pulse has entered the medium, it propagates as
a normal EIT pulse. If we leave it on its own, it will decompress
by an amount 1/β1 as it exits the medium and reproduce the
initial pulse profile. However, if we modify the control field
or the value of ρ̃31(X̃,τ ) suddenly (in a time less than 1/α̃) at
τ = 0, dramatic changes can occur in the subsequent evolution
of the pulse. For example, suppose we change the (complex)
amplitude of the control field amplitude at τ = 0 such that, for
times τ > 0, (one-half) its Rabi frequency is given by

χ̃ ′
+ = χ̃ ′(τ > 0) = ξ χ̃ ′(τ < 0) ≡ ξ χ̃ ′, (29)

where the complex parameter ξ reflects the sudden change
in the control field and χ̃ ′ always refers to the control field
amplitude for times τ < 0. The ground-state coherence does
not change when the control field is changed suddenly, but
when expressed in terms of the new control field amplitude
χ̃ ′(τ > 0), ρ̃31(X̃,0) no longer corresponds to an EIT solution.
In other words, Eqs. (28) become

ρ̃21(X̃,0) ≈ 0; (30a)

ρ̃31(X̃,0) ≈ − χ̃ (X̃,0)

χ̃ ′ = −ξ χ̃(X̃,0)

χ̃ ′+
. (30b)

Unless ξ = 1, the initial conditions no longer correspond to
EIT conditions for τ > 0. Alternatively, we could actually
change the phase of the ground-state coherence by applying a
short off-resonant pulse that acts only on level 3, producing an
ac Stark induced phase shift φ of the state 3 amplitude. In that
case, we would take as our new initial conditions

ρ̃21(X̃,0) ≈ 0; (31a)

ρ̃31(X̃,0+) ≈ eiφρ̃31(X̃,0−) = −eiφ χ̃(X̃,0)

χ̃ ′ . (31b)

For the sake of definiteness, we will assume that it is the control
field amplitude which is changed such that χ̃ ′(τ > 0) = ξ χ̃ ′
and the initial conditions are given by Eqs. (30).

To follow the dynamics of the pulse within the medium, we
set G(X̃) = 1 in Eq. (6c) and replace χ̃ ′ by ξ χ̃ ′. Defining

χ̃ (X̃,τ ) = 1√
2π

∫ ∞

−∞
dδ̃κ f (δ̃κ ,τ )e−iδ̃κ(X̃−τ), (32)

ρ̃ij (X̃,τ ) = 1√
2π

∫ ∞

−∞
dδ̃κ ρ̄ij (δ̃κ ,τ )e−iδ̃κ X̃, (33)

where

δ̃κ = ω21 − ωk

c�k
, (34)

we find that Eqs. (6) can be transformed into

∂ρ̄31(δ̃κ ,τ )/∂τ = −i
(
ξ χ̃ ′)∗

ρ̄21(δ̃κ ,τ ), (35a)

∂ρ̄21(δ̃κ ,τ )/∂τ = −iξ χ̃ ′ρ̄31(δ̃κ ,τ ) − if (δ̃κ ,τ )eiδ̃κ τ , (35b)

∂f (δ̃κ ,τ )

∂τ
= −iα̃2ρ̄21(δ̃κ ,τ )e−iδ̃κ τ , (35c)
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which, in turn, can be reduced to the ordinary differential
equation for f (δ̃κ ,τ ),

∂3f (δ̃κ ,τ )

∂τ 3
+ 2iδ̃κ

∂2f (δ̃κ ,τ )

∂τ 2
− (

δ̃2
κ − |ξχ ′|2 − α̃2

)∂f (δ̃κ ,τ )

∂τ

+ iδ̃κ α̃
2f (δ̃κ ,τ ) = 0, (36)

with initial conditions

f (δ̃κ ,0) = 1√
2π

∫ ∞

−∞
dX̃ χ̃(X̃,0)eiδ̃κ X̃, (37a)

∂f (δ̃κ ,0)/∂τ = 0, (37b)

∂2f (δ̃κ ,0)/∂τ 2 = −α̃2 (1 − ξ ) f (δ̃κ ,0), (37c)

where Eqs. (30) were used.
With a trial solution

f (δ̃κ ,τ ) =
3∑

j=1

fje
iμj τ , (38)

we are led the the characteristic equation

μ3 + 2δ̃κμ
2 + (

δ̃2
κ − α̃2 − |ξχ ′|2)μ − δ̃κ α̃

2 = 0. (39)

The roots can be calculated exactly but are not written
explicitly here, owing to their complexity. Once the roots are
determined, the expansion coefficients fj can be determined
from Eqs. (38) and (37) as solutions of

3∑
j=1

fj = f (δ̃κ ,0), (40a)

3∑
j=1

μjfj = 0, (40b)

3∑
j=1

μ2
j fj = α̃2 (1 − ξ ) f (δ̃κ ,0). (40c)

The field is then obtained using Eq. (32). Our results are
expressed in terms of a dimensionless intensity defined by

I (X̃,τ ) = |χ̃(X̃,τ )/χ̃0|2. (41)

Thus, the exact solution Iin(X̃,τ ) inside the medium is given
by Eqs. (41), (32), (38), (39), and (40) with f (δ̃κ ,0) obtained
as the Fourier transform of the EIT solution (25) at τ = 0.

We can use the fact that, consistent with Eq. (11), the
detuning δ̃κ is small compared with χ̃ ′ to obtain a very good
approximation to the exact solution. We expand the roots about
δ̃κ = 0 and find

μ1 ≈ �̃

2
− α̃2 + 2|ξχ ′|2

2(α̃2 + |ξ χ̃ ′|2)
δ̃κ + α̃2(α̃2 + 4|ξχ ′|2)

8(α̃2 + |ξ χ̃ ′|2)5/2
δ̃2
κ ,

(42a)

μ2 ≈ − �̃

2
− α̃2 + 2|ξχ ′|2

2(α̃2 + |ξ χ̃ ′|2)
δ̃κ − α̃2(α̃2 + 4|ξχ ′|2)

8(α̃2 + |ξ χ̃ ′|2)5/2
δ̃2
κ ,

(42b)

μ3 ≈ −4α̃2

�̃2
δ̃κ , (42c)

where

�̃ = 2
√

α̃2 + |ξ χ̃ ′|2. (43)

Terms of order δ̃2
κ in Eqs. (42) have been retained to allow

for corrections resulting from dispersion. Given the initial
condition (37a), with χ̃(X̃,0) given by Eq. (27), values of δ̃κ

less than or of order 1/β1 contribute to the Fourier integrals.
When α̃ > |ξ χ̃ ′|, the dispersion terms in Eqs. (42a) and (42b)
are of order α̃3/|χ̃ ′|4 when δ̃κ = 1/β1; these terms become
significant for times τ ∼ |χ̃ ′|4/α̃3. On the other hand, the terms
of third order in δ̃κ are of order 1/|χ̃ ′|2 and contribute only
if the pulse remains in the medium for times τ � |χ̃ ′|2. The
major corrections to dispersion arise from the terms of order
δ̃4
κ in roots μ1 and μ2.

The approximate solution, obtained from Eqs. (38), (40),
and (42) is then

fap(δ̃κ ,τ ) = exp
( − 2i

α̃2+2|ξχ ′|2
�̃2 δ̃κτ

)(
f

ap
1 eipδ̃2

κ τ/2ei�̃τ/2 + f
ap
2 e−ipδ̃2

κ τ/2e−i�̃τ/2
) + f

ap
3 exp

[− 4iα̃2

�̃2 δ̃κτ
]
, (44)

where

p = α̃2 (α̃2 + 4|ξχ ′|2)

4(α̃2 + |ξ χ̃ ′|2)5/2
, (45)

and, to zeroth order in δ̃κ , the amplitudes fj , obtained from
the solution of Eqs. (40), are found to be

f
ap
1 = f

ap
2 = α̃2(1 − ξ )

2(α̃2 + |ξ χ̃ ′|2)
f (δ̃κ ,0), (46a)

f
ap
3 = (|ξ χ̃ ′|2 + α̃2ξ )

(α̃2 + |ξ χ̃ ′|2)
f (δ̃κ ,0). (46b)

The corrections to f
ap
1 and f

ap
2 are linear in δ̃κ , while the

corrections to f
ap
3 are of order δ̃2

κ ; neither are important for the
range of parameters considered in this work. It is seen that,
unless ξ = 1, the non-EIT component of the signal field is
comparable to the EIT component whenever α̃ > χ̃ ′, that is,
whenever the condition for slow light is satisfied.

The approximate field amplitude is given as the Fourier
transform (32) of Eq. (44). For other than a Gaussian pulse,
the field amplitude must be calculated numerically. However,
for the Gaussian input field amplitude given by Eq. (27) the
corresponding amplitude in δ̃κ space is also Gaussian,

f (δ̃κ ,0) = χ̃0β1π
−1/4e−δ̃2

κβ2
1 /2. (47)
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Using Eqs. (41), (32), and (44)–(47), we then find

I ap
in (X̃,τ )

=
∣∣∣∣π−1/4 ei�̃τ/2

w1

α̃2(1 − ξ )

2(α̃2 + |ξ χ̃ ′|2)
exp

[
− (X̃ − β̃2τ )2

2w2
1β

2
1

]

+π−1/4 e−i�̃τ/2

w2

α̃2(1 − ξ )

2(α̃2 + |ξ χ̃ ′|2)
exp

[
− (X̃ − β̃2τ )2

2w2
2β

2
1

]

+π−1/4 (|ξ χ̃ ′|2 + α̃2ξ )

(α̃2 + |ξ χ̃ ′|2)
exp

[
− (X̃ − β̃1τ )2

2β2
1

] ∣∣∣∣
2

, (48)

where

β̃1 = |ξχ ′|2
α̃2 + |ξχ ′|2 , (49a)

β̃2 = α̃2

2(α̃2 + |ξχ ′|2)
(49b)

are the two propagation speeds and

w1 =
√

1 − ipτ/β2
1 , (50a)

w2 =
√

1 + ipτ/β2
1 . (50b)

The quantity β1|w1| = β1|w2| gives the spatial width of the
non-EIT component at time τ . Notice that the EIT component
in Eq. (48) vanishes if α̃ = |χ̃ ′| and ξ = −1.

If we neglect dispersion by setting p = 0, we find that
Eq. (48) reduces to

I nd
in (X̃,τ ) = π−1/2

∣∣∣∣ (|ξ χ̃ ′|2 + α̃2ξ )

(α̃2 + |ξ χ̃ ′|2)
e−(X̃−β̃1τ )2/2β2

1

+ α̃2(1 − ξ ) cos(�̃τ/2)

(α̃2 + |ξ χ̃ ′|2)
e−(X̃−β̃2τ )2/2β2

1

∣∣∣∣
2

, (51)

where the nd superscript indicates that dispersion is neglected.
The corresponding solution for an arbitrary initial pulse shape
is

I nd
in (X̃,τ ) =

∣∣∣∣ (|ξ χ̃ ′|2 + α̃2ξ )

(α̃2 + |ξ χ̃ ′|2)

χ̃(X̃ − β̃1τ,0)

χ̃0

+ α̃2(1 − ξ ) cos(�̃τ/2)

(α̃2 + |ξ χ̃ ′|2)

χ̃(X̃ − β̃2τ,0)

χ̃0

∣∣∣∣
2

. (52)

The solution consists of the absolute square of the sum of
two terms, one that propagates at the normal EIT speed and

FIG. 2. (Color online) Field intensity in the medium for χ̃ ′ =
20, α̃ = 40, ξ = −1, and τ = 6.75. Solution including dispersion
(dashed blue line), solution neglecting dispersion (dotted red line),
and the exact solution (solid black line).

FIG. 3. (Color online) Field intensity in the medium for χ̃ ′ = 20,
α̃ = 40, ξ = −1, and τ in the range 6.0–6.5. The EIT component is
present, as is the oscillating component.

the other that propagates with speed β̃2 and oscillates with
frequency �̃/2. There can be interference between the two
components at early times, but the two components separate
with increasing τ , owing to their different propagation speeds.
The oscillation represents an exchange between the signal
field and the control field; any decrease in the signal field
is accompanied by gain in the control field and a decrease in
the state 3 population.

In Fig. 2 we show the results for ξ = −1 (realized by a
sudden change in the phase of the control field by π at τ = 0),
χ̃ ′ = 20, α̃ = 40, and τ = 6.75. For these values β̃1 = β1 =
0.2 and β̃2 = 0.4. The solution including dispersion (dashed
line), solution neglecting dispersion (dotted line), and the exact
solution (solid line) (obtained by using the exact solutions
for the roots and amplitudes fj , and then numerically taking
the Fourier transform) are shown. Both components of the
pulse are seen, with the EIT component centered at X̃ =
β̃1τ = 0.135 and the other component at X̃ = β̃2τ = 0.27.
The solution including dispersion is approximately equal to
the exact solution, but the solution neglecting dispersion
departs from the exact solution for the non-EIT component.
The solution neglecting dispersion would approach the exact
solution if we were to increase χ̃ ′ to 1000, while keeping the
ratio χ̃ ′/ α̃ constant. The oscillation in time of the second
component is indicated in Fig. 3 where the solution is shown

FIG. 4. (Color online) Field intensity in the medium for χ̃ ′ = 20,
α̃ = 40, ξ = −1, and τ in the range 0–0.5. Interference between the
two pulse components is seen.
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FIG. 5. (Color online) Field intensity in the medium for χ̃ ′ =
α̃ = 20, ξ = −1, and τ in the range 6.0–7.0. The EIT component is
no longer present.

for ξ = −1, χ̃ ′ = 20, α̃ = 40, and τ in the range 6.0–6.5. The
broadening and distortion of the non-EIT pulse wave fronts is

a result of dispersion. The interference of the two components
is illustrated in Fig. 4 with ξ = −1, χ̃ ′ = 20, α̃ = 40, and τ

in the range 0–0.5. Finally, in Fig. 5 we show the solution
for ξ = −1, χ̃ ′ = α̃ = 20, and τ in the range 6.0–7.0. The
EIT component is no longer present, having been converted
totally to the oscillating component. For these parameters,
β̃1 = β1 = 0.5 and β̃2 = 0.25 such that the “fast component”
actually propagates with a speed β̃2 = 0.25 that is half that
of the EIT component (were it present). Dispersion plays a
less important role in Figs. 4 and 5 than it does in Figs. 2
and 3.

A. Exiting the medium

When the pulse exits the medium, it propagates as a
free radiation pulse. Since the index of refraction is equal
to unity, there is no reflection. We can write the entire
solution as

I (X̃,τ ) =
⎧⎨
⎩

IEIT(X̃,τ ); τ < 0,

Iin(X̃,τ ); −L/2 � X � L/2; τ � 0,

Iin[L̃/2,τ − (X̃ − L̃/2)]; X � L/2; τ � 0,

(53)

where

IEIT(X̃,τ ) =
{

|χ̃ [X̃ − (τ − τ0),τ0]/χ̃0|2; X < −L/2; τ < 0,∣∣χ̃(
X̃
β1

− τ − X̃0,τ0
)/

χ̃0

∣∣2
; −L/2 � X � L/2; τ < 0,

(54)

and τ0 is given by Eq. (23). The corresponding equations for
the approximate solution including dispersion and neglecting
dispersion are obtained by changing Iin to I

ap
in and I nd

in ,
respectively. The graphs shown below are for I

ap
in which is very

nearly equal to the exact results for the range of parameters
considered.

In Fig. 6 we graph the solution (53) for ξ = −1, χ̃ ′ = 20,
α̃ = 20, L̃ = 4, and τ = 16, that is, for a time when the pulse
has emerged totally from the medium; for these values β̃1 =
β1 = 0.5 and β̃2 = 0.25. The EIT component is not present,
and the temporal oscillations of the remaining component have
been converted to spatial oscillations. Moreover, the pulse

FIG. 6. (Color online) Field intensity exiting the medium with
χ̃ ′ = 20, α̃ = 20, ξ = −1, L̃ = 4, and τ = 16. The green vertical
line is the end of the medium. The EIT component is absent and the
other component is spatially broadened.

is decompressed by a factor 1/β̃2 on leaving the medium,
which implies that its spatial width is β̃1/β̃2 = 2 times that of
the pulse initially sent into the medium. In other words, the
pulse is spatially broadened by a factor of 2 compared with
the initial pulse. In Fig. 7 the solution is shown for ξ = −1,

χ̃ ′ = 40, α̃ = 160, L̃ = 4, and τ = 40 (β̃1 = β1 = 0.059 and
β̃2 = 0.47). Both pulse components are now present. The
width of the EIT component equals that of the incident pulse.
Had dispersion been negligible, the width of the oscillating
component would have been β̃2/β̃1 = 8 times smaller than
that of the incident pulse; however dispersion results in a
broadening of this component by a factor of approximately 2.2,

FIG. 7. (Color online) Field intensity exiting the medium with
χ̃ ′ = 40, α̃ = 160, ξ = −1, L̃ = 4, and τ = 40. The EIT component
is now present and the other component is spatially narrowed (the
dashed green curve represents the original pulse width).
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FIG. 8. (Color online) Field intensity dynamics with χ̃ ′ = 20,
α̃ = 60, ξ = −1, and L̃ = 4.

although it is still narrower than the incident pulse (drawn for
convenience in the figure). The EIT component is centered at
X̃ = L̃/2 + τ − L̃/(2β̃1) = 8.1 and the oscillating component
at X̃ = L̃/2 + τ − L̃/(2β̃2) = 37.75. Finally in Fig. 8 we
show the entire evolution for ξ = −1, χ̃ ′ = 20, α̃ = 60, and
L̃ = 4 (β̃1 = β1 = 0.1; β̃2 = 0.45). The oscillating component
emerges much earlier from the medium than the EIT compo-
nent. The large peaks near τ = 0 correspond to constructive
interference between the EIT and oscillating component.

V. DISCUSSION

Normally, in applications involving slow light, one wants
large values of α/χ ′, since the speed of light in the medium
is reduced by this factor. To observe the effects outlined in
this paper, it is best to restrict α/χ ′ to a value of 10 or
so, since dispersion reduces the amplitude of the oscillating
component. We have shown that propagation of a weak probe
field in a medium of � system atoms also subjected to a strong
control field consists of two components. One component
propagates with the “normal” EIT or slow light velocity,
while the other component, which oscillates as a function
of time as it propagates in the medium, has a maximum
propagation velocity equal to c/2. When this component leaves
the medium, the temporal oscillations are converted into both
spatial and temporal oscillations. If a single photon pulse is
used as the input, the output field can be in superposition of
spatially separated components. Any losses from excited state
decay have been neglected.

To observe these effects, it is necessary that α � χ ′ � γ2;
moreover, to see the oscillations, one requires that αL/c � 1.
Optimal conditions might involve atoms having γ2 ≈ 107 s−1,
χ ′ ≈ 1010 s−1, α ≈ 1010 s−1 which would require a sample size
on the order of a centimeter or so. Field switching would then
have to be on a time scale of picoseconds. With larger sample
sizes, some of these frequencies can be reduced. It appears that
the system parameters in the experiment of Kasapi et al. [18]
might be favorable. In that experiment a 10-cm-long Pb vapor
cell was used with a (pulsed) control field Rabi frequency in
excess of 1010 s−1 and a value of α that was roughly 13 times
χ ′ at an atomic density of 2 × 1014 atoms/cm3.
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APPENDIX

The full three-level dynamics is governed by the equations
[17]

∂ρ11(X,t)/∂t = i [χ (X,t)ρ̃12(X,t) − χ∗(X,t)

× ρ̃21(X,t)] + γ2,1ρ22(X,t), (A1a)

∂ρ̃33(X,t)/∂t = i [χ ′ρ̃32(X,t) − χ ′∗ρ̃23(X,t)]

+ γ2,3ρ22(X,t), (A1b)

∂ρ22(X,t)/∂t = −i [χ (X,t)ρ̃12(X,t) − χ∗ρ̃21(X,t)]

− i(χ ′ρ̃32 − χ ′∗ρ̃23) − γ2ρ22,

(A1c)

∂ρ̃13(X,t)/∂t = iχ ′ρ̃12(X,t) − iχ (X,t)∗ρ̃23(X,t)

− [γ13 + i (δ − δ′)]ρ̃13, (A1d)

∂ρ̃12(X,t)/∂t = iχ ′∗ρ̃13(X,t) − iχ (X,t)∗[ρ22(X,t)

− ρ11(X,t)] − (γ12 − iδ)ρ̃12(X,t),

(A1e)

∂ρ̃32(X,t)/∂t = iχ (X,t)∗ρ̃31(X,t) − iχ ′∗[ρ22(X,t)

− ρ33(X,t)] − (γ32 − iδ′)ρ̃32(X,t),

(A1f)

ρ̃j i(X,t) = ρ̃∗
ij (X,t), (A1g)

∂χ (X,t)

∂X
+ 1

c

∂χ (X,t)

∂t
= −iα2 ρ̃21(X,t)

c
G(X), (A1h)

where

χ (X,t) = −μ21A(X,t)

2h̄
, (A2a)

χ ′ = −μ23Ec

2h̄
, (A2b)

are one-half the Rabi frequencies associated with the signal
field and control field transitions, respectively,

δ = ω21 − ωs, (A3a)

δ′ = ω23 − ωc, (A3b)

are atom-field detunings, γ2 = γ2,3 + γ2,1 is the excited-state
decay rate, γ2,j is the partial decay rate from level 2 to level
j , and γij is the decay rate associated with the ij atomic
coherence, μ23 is a dipole matrix element,

G(X) = �(L/2 + X)�(L/2 − X) (A4)

restricts the atom-field interaction to the volume of the medium
[�(X) is a Heaviside function], and α2 is given by Eq. (2).
Equation (A1h) is the propagation equation for the field
amplitude, obtained in a slowly varying amplitude and phase
approximation [17].
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