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Extracting joint weak values from two-dimensional spatial displacements
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The joint weak value is a counterfactual quantity related to quantum correlations and quantum dynamics, which
can be retrieved via weak measurements, as initiated by Aharonov and colleagues. In this paper, we provide a full
analytical extension of the method described by Puentes et al. [Phys. Rev. Lett. 109, 040401 (2012)], to extract
the joint weak values of single-particle operators from two-dimensional spatial displacements of Laguerre-Gauss
probe states, for the case of the azimuthal index |l| > 1. This method has a statistical advantage over previous
ones since information about the conjugate observable, i.e., the momentum displacement of the probe, is not
required. Moreover, we demonstrate that, under certain conditions, the joint weak value can be extracted directly
from spatial displacements without any additional data processing.
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As the well-known examples of the Einstein-Podolsky-
Rosen paradox and the which-path information in the Young
double-slit experiment illustrate, quantum dynamics and quan-
tum correlations have eluded our intuitive understanding for a
long time. To capture these features, it is important to access
the expectation value of products of two observables since
such joint observables can contain information about quantum
correlations and quantum dynamics. However, in the standard
technique, the strong measurement of joint observables is
difficult to implement because of the requirement of a
nonlinear Hamiltonian [1] and the state reduction resulting
from the measurement backaction. In this regard, the joint
weak value is a good candidate, as seen in Refs. [2–5],
since this quantity can be experimentally obtained with a tiny
measurement backaction from the second-order effects of the
time evolution via a local, linear, and single-particle interaction
Hamiltonian.

Historically, the weak value was initiated by Aharonov,
Albert, and Vaidman (AAV) [6], inspired from the two-time
formulation of the quantum-mechanical system [7]. This
formulation is characterized by the pre- and postselected states
of the system. When a system initially prepared in state |ψi〉
is postselected in state |ψf〉, the weak value of the observable
Â is defined as

〈Â〉w := 〈ψf|Â|ψi〉
〈ψf|ψi〉

, (1)

which can lie outside the spectrum of Â and can even
take an imaginary value. Recently, there have been various
experimental realizations using the weak value within the
foundations of quantum mechanics, for example, in the direct
measurement of a wave function [8], the which-path measure-
ment in the Young double-slit experiment [9], the confirmation
of the Heisenberg-Ozawa uncertainty relationship [10], the
confirmation of the Hardy paradox [11], the violation of
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the Leggett-Garg inequality [12], and the measurement of a
geometric phase in an interferometer [13].

There are also various proposals for extracting the weak
value from experimental data (see, for reviews, Refs. [14–16]).
Originally, AAV restricted their attention to the standard von
Neumann paradigm with a weak interaction Hamiltonian of the
form Ĥ = gÂ ⊗ P̂x , where g is a small coupling constant and
P̂x is the momentum observable of the probe state conjugate
to the position observable X̂ with [X̂,P̂x] = ih̄. Moreover,
they assumed that the probe state was initially prepared in a
fundamental Gaussian mode. In this case, we can determine
the real and imaginary parts of the weak value from the spatial
and momentum displacements of the probe state [6,17].

Recently, Resch and Steinberg [2] proposed a measurement
technique for the weak value of the joint observable as alluded
before. They employed a two-dimensional Gaussian probe
state and a weak coupling of the system observable Â (B̂)
with x (y) dimension of the probe state. By performing a
second-order expansion in the two-dimensional displacement
of the probe state, they showed that it is possible to extract the
real part of the joint weak value 〈ÂB̂〉w from the second-order
spatial displacement, under the assumption of commuting
observables [Â,B̂] = 0. This procedure, however, needs the
real and imaginary parts of single weak values 〈Â〉w and 〈B̂〉w
to calculate the joint weak value. Thus, we have to obtain
full information of the probe wave function, i.e., not only the
spatial displacement but also the momentum displacement, by
taking the Fourier transform of the probe wave function.

In this paper, we provide a simple method for extracting
the joint weak value only from the spatial displacement of
the two-dimensional probe state. This method has a statistical
advantage over previous methods since full information of
the probe wave function is not required. The key idea is to
employ Laguerre-Gauss (LG) modes for probe states, as was
initiated by Puentes et al. [3]. We extend this idea and provide
the full description of the weak measurement for higher-order
LG modes with radial index p = 0 to extract the joint weak
values.

The LG modes are given as the natural solutions of the
paraxial wave equation [18] and characterized by a radial
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index, p, and an azimuthal index, l. The modes have zero
intensity at their center and an annular intensity distribution.
The wave front of the LG modes is composed of |l| intertwined
helical wave fronts, with a handedness given by the sign
of l. It has been shown that each photon in the LG modes
carries a quantized intrinsic orbital angular momentum lh̄,
in addition to the spinlike angular momentum ±h̄ associated
with circularly polarized waves [19]. The LG modes have been
created using various experimental setups, e.g., using spatial
light modulators [20] and using the reflection on a conically
shaped mirror [21]. Furthermore, the LG modes have many
applications, for example, for achieving high efficiency of
optical tweezers [22], for reducing the thermal noise inside
gravitational-wave interferometers [23], and for generating
entanglement with high efficiency [24]. The amplitude dis-
tribution of the LG modes with radial index p = 0 is given as

φi(x,y) = N{x + isgn(l)y}|l| exp

(
−x2 + y2

4σ 2

)
, (2)

where σ is the variance in the case of l = 0, sgn(·) is the sign
function, and N is the normalization constant. When l = 0,
Eq. (2) corresponds to a fundamental Gaussian mode. In this
case, the amplitude distribution is factorable in two directions,
x and y. When |l| > 0, however, it is no longer factorable, and
this is a key factor for retrieving the joint weak values.

Consider a weak interaction between the LG probe state
|φi〉 = ∫

dxdyφi(x,y)|x,y〉 and an initial state |ψi〉 of the
system for the joint weak measurement of the observables
Â and B̂. The total input state is |�i〉 = |ψi〉 ⊗ |φi〉. For
the measurement process, we use the standard von Neumann
paradigm with the local, linear, and single-particle interaction
Hamiltonian as follows:

Ĥ = gδ(t − t0)(Â ⊗ P̂x + B̂ ⊗ P̂y), (3)

where a coupling constant g is sufficiently small and P̂x and
P̂y are the momentum observables of the probe conjugate to
two commuting position observables, X̂ and Ŷ , respectively.
Here we have taken the interaction to be impulsive at time
t = t0 and the same coupling constant g between the x and y

directions for simplicity.
After the interaction between the system and probe states,

we postselect the system in state |ψf〉, resulting in the probe
state:

|φf〉 = 〈ψf|e−ig(Â⊗P̂x+B̂⊗P̂y )/h̄|ψi〉|φi〉. (4)

We denote the expectation values of an observable M̂ in the
initial probe state |φi〉 and the final probe state |φf〉 as

〈M̂〉i ≡ 〈φi|M̂|φi〉
〈φi|φi〉 and 〈M̂〉f ≡ 〈φf|M̂|φf〉

〈φf|φf〉 . (5)

We can calculate the displacement 〈M̂〉fi by expanding the
time evolution operator in Eq. (4) up to the second order in the
coupling constant g:

〈M̂〉fi ≡ 〈M̂〉f − 〈M̂〉i

� 2g

h̄
Im〈M̂Ĥ1〉i + g2

h̄2 (〈Ĥ †
1 M̂Ĥ1〉i − Re〈M̂Ĥ2〉i), (6)

where

Ĥ1 ≡ P̂x〈Â〉w + P̂y〈B̂〉w, (7)

Ĥ2 ≡ P̂ 2
x 〈Â2〉w + P̂ 2

y 〈B̂2〉w + P̂xP̂y〈ÂB̂ + B̂Â〉w. (8)

Ĥ1 and Ĥ2 are, respectively, the first- and second-order terms
of the time evolution operator in the coupling constant g. In
case of the large weak value, the approximation in Eq. (6)
seems to be invalid because of the measurement backaction
[25]. However, the measurement backaction can be ignored by
setting a sufficiently small coupling constant.

First, we calculate the spatial displacement of the probe
state in the x-y plane. In this case, we employ Eq. (6) up to
the first order and obtain the spatial displacements as

〈X̂〉fi = g(Re〈Â〉w + l Im〈B̂〉w), (9)

〈Ŷ 〉fi = g(Re〈B̂〉w − l Im〈Â〉w). (10)

These results show that the spatial displacements along the x

and y directions include not only the real part of the weak
value but also its imaginary part except for l = 0. This is
because the probe state given in Eq. (2) is not factorable in
the x and y dimensions so the coupling of the observable Â

(B̂) with the x (y) dimension of the probe also affects its y (x)
dimension as the imaginary part of the weak value. Note that
this is also pointed out in Refs. [3,26] and further Eqs. (9) and
(10) coincide with Eq. (29) in Ref. [27].

Next, we consider the joint measurement of two position
observables along the mutually perpendicular directions in the
probe state. The joint observables in the probe state can be
represented by X̂Ŷ and X̂2 − Ŷ 2. The other products of the per-
pendicular position operators can be represented by the linear
superposition of these two observables. The expectation values
of these joint observables can be experimentally obtained
from the two-dimensional intensity distribution captured by
the imaging sensor.

We employ Eq. (6) up to the second order in the coupling
constant g and obtain the second-order spatial displacements
as

〈X̂Ŷ 〉fi = g2

[
− l2 − |l| − 2

4
Re(〈Â〉w〈B̂〉∗w)

+ l2 − |l| + 2

4
Re

〈
ÂB̂ + B̂Â

2

〉
w

− l Im

〈
Â2 − B̂2

2

〉
w

]
, (11)

〈
X̂2 − Ŷ 2

2

〉
fi

= g2

[
− l2 − |l| − 2

8
(|〈Â〉w|2 − |〈B̂〉w|2)

+ l2 − |l| + 2

4
Re

〈
Â2 − B̂2

2

〉
w

+ l Im

〈
ÂB̂ + B̂Â

2

〉
w

]
. (12)

For the fundamental Gaussian probe state (l = 0), our result
is consistent with the result given in Ref. [2]. In this case,
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Eqs. (11) and (12) contain only the real part of the joint weak
values 〈ÂB̂ + B̂Â〉w and 〈Â2 − B̂2〉w. For |l| > 0, however,
we obtain additional terms proportional to their imaginary part
as illustrated in Ref. [3] for the case of |l| = 1 [28]. Thus, the
second-order spatial displacements contain all the information
about joint weak values [29]. This feature is not attainable with
a fundamental Gaussian mode (l = 0).

One useful method for obtaining the joint weak values is
to take two separate measurements by using two probe states
with different l values. From a practical point of view, the best
choice is two probe states with equal magnitude but different
signs of l since they can be easily prepared by using a mirror
reflection. In this method, the two separate measurements
with four types of spatial displacements bring eight outcomes,
which equal the number of unknown real and imaginary
parts of single and joint weak values. Thus, it is possible
to calculate the real and imaginary parts of the joint weak
values from Eqs. (9)–(12). The advantage of this method is
that we can use the same interaction Hamiltonian, i.e., the same
experimental setup; we only need to change the input probe
state.

In particular, in the case of |l| = 2, the coefficients of the
first-order weak values 〈Â〉w and 〈B̂〉w in Eqs. (11) and (12) are
eliminated. Therefore, only the joint weak values remain. By
using the two probe states with l = ±2, we can extract the joint
weak values only from the second-order spatial displacement
as follows:

Re〈ÂB̂ + B̂Â〉w = 〈X̂Ŷ 〉+ + 〈X̂Ŷ 〉−
g2

, (13)

Im〈ÂB̂ + B̂Â〉w = 〈X̂2 − Ŷ 2〉+ − 〈X̂2 − Ŷ 2〉−
4g2

, (14)

Re〈Â2 − B̂2〉w = 〈X̂2 − Ŷ 2〉+ + 〈X̂2 − Ŷ 2〉−
2g2

, (15)

Im〈Â2 − B̂2〉w = −〈X̂Ŷ 〉+ − 〈X̂Ŷ 〉−
2g2

, (16)

where 〈 · 〉+ and 〈 · 〉− correspond to the spatial displacements
for the l = +2 and −2 cases, respectively.

Moreover, under the assumption of Â2 = B̂2, the joint weak
value 〈Â2 − B̂2〉w is also eliminated. Thus, we can derive a
simple and direct relationship between the second-order spatial

displacements and the joint weak value as

Re〈ÂB̂ + B̂Â〉w = 2

g2
〈X̂Ŷ 〉fi, (17)

Im〈ÂB̂ + B̂Â〉w = sgn(l)

2g2
〈X̂2 − Ŷ 2〉fi. (18)

With these equations, the joint weak value can be directly
extracted from the spatial displacements by using a single
LG probe state with |l| = 2. Although our consideration is
restricted only to the case of Â2 = B̂2, this case includes
many experimental setups. For example, the joint weak
measurements of the Pauli operators σ̂i (i = x,y,z) in different
two-level systems, such as Â = σ̂z ⊗ Î and B̂ = Î ⊗ σ̂z with
the identity operator Î , are included since they satisfy the
property Â2 = B̂2 = Î .

In this paper, we derive the full description of the weak
measurement for the LG probe state and provide a simple
method for extracting the joint weak values only from the
spatial displacements of the two-dimensional probe state. Our
method has a statistical advantage over previous ones since
information about the momentum displacement is not required.
Moreover, by using the LG probe state with |l| = 2, and for the
case Â2 = B̂2, we can extract the full joint weak value, i.e., the
real and imaginary parts of the joint weak value directly from
the second-order spatial displacements without any additional
data processing.

In our study, we restrict the probe state to the LG mode
with the radial index p = 0. However, we can use other spatial
modes, e.g., LG modes with the nonzero radial index p,
Hermite Gauss modes, and hypergeometric Gaussian modes.
There remains an interesting problem with the relationship
between the spatial rotational symmetry of the probe state
and the joint weak value since the spatial rotational symmetry
in our restricted case is broken after the weak measurement.
Moreover, it would be interesting to study the case of probe
states given by superpositions of different spatial modes. By
using such an extended probe state, the condition Â2 = B̂2

might be relaxed.
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