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Anomalous Hall effects of light and chiral edge modes on the Kagomé lattice
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We theoretically investigate a photonic Kagomé lattice which can be realized in microwave cavity arrays using
current technology. The Kagomé lattice exhibits an exotic band structure with three bands, one of which can be
made completely flat. The presence of artificial gauge fields makes it possible to emulate topological phases and
induce chiral edge modes which can coexist inside the energy gap with the flat band that is topologically trivial.
By tuning the artificial fluxes or in the presence of disorder, the flat band can also acquire a bandwidth in energy
allowing the coexistence between chiral edge modes and bulk extended states; in this case the chiral modes
become fragile towards scattering into the bulk. The photonic system then exhibits equivalents of both a quantum
Hall effect without Landau levels and an anomalous Hall effect characterized by a nonquantized Chern number.
We discuss experimental observables such as local density of states and edge currents. We show how synthetic
uniform magnetic fields can be engineered, which allows an experimental probe of Landau levels in the photonic
Kagomé lattice. We then draw on semiclassical Boltzmann equations for transport to devise a method to measure
Berry’s phases around loops in the Brillouin zone. The method is based solely on wave-packet interference and
can be used to determine band Chern numbers or the photonic equivalent of the anomalous Hall response. We
demonstrate the robustness of these measurements towards on-site and gauge-field disorder. We also show the
stability of the anomalous quantum Hall phase for nonlinear cavities and for (artificial) atom-photon interactions.
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I. INTRODUCTION

Phenomena associated with flat bands in fermionic and
bosonic systems have drawn attention over the last three
decades [1–8]. The best known example is perhaps the
fractional quantum Hall effect [9]. If a single-particle band is
dispersionless in one direction, electrons are localized in that
direction, causing an element of the effective mass tensor to
diverge. If the band is completely flat in the entire k space, then
heavy degeneracy appears and the density of states diverges.
Such singularities in the density of states are expected to
produce anomalous behaviors in physical properties including
transport phenomena and optical response. If a wave packet
is created in the flat-band system, the group velocity will
automatically vanish and very strong backscattering prevents
the packet from moving. In fact, this scenario takes place on
the Kagomé lattice where localized states on hexagon rings
occur as a result of the alternating sign of the wave-function
amplitude [10,11].

The topological properties of the band structure are now
essential in approaching the problem of Chern insulators [12]
or topological insulators [13,14]. Band-structure topology has
been first discussed in the context of the integer quantum Hall
effect by Thouless et al. [15].

More precisely, the set of energy eigenstates that form
an isolated band is described by the first Chern number
[16], a topological invariant associated with the band. The
Chern number has direct physical consequences: For example,
a completely filled (electronic) band has a quantized Hall
conductance, corresponding to the existence of chiral edge
modes [17]. It is possible to view this invariant as the flux of
the Berry curvature [18] through the first Brillouin zone [19].
The Berry curvature and the Chern number have become im-
portant mathematical concepts to classify topological phases

in connection with band structures. The Chern number has
previously been accessed through the conductance and chiral
edge states of quantum Hall systems, and the total Berry phase
associated with a single Dirac point has been inferred from
transport in graphene [20]. Measuring the local Berry curvature
constitutes an actual challenge in experiments.

In this paper, we investigate anomalous Hall phases of
light on a specific Kagomé lattice with artificial magnetic
fluxes, which has been introduced in the context of photonic
lattices [21] (see Fig. 1). The effect of time-reversal symmetry
breaking in connection with this Kagomé photon lattice has
been previously studied at the level of a few-site geometry [21].
We show below that this lattice with artificial gauge fields
allows for the existence of an anomalous quantum Hall phase,
or a quantum Hall phase without Landau levels [12].

Photonic lattices based on arrays of circuit quantum
electrodynamics (cQED) superconducting elements [23] have
been recently realized experimentally [22,24]. Such photon
cavity lattices are predicted to exhibit interesting many-body
phenomena [25,26], including a superfluid-Mott transition of
light [27–35], Bose-Hubbard models with attractive inter-
actions [36], fractional quantum Hall physics [37–39], and
interesting dynamics [40], in particular in ring geometries
[41]. Recently, a Rabi model has been shown to present a
Z2 Ising universality class quantum phase transition between
two gapped phases, which are not Mott insulator phases [42].
An anomalous quantum Hall phase for light accompanied by
unidirectional photonic chiral edge states has been predicted in
photonic crystals [43,44] and confirmed experimentally [45].
In addition, two-dimensional photonic equivalents of topo-
logical insulators have been envisaged [46,47]. Topological
properties of optical systems might help to implement robust
photonic devices [46] and to realize invisibility cloaks [48].

053804-11050-2947/2012/86(5)/053804(22) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.053804


ALEXANDRU PETRESCU, ANDREW A. HOUCK, AND KARYN LE HUR PHYSICAL REVIEW A 86, 053804 (2012)

FIG. 1. (Color online) The photonic Kagomé lattice with three
sites per unit cell A,B,C. Artificial fluxes can be threaded through
the triangular plaquettes [21]. (Top left) Lattice periodic in the x

direction, with “line” boundaries composed of A,B sites only. The
blue parallelogram encloses a one-dimensional superunit cell which
generates the entire lattice. (Top right) A projection of the Brillouin
zone onto the kx ≡ k1 direction. (Bottom left) At φ = π/6 the system
exhibits a flat, topologically trivial middle band, while the lower and
upper bands are characterized by finite Chern numbers. (Bottom
right) The middle band becomes dispersive if one deviates from
π/6, for example, for φ = π/4. Here, we have considered a cylinder
geometry which allows for two chiral edge modes: right-moving
at the lower edge (purple), left-moving at the upper edge (orange);
corresponding chiral currents depicted on the lattice. As discussed in
Secs. IV B and IV C, the chiral edge modes can also be detected in
the square geometry [22].

Artificial gauge fields in photonic systems have attracted
growing attention [49,50].

Our primary goal is to investigate the effect of the
topologically trivial flat band (with a zero Chern number) on
the robustness of photonic chiral edge modes. In our realization
of the Kagomé lattice, neighboring hexagons are subject to
the same magnetic flux. The magnetic flux opens a gap at
the Dirac points and breaks time-reversal symmetry, making
it possible to stabilize topological phases characterized by
two bands acquiring nonzero Chern numbers (see Fig. 1).
The middle band can be made flat or acquire a finite energy
dispersion for certain values of the artificial gauge fields (see
Fig. 1) or if disorder is present; therefore, edge modes can
coexist with extended bulk states at the same energy. In this
situation edge modes are fragile towards leaking into the bulk,
resulting in an anomalous Hall phase with a nonquantized
Chern number [51]. A similar effect has occurred in a toy
model on the honeycomb lattice [52]. We investigate the
evolution of unidirectional edge modes of light in the presence
of a localized scatterer by tuning the artificial gauge fields and
by introducing disorder. We present a manner to determine
Berry’s phases of photon wave packets through an interference
experiment. There exists a previous proposal to access the

Berry curvature through a measurement of group velocities
of wave packets in optical lattices [53]. We discuss a direct
measurement of the Chern number of a Bloch band, which does
not require summation of contributions across the Brillouin
zone. Underlying these methods is the implementation of
uniform synthetic gauge fields through tunable cavities with
time-dependent frequencies and the realization of Landau
levels in photon systems. It is noticed that a similar scheme
has been recently realized in cold-atom systems [54] and
that cavities with tunable resonances have been already
implemented in cQED [55,56].

In addition, the quest for exotic phases on the Kagomé
lattice represents an active subject of research [4,57–66].
Topological phases and their supporting artificial gauge fields
are potentially realizable in cold-atom systems [67–72]. The
Hofstadter spectrum [73] on the related dice lattice has
been realized in GaAlAs/GaAs systems [74]. The Hofstadter
spectrum for the Kagomé lattice has also been studied with
superconducting wire networks [75]. Finally, the Kagomé
structure naturally appears in real materials [76,77] and
recently it has been implemented in cold-atom systems [78].

The paper is organized as follows. We introduce the tight-
binding model of a Kagomé lattice in the presence of artificial
gauge fields in Sec. II. Explicit solutions for the edge-mode
wave functions in cylinder geometry and a brief discussion
of the bulk-edge correspondence are the subjects of Sec. III.
Following this, in Sec. IV we present observables specific to
the anomalous Hall phase, namely the bulk polarization, the
edge currents, and the local density of states. Section V further
details a method to measure Berry’s phases of wave packets
in both clean and disordered systems. The method requires
a uniform synthetic magnetic field, on whose realization in a
photonic lattice we elaborate. Additionally, we show a method
to directly find the topological Chern number of a given
Bloch band by counting energy levels of the system in an
artificial magnetic field. In Sec. VI, we discuss in detail the
anomalous Hall effects of light in relation to Chern numbers.
In the particular case of disordered systems, we present a
real-space calculation of the Chern number which reveals a
close analogy between tuning the artificial gauge fields and the
presence of disorder in the system (in cQED lattices, disorder
can appear either as an on-site scalar or as a vector potential).
In Sec. VII we discuss the role of symmetries and the local
stability of Dirac points in the three-band system. In Sec. VIII
we study the effect of interactions in QED cavities [79], such
as Bose-Hubbard [80] and Jaynes-Cummings [81], on the
topological phase. The appendixes are dedicated to technical
details.

II. TIME-REVERSAL SYMMETRY BREAKING

Below, we introduce the Kagomé lattice with artificial
gauge fields. An effective tight-binding Hamiltonian for
photons with the possibility to break time-reversal symmetry
can be realized in a cQED system by coupling superconducting
wave guides to nano-Josephson circulators (rings) [21]. The
Kagomé lattice is formed by triangular and hexagonal plaque-
ttes arranged as shown in Fig. 1. The resulting structure has
three sites per unit cell, which we denote by A,B,C. Letting
a be twice the length of a bond, we pick the following lattice
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vectors �1,2 and reciprocal lattice vectors g1,2:

�1 = a(1,0), �2 = a

(
1

2
,−

√
3

2

)
,

(1)

g1 = 4π√
3a

(1,0), g2 = 4π√
3a

(
1

2
,−

√
3

2

)
.

The Brillouin zone (see Fig. 1) is hexagonal and contains
the common points of high symmetry � = (0,0) and K± =
±( 4π

3a
,0).

We use the following lattice coordinates: the directions
along �̂1, �̂2 in real space corresponding to ĝ1,ĝ2 in
momentum space (top right panel of Fig. 1), where hats
denote unit vectors. In this notation, �̂1 coincides with the x

direction, x̂. We denote sites on the lattice by a pair of integers
m = (m1,m2) and coordinates on the lattice in terms of lattice
vectors by rm ≡ m1�1 + m2�2. Continuous coordinates are
represented by a pair of real numbers r = (r1,r2) in terms of
unit vectors, r = r1�̂1 + r2�̂2; momenta will be written as
k = k1ĝ1 + k2ĝ2.

In a cQED system, a given waveguide of length in
the millimeter range typically supports a single photonic
mode. Furthermore, the photons which travel in these one-
dimensional wave guides do not carry a polarization label
and must be thought of as simply excitations of microwave
resonators [82]. The hopping of photons from one wave guide
to another results in a translationally invariant tight-binding
Hamiltonian. Following Ref. [21], a honeycomb array of wave
guides with nano-Josephson circulators can be equivalently
reformulated as the photonic Kagomé lattice of Fig. 1. The
Hamiltonian can be Fourier transformed, and we obtain

H =
∑
k∈BZ

ψ
†
kHkψk, (2)

and the spinor ψ
†
k = (a†

Ak,a
†
Bk,a

†
Ck) contains the creation

operators on each sublattice, and

Hk =

⎛
⎜⎝

h̄ω 2|t |eiφ cos α1 2|t |e−iφ cos α2

2|t |e−iφ cos α1 h̄ω 2|t |eiφ cos α12

2|t |eiφ cos α2 2|t |e−iφ cos α12 h̄ω

⎞
⎟⎠ .

(3)

We have defined three dimensionless functions of momentum,

α1(k) ≡ k · �1

2
, α2(k) ≡ k · �2

2
, α12(k) ≡ k · �1 − �2

2
.

(4)

In the effective tight-binding model particles hop between
nearest-neighbor sites with a complex hopping integral |t |e±iφ .
Photons acquire a phase 3φ around a triangular plaquette and
a phase of −6φ around the hexagonal plaquette, amounting to
zero total flux in the parallelogram unit cell of area |�1 × �2|,
which is characteristic of the anomalous quantum Hall effect
without Landau levels as introduced by Haldane [12]. The
particles are also subject to an artificial on-site potential
induced by the (electromagnetic superconducting resonator)
waveguide frequency ω and an artificial gauge field giving
rise to complex hopping integrals and breaking time-reversal
symmetry. It shall be noted that both the effective on-site

potential h̄ω and the hopping strength |t | should be obtained
rigorously after integrating out coupling element degrees
of freedom (in our case, a Josephson ring coupling three
resonators) [21]. In a typical cQED experiment, the energy of
an incoming photon is much larger than the size of the energy
gap between bands: |t | is expected to lie below 100 MHz
and the frequency ω is in the GHz, or microwave, range.

The rotational symmetry of the lattice is not strictly
necessary and anisotropies are possible; their effect on the
band structure is discussed in Sec. VII. In the rest of the paper
we focus on the isotropic case.

The Hamiltonian of Eq. (3) is a band Hamiltonian obeying
Bloch’s theorem. To determine the Bloch energies E(k) for
the three bands, let us denote U (k) ≡ −[E(k) − h̄ω]/|t |,
and α(k) ≡ cos α1(k) cos α2(k) cos[α12(k)]. We obtain the
following equation for the eigenvalues:

U 3(k) − 4U (k)[2α(k) + 1] + 16 cos(3φ)α(k) = 0. (5)

For special values of the phase φ, destructive interference
confines the wave function to the hexagonal plaquettes, which
renders the respective band completely dispersionless. We
obtain such a solution with energy U (k) = 2 cos 3φ whenever
cos(3φ)(cos 3φ − 1)(cos 3φ + 1) = 0. The middle band is flat
whenever φ = π

6 + mπ
3 , where m is an integer. When φ = mπ

3 ,
the upper or lower band is flat, touching the middle band at
the � point; the other two bands form Dirac cones at the six
corners of the Brillouin zone. For example, the band structure
for the cases φ = π

6 and π
4 (which will be thoroughly discussed

in the text) is depicted in Fig. 1, along with edge modes arising
from a finite geometry discussed below. The edge modes
appear because by tuning the phase φ one breaks time-reversal
symmetry at the Dirac points. The band structure of Eq. (5) is
invariant to a shift of 2π

3 in φ; we then restrict to φ ∈ [0, 2π
3 ] in

the further discussion.
Time-reversal symmetry is kept if the phases accumulated

along any closed loop on the lattice amount to an integer
multiple of π [21]. This condition is equivalent to requiring
that H−k and its time-reversed counterpart, H ∗

k , are the same
up to a gauge transformation on the spinor ψk in Eq. (2). In our
case, if 3φ is an integer multiple of π , then the Hamiltonian
is time-reversal symmetric. The band-structure properties can
be summarized in the (E,φ) phase diagram of Fig. 2. The
phase diagram represented is periodic in φ. A particle created
at energies in the “band gap” regions cannot be in a two-
dimensional Bloch state of the Hamiltonian. States exist in
this energy interval only in a finite geometry with boundaries,
as we show in detail in Sec. III. Such a state would be confined
to the edges of the sample and propagate chirally (chiral edge
mode). The “bulk band” phase is embodied by bulk extended
states. When photonic bulk extended states and chiral edge
modes coexist at the same energy E, the edge excitations may
scatter into the bulk; this situation coincides with an anomalous
Hall phase. The F points in the diagram of Fig. 2 correspond to
flat bands. Dashed lines from the F points show the possible
phase transitions: horizontal blue line, from the flat band to a
band gap by changing the particle energy; vertical blue line,
from the flat band to a bulk band by changing the phase φ.
The D points represent band degeneracies at the Dirac points
K±. Moving along the vertical red line (a change in φ) lifts the
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band gap bulk band 
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F

FIG. 2. (Color online) Two-dimensional phase diagram of a
particle (photon) with energy E on the Kagomé lattice defined with
hopping phase φ. By tuning (E,φ) the photon system is either
characterized by extended bulk states (“bulk band”) or by a “band
gap” where the system exhibits unidirectional edge modes but no
bulk states. The F points represent states in the flat band (the blue
points at E − h̄ω = 0 correspond to a middle flat band separated
by finite energy gaps from the lower and upper bands; black points
at E − h̄ω = ±2|t | correspond to flat upper or lower band). The D
points are degeneracy points between pairs of bands at the Dirac
points K±. The dashed lines are explained in the main text.

degeneracy and a finite band gap is opened. A particle with a
slightly larger energy would be in a bulk band state.

At φ = 0, the system is gapless: There is a quadratic
touching with a flat band at the � point, corresponding to
F in Fig. 2, and Dirac cones at the K points, corresponding
to D. We focus on the system in the vicinity of φ = π

6 , at
which the system exhibits a flat band. Changing the energy
of the particle at the F points (equivalent to moving along a
horizontal line in the figure) will take us from the flat band into
a band gap. Changing φ at the F point (equivalent to moving
along the vertical line) will take us from the flat band into a
bulk band with finite bandwidth.

III. CHIRAL EDGE MODES

In this section we make explicit the correspondence
between a bulk quantity, the Chern number, and the chiral
edge modes at the edges of a sample. It should be noted that
even though we choose the cylindrical geometry below for
mathematical convenience, the edge states can be detected in a
square geometry; this point is illustrated below in Figs. 5 and
6.

Given a translationally invariant two-dimensional lattice
Hamiltonian whose eigenstates are the Bloch states, the
existence of chiral edge modes is signaled by the nonzero
values of the Chern number ν(n) corresponding to the Bloch
band |nk〉 [15],

ν(n) = 1

2π

∫
BZ

d2k[∂k × R(n)(k)], (6)

where the vector field R(n)(k) is the Berry gauge potential
associated to the nth Bloch band,

R(n)(k) = −i〈nk|∂k|nk〉. (7)

The integral in Eq. (6) is over the entire surface of the Brillouin
zone, so it is a summation over all of the states enclosed in the
nth band.

When the bands are separated by an energy gap throughout
the Brillouin zone, the band Chern numbers of the lower, mid-
dle, and upper bands, respectively, can be shown numerically to
be −sgn(sin 3φ),0, and +sgn(sin 3φ), where φ ∈ [0, 2π

3 ]. The
sin(3φ) function was chosen to obey the 2π/3 periodicity of the
band structure with respect to the phase φ. In particular, this is
consistent with a recent result that implies that the flat band of
the Kagomé lattice, if isolated from the other bands by energy
gaps (as is the case for φ = π

6 ), will be nontopological [83].
The Chern number of Eq. (6) is a topological index whose

value can only change if by variation of parameters the bands
touch at some degeneracy points in the Brillouin zone and
subsequently reopen the energy gap [15]. As the parameter φ

is varied, for values 0, π
3 , 2π

3 , . . . two bands touch at all corners
of the Brillouin zone, forming Dirac points; the remaining pair
has a degeneracy at the � point. At the transition upper and
lower bands exchange Chern numbers, leaving the middle band
topologically trivial throughout. The stability of Dirac points
and the nature of the exchange of Chern numbers is explained
in Sec. VII. We now make the correspondence between the bulk
quantity and the edge modes explicit. Consider an analogous
fermion system at zero temperature: All states with energies
lower than the chemical potential μ are occupied. If μ is set
to an energy gap, the sum of band Chern numbers for the
occupied bands is an integer quantity, possibly zero, which
is proportional to the Hall conductivity [15]. The principle of
bulk-edge correspondence states that this sum counts the chiral
edge modes [17] supported at the given chemical potential.
Since the argument is independent of statistics, it applies
equally well for photons; we will then replace the notion of
“chemical potential” with “energy of injected particle.”

Let us place the Kagomé lattice in a cylinder geometry:
A particle injected at an energy inside the energy gap can
belong to one of two states localized at the edges. We now
find an analytical solution of the edge wave functions. We
consider a cylinder with line boundaries along the periodic �̂1

direction (boundaries containing A,B sites only; see Fig. 3).
The cylinder is generated by translating the superunit cell
(blue parallelogram in Fig. 1) along the lattice vector �1.

FIG. 3. Effect of different boundary conditions on the dispersion
of edge modes in the proximity of the dispersive middle band for
a system with φ = π

4 : left, two “line” boundaries; middle, one line
edge, the other “armchair”; right, both boundaries are armchair. The
bottom panels exhibit the minimal ladder lattices that exhibit the three
boundary conditions. All three ladders shown support edge modes.
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The superunit cell is obtained by translating the triangular
plaquette along �2. We number plaquettes along the superunit
cell by integer m2 = 0,1, . . . ,m2max, as in Fig. 1. We Fourier
transform the operators am≡(m1,m2) along the periodic k1

direction,

aαm2 (k1) = 1√
N1

∑
m1

e−ik1(m1a)am1,m2 , (8)

where α denotes the sublattice A, B, or C; N1 is the number
of repeated superunit cells making up the cylinder; and integer
m2 indicates the triangular plaquette along the superunit cell,
as shown in Fig. 1. The problem has become to diagonalize
the one-dimensional Hamiltonian describing a superunit cell:

Hk1 = |t |
∑
m2

2eiφa
†
Bm2

aAm2 cos

(
k1

a

2

)
+ eiφ+ik1

a
4 a

†
Cm2

aBm2

+ eiφ−ik1
a
4 a

†
Cm2

aB,m2+1 + eiφ+ik1
a
4 a

†
Am2

aCm2

+ eiφ−ik1
a
4 a

†
Am2

aC,m2−1 + H.c. (9)

This form reduces to the one in Eq. (3) when Fourier
transformed around the remaining direction k2. To obtain the
edge states, let us take the general form of an eigenstate,

|�(k1)〉 ≡
∑

α=A,B,C

∑
m2

ψαm2 (k1)|αm2〉, (10)

where |αm2〉 is a ket localized on sublattice α of the mth
2

triangular plaquette along the superunit cell. The Schrödinger
equation

Hk1 |�(k1)〉 = E�(k1)|�(k1)〉 (11)

yields the a linear system for the components of the wave
function ψαm2 = ψαm2 (k1) and the energy dispersion U =
U (k1) ≡ −[E(k1) − h̄ω]/|t |,

eik1
a
4 +iφψC,m2−1 + 2 cos

(
k1

a

2

)
e−iφψAm2

+ e−ik1
a
4 +iφψCm2 = −UψBm2 , (12)

e−ik1
a
4 −iφψC,m2−1 + 2 cos

(
k1

a

2

)
eiφψBm2

+ eik1
a
4 −iφψCm2 = −UψAm2 , (13)

eik1
a
4 −iφψBm2 + e−ik1

a
4 +iφψAm2 + e−ikx

a
4 −iφψB,m2+1

+ eik1
a
4 +iφψA,m2+1 = −UψC,m2 , (14)

e−ik1
a
4 −iφψB0 + eik1

a
4 +iφψA0 = −UψC,−1, (15)

eik1
a
4 +iφψC,m2max + 2 cos

(
k1

a

2

)
e−iφψAm2max = −UψBm2max ,

(16)

e−ik1
a
4 −iφψCm2max + 2 cos

(
k1

a

2

)
eiφψBm2max = −UψAm2max,

(17)

the first three of which hold for m2 spanning the superunit cell
“bulk” between 0 and m2,max, and the other three are equations
at the boundary. There exist solutions which are exponentially

suppressed with distance from the boundary of the sample,
which we put in the form (α denotes sublattice)

ψαm2 = λm2ψα0. (18)

The condition that the two edges of the cylinder are line shaped
amounts to requiring

ψC,−1 = ψC,m2max = 0. (19)

A pair of chiral edge modes localized at the boundaries of the
sample arises:

E+ = 2|t | cos

(
k1a

2

)
and λ+ = −cos

(
k1
4 − 3φ

2

)
cos

(
k1
4 + 3φ

2

) ,

(20)

E− = −2|t | cos

(
k1a

2

)
and λ− = sin

(
k1
4 − 3φ

2

)
sin

(
k1
4 + 3φ

2

) .

If |λ±| < (>)1, then the state is confined to the top (bottom)
boundary. The states identified to be at the top (bottom) travel
in the +(−)�̂1 direction, so “chirally.” The edge modes along
with the bulk states for a flat-band system with φ = π

6 and for
a dispersive middle band system at φ = π

4 are plotted in the
bottom panels of Fig. 1. The simple boundary condition chosen
gives an energy dispersion similar to that of a one-dimensional
tight-binding chain of lattice constant a

2 . The factors λ±
describing the spatial suppression of the wave function into
the sample bulk can become singular or 0, in which case the
normalized wave function has 0 weight inside of the bulk
and is pinned to one of the two edges (see Figs. 1 and 4).
For other boundary conditions (see Fig. 3 for the equivalent
“armchair” condition), one can arrange that the edge mode and
the middle bulk band overlap in energy, but not in momentum,
or in both energy and momentum. States overlapping in energy
can scatter into each other: In the “line” boundary conditions,
a spatially localized, δ-function, impurity can scatter the edge
mode into the bulk, as we show in Sec. IV C.

For the case of a Kagomé ladder, the counterpropagating
edge modes exist as long as there are two distinct edges, of
either the armchair or the line type. Therefore, any ladder will
need to have at least one row of hexagonal plaquettes. The
configuration with the least sites that sustains edge modes is
shown in the bottom left of Fig. 3. This specific ladder with
two “line” boundaries has the property that the flux per unit
cell is 0.

FIG. 4. The quantities λ2
+ (solid line) and λ2

− (dashed line) defined
in Eqs. (20) describe how the wave function of the edge mode decays
into the bulk. The reference line is at λ2

± = 1. For |λ±| > 1 the
respective branch E±(k1) is located at the bottom edge. Conversely, if
|λ±| < 1, it is located at the top edge. This results in the color scheme
for the edge modes on Fig. 1.

053804-5



ALEXANDRU PETRESCU, ANDREW A. HOUCK, AND KARYN LE HUR PHYSICAL REVIEW A 86, 053804 (2012)

An intriguing property related to the bulk-edge correspon-
dence is the phenomenon of polarization in a topologically
nontrivial system. We develop on this in the context of a
photonic system in Sec. IV A.

IV. OBSERVABLES

In this section, we elaborate on observable quantities in
the cQED-based photon lattice exhibiting two different Hall
phases for light [21]. In Sec. IV A we discuss the polarization
of a topologically nontrivial bulk in the context of photonic
systems and draw connections to the local density of states
in Sec. IV B. Section IV C is dedicated to the lattice current
density. Let us emphasize that the local density of states and
lattice current densities are, in principle, accessible in square
geometries.

A. Polarization

The phenomenon of polarization is a signature of the fact
that it is impossible to choose a smooth gauge for the Bloch
wave functions across the Brillouin zone in a topologically
nontrivial system. Polarization has been introduced in the
context of electronic Chern insulators in Ref. [84], and it is
related to the Hall conductivity. In a photonic or cold-atom
system, polarization may be observed in the dynamics of wave
packets, as we are about to describe.

Let us consider the one-dimensional system described by
the Hamiltonian Hk1 of Eq. (9). This time we close the cylinder
around both directions �̂1 and �̂2 into a torus, such that
Hk1 now describes a periodic one-dimensional lattice along
the �̂2 direction, in terms of the periodic parameter k1. It is
possible to find for this one-dimensional periodic system a set
of Bloch states |nk〉 = |n k2; k1〉 with a smooth choice of gauge
everywhere as a function of k2 and for each value of k1. This is
equivalent to the possibility to construct Wannier states which
are exponentially localized along the �̂2 direction, which is a
classic result of Kohn [85]. For now let us focus on a single
band |nk〉 ≡ |k1k2〉. The maximally localized Wannier states
take the following form [86]:

|W (k1,R2)〉 = 1√
N2

∑
k2

e−i
∫ k2

0 dκ2R2(k1,κ2)

× e−ik2(R2−l(k1)/2π)|k1,k2〉, (21)

where N2 is the number of triangular plaquettes in the
quasi-one-dimensional system; R2 is the real coordinate of
the center of the Wannier function along the �̂2 direction,
which is made precise below; R1,2(k1,k2) are the components
along the directions �̂1,�̂2 of the Berry gauge field introduced
in Eq. (7); and

l(k1) ≡ a

∫ 4π√
3a

0
dκ2R2(k1,κ2). (22)

Since the Bloch functions can and have been chosen periodic
and smooth in the k2 direction, both of the components of the
Berry gauge field R1,2(k1,k2) are periodic functions of k2.

The coordinate of the center of the Wannier functions drifts
depending on the parameter k1. The expectation value of the

position operator r2 is

〈W (k1,R2)|r2|W (k1,R2)〉 = R2 − l(k1)

(4π/
√

3)
. (23)

The net displacement of the center of the Wannier state when
the parameter k1 winds around its period equals the Chern
number:

�r2 = − 1

(4π/
√

3)
[l(4π/

√
3a) − l(0)]

= − a

(4π/
√

3)

∫ 4π√
3a

0
dκ2[R2(4π/

√
3a,κ2) − R2(0,κ2)]

= − a

(4π/
√

3)

∮
∂BZ

dkR(k1,k2) = −νa. (24)

In the last line we have used the fact that R1,2(k1,k2) is periodic
in k2 to reexpress the drift of the center of the Wannier state as
the line integral of the Berry gauge field around the boundary
of the first Brillouin zone ∂BZ, which is exactly the Chern
number ν. This condition summarizes the fact that a smooth
gauge cannot be chosen for the Bloch functions in a band with
nonzero ν. If this were true, then the Berry gauge field would
be periodic in both directions, and the Chern number would
vanish. We arrive at the following boundary condition for the
Wannier states:

|W (k1 + 4π/
√

3a,r2)〉 = |W (k1,r2 − νa)〉. (25)

In particular, this tells us that if a wave packet constructed out
of such states is accelerated in the �̂1 direction, then its center
will drift along the �̂2 direction. A wave packet constructed
within a band of 0 Chern number would return to its initial
coordinate on the r2 axis upon a complete revolution of k1. We
come back to this point in Sec. V B.

B. Local density of states

The localization of chiral modes at the edges of the sample,
the existence of a flat band, and the extended versus localized
character of bulk states can be tested by measuring the local
density of states. Because phase information is absent from
the density, it is not possible to measure the polarization of
Sec. IV A. Given a complete set of states |�〉, each of which is
an eigenstate of energy E� of the tight-binding Hamiltonian
of Eq. (2),

H |�〉 ≡ E� |�〉, (26)

one can define the local density of states in terms of the energy
E and the two-dimensional real coordinate on the lattice r:

ρ(E,r) =
∑
�

δ(E − E�)|〈r|�〉|2. (27)

This quantity is, by definition, normalized to the number of
sites in the system,∫

dE
∑

m

ρ(E,rm) = 3N, (28)

where m = (m1,m2) indexes the sites, rm = m1�1 + m2�2,
and N denotes the number of unit cells and there are three
sites per unit cell. We plot the local density of states in the
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(a) (b)

(c) (d)

FIG. 5. (Color online) Local density of states. States are localized
in the hexagonal plaquettes when the energy overlaps with the flat
band at φ = π

6 (a); for the same system, intragap states are confined
at the edges of the sample (b); dispersive middle band for φ = π

4
contains extended states (c); for comparison, local density of states
for the disordered φ = π

6 system is shown in (d) for an energy E

within the proximity of the middle band.

same cylinder geometry with line edges of Sec. III. We have
approximated the δ function by a Lorentzian,

lim
�E→0

1

π

�E

(E − E�) + �2
E

= δ(E − E�), (29)

where the width is set to �E/|t | = 0.01 and a system of 23 ×
23 sites has been numerically diagonalized. In the flat-band
model with φ = π

6 , as shown explicitly in Ref. [21], there
exists a highly degenerate band of zero-energy states localized
in the hexagonal plaquettes due to destructive interference
effects. When the flux φ is detuned from π

6 , the middle band
becomes dispersive and the states leak out of the hexagonal
plaquettes and become extended [for φ = π

4 , see Fig. 5(c)].
Finally, if disorder is introduced into the flat-band system at
φ = π

6 , the states inside the middle band become delocalized
due to disorder [Fig. 5(d)]. Intragap edge modes have nonzero
spectral weight only close to the edges of the sample.

C. Lattice currents

A measurement of the local density of states ρ(E,r) cannot
detect the chirality of edge modes. The simplest possible
quantity that can show us an observable effect of chirality
is the lattice current density. This operator is defined between
two lattice sites indexed by two pairs of integers m and n
and situated at rm and rn. It measures the number of particles
that flow from one site to another per unit time and takes the
standard form [87]

jmn = −ic†m(tmn + t∗nm)cn + ic†n(t∗mn + tnm)cm. (30)

Using the notation of Sec. IV B, the observable quantity of
interest is the current expectation value for an eigenstate |�〉
of the tight-binding Hamiltonian H is 〈�|jmn|�〉.

From the study of edge mode dispersion relations in Sec. III,
we have concluded that the introduction of a small impurity
at the boundary can mix all momenta and the edge state can
scatter into the bulk. We test this by introducing a δ function

FIG. 6. (Color online) Plots of the expectation value of the lattice
current operator in two implementations of the φ = π

4 system. (Left)
The system has a dispersive middle band overlapping in energy with
the edge mode (see Fig. 3). In the presence of a δ-function impurity the
edge state current (red) will deviate around the impurity, maintaining
its chirality, if the energy of the edge state lies in the gap and does
not overlap with the middle band. This corresponds to the anomalous
quantum Hall phase. As opposed to this, the current (green) for a state
whose energy is within the overlap region with the middle band is not
chiral and has non-zero expectation value in the bulk. (Right) In the
presence of a dispersive middle band (with φ = π

4 ) and disorder, the
edge state can leak into the bulk with a finite probability.

impurity at one of the sites on the boundary of the system. The
expectation value 〈�|jmn|�〉 is the familiar current density
associated with the wave function |�〉.

We consider a system containing one impurity localized in
real space at a single site. This impurity couples all pairs of
k points, implying that whenever the edge mode and the bulk
state are at the same energy, but separated in momentum, the
edge mode will have a finite lifetime towards scattering into
a bulk state. Results for the current operator in the Kagomé
system are plotted in Fig. 6. In the left panel, we have plotted
the current of an edge state whose energy is located in the gap
just above and not overlapping with the middle band at φ = π

4
(see Fig. 1); the current (in red) will go around the δ-function
impurity without leaking into the bulk. This corresponds to
the anomalous quantum Hall phase and is reminiscent of the
situation at φ = π

6 . As soon as the edge mode and the bulk
band overlap in energy, current at the edge has a probability to
scatter into the bulk. A state at this energy will essentially live
inside of the bulk (current depicted in green). This corresponds
to the anomalous Hall phase. If instead of an impurity at the
edge we had strong phase disorder Wφ = π

3 for a system with
flux φ = π

4 , there would again be a finite probability to scatter
into the bulk, as shown in the right panel of Fig. 6.

V. BERRY’S PHASE AND ANOMALOUS HALL EFFECT
OF NEUTRAL PARTICLES

When a system in an anomalous Hall phase is placed in an
external gauge field, it is possible to measure Berry’s phases
around closed loops in the Brillouin zone and band Chern
numbers. This section is dedicated to such observables. The
treatment is applicable whenever the particles are neutral and
therefore suitable for cold-atom systems as well. In Sec. V A
we explain a scheme to realize synthetic gauge fields on
the Kagomé lattice that involves a time-modulated potential
gradient in the cavity array, as suggested in Ref. [89]. In
Sec. V B, we present a way to measure the Berry phases
of wave packets of photons at a given energy based on
interference. We also present a manner in which the Chern
number can be directly extracted from level counting in the

053804-7



ALEXANDRU PETRESCU, ANDREW A. HOUCK, AND KARYN LE HUR PHYSICAL REVIEW A 86, 053804 (2012)

spectrum of the system in a uniform synthetic magnetic field
in Sec. V C.

A. Realization of a synthetic gauge field

We discuss here how to simulate the effect of a magnetic
field in a system of neutral particles. Such artificial magnetic
fields, including frustrated or staggered configurations, have
been actively studied in recent years. In a cavity, photons
coupled to artificial atoms, such as in the Rabi model, are
subject to an effective gauge potential induced by the dipolar
coupling [88]. On a lattice, gauge fields can, in principle,
be simulated by creating effective Peierls phases through
time-periodic driving as proposed in Refs. [54,70,89] for cold
atoms. In what follows, we follow the line of thought of
Ref. [89]. The method relies on adjusting the potential terms
individually for each site in the trapping optical lattice of
the cold-atom system. In cQED systems, this is equivalent
to adjusting the frequency of each resonator individually and
time dependently, which has become experimentally possible
[38,55,56,90]. Reference [38] has already proposed a means
of realizing a synthetic gauge field in a square lattice array of
coupled photonic cavities.

Generally, a static gradient of the frequency ωm of the
resonator located at site m yields an artificial electric field.
Additionally, it is possible to have time-varying frequencies
ωm,τ , which produce complex hopping amplitudes and so
mimic the effect of a gauge field. Consider that that there
is a driving frequency at site m = (m1,m2) with a dependence
on the time τ ,

Hτ = H +
∑

m

[h̄ω + h̄ω0 cos(�τ + m2θ )m1]a†
mam,

(31)

where the time-dependent Hamiltonian is the original tight-
binding Hamiltonian of Eq. (2), to which we add a time-
dependent perturbation. The perturbation amounts to a tilt
along the �̂1 direction, modulated in time. � is the driving
frequency, and for the following derivation we assume that the
driving frequency is resonant with the on-site energy h̄ω in the
sense that � = ω. The details of this choice and the calculation
are presented in Appendix A 1. Here we summarize the results.

In the rotating wave approximation, the time dependence
of Eq. (31) has the following effects: Photons acquire an
additional phase m2θ along each bond in the �̂1 direction; they
acquire no additional phase along the bonds in the �̂2 direction.
The following equations summarize the changes incurred by
the complex hopping amplitudes:

bond ‖ �̂1 : |t |e−iφ → |t |e−iφ J−1

(
ω0

�

)
e−im2θ ,

(32)
bond ‖ �̂2 : |t |e−iφ → |t |e−iφ.

The function J−1(z) is a Bessel function of the first kind.
There will be a total phase f = 2θ around the parallelogram
plaquettes of area |�1 × �2| (see Fig. 1). The artificial gauge
field extracted from Eq. (31) gives rise to a uniform magnetic
flux across the lattice, although the field itself is not uniform
at the level of one unit cell due to the presence of the oblique
bonds; nevertheless, this nonuniformity can be removed by a

gauge transformation (see Appendix A 1). This construction
is equivalent to the Peierls substitution: A particle in a gauge
field As(r) acquires a phase θmn = es

h̄

∫ rn

rm
drAs(r) between two

sites located at rm and rn (the choice of path does not matter
if the vector potential is that of an infinitely thin solenoid
at the center of the plaquette). We make the convention that
the photon coupling to such artificial gauge fields has an
effective synthetic charge es , and all fields to be used below
have a subscript “s” to highlight the distinction from actual
electromagnetic fields.

The experimental realization of an artificial field would
allow us to measure Berry’s phases around closed loops in
the Brillouin zone or directly access the Chern number, as
explained in Secs. V B and V C, respectively. The potential to
create a magnetic field can make a measurement of Landau
levels of the Kagomé lattice accessible (see Sec. V C).

B. Berry’s phases from semiclassical dynamics

In this section we describe a method to measure Berry’s
phases around closed constant energy contours in the Brillouin
zone. For this we draw upon the semiclassical dynamics of a
wave packet within a given band of a Bloch Hamiltonian.

In Sec. IV A we have noted that, due to the polarization
phenomenon, wave packets accelerated in the �̂1 direction
drift in the �̂2 direction. The motion of wave packets subject
to a uniform force is complicated due to Bloch oscillations.
Proposals exist to access Berry’s phases in a cold-atom system
relying on a measurement of the group velocity of a wave
packet under an external scalar potential exhibiting Bloch
oscillations [53]. Here we present an alternative method to map
Berry’s phases of wave packets, based solely on interference,
and without the need to measure the group velocity of wave
packets.

The semiclassical dynamics of a wave packet centered at
momentum and coordinate kc,rc and in a Bloch band is given
by Refs. [91–93]

ṙc = 1

h̄

∂Ekc

∂kc

− k̇c × Fkc
,

(33)
h̄k̇c = −esEs(rc) − es ṙc × Bs(rc),

where Es ,Bs are synthetic classical fields, and es is a synthetic
effective charge, which is left as an explicit quantity in the
equations in order to highlight the analogy with electronic
systems. E(kc) is the Bloch band energy, and

Fk ≡ ∂k × R(k) (34)

is the Berry curvature [18] associated with the Berry gauge
field introduced in Eq. (7); we have dropped the band index
n, as we neglect transitions to other Bloch bands; F only
has a ẑ component. The semiclassical Eqs. (33) are dual
in the following sense: The second equation represents the
electromagnetic force; in the first equation, the band energy
plays the role of a scalar potential in momentum space,
while the second term is nonvanishing only when the wave
packet is accelerated, and the Berry curvature acts like a
magnetic field in momentum space. The group velocity ∂E

∂kc
is

corrected by an “anomalous” contribution [94], which is now
known to be inherently connected to geometric phases of wave
functions [91,95].
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The geometric phase of a wave packet can be measured
in a system subject to a uniform synthetic magnetic field
perpendicular to the plane, Bs = |Bs |ẑ, but no electric field.
The semiclassical equations of motion for the wave packet
become

ṙc = h̄

esBs

k̇c × ẑ, (35)

h̄k̇c = −es

h̄
ZBs

(kc)
∂E

∂kc

× Bs , (36)

and ZBs
is a correction from the Berry curvature:

ZBs
(kc) = 1

1 + es

h̄
Fkc

Bs

. (37)

Equation (36) implies that the force k̇c is always perpendicular
to the group velocity ∂E

∂kc
. Consequently, the energy of the wave

packet is a constant of motion,

δE(kc) = ∂E

∂kc

δkc = 0. (38)

The trajectory in momentum space follows a contour of
constant energy in the Brillouin zone. The trajectory in real
space described by Eq. (35), on the other hand, is related
to the trajectory in momentum space by a π

2 rotation and
a rescaling. A wave packet evolving on a constant energy
contour will return to the original point in k space. If the orbit
is closed in the first Brillouin zone (continuous lines in Fig. 7),
then the trajectory in real space will be a closed curve as
well. Alternatively, the orbit may be periodic in the extended
Brillouin zone and follow a separatrix (dashed lines in Fig. 7),
in which case the trajectory in real space will not be closed.
Finally, the Berry curvature correction in Eq. (37) can only
affect the rate at which the momentum kc varies, but not the
form of the trajectory. The acceleration will be small in areas
of strong Berry curvature, typically close to the K points.

It is possible to determine resonance conditions for those
paths which close in the Brillouin zone. Let us assume that we

FIG. 7. (Color online) Constant energy trajectories in momentum
space, overlayed on the constant energy contours of the lowest band
at φ = π

6 . Trajectories can be closed within the first Brillouin zone
resulting in closed real-space trajectories or, if the initial momentum
lies on the separatrix lines (see, for example, the dashed lines), then
the trajectory in momentum space can only close in the extended
Brillouin zone, and in real space the particle traces a straight line.

are in the case in which the wave packet traverses a closed curve
in phase space. Along a phase-space loop of constant energy
E, denoted C(E), the wave packet will acquire a phase [91,93]

γC =
∮

C

dkR(k) + dr
(

k − esAs

h̄

)
, (39)

where the gauge field As generates the magnetic field Bs =
∂r × As . This can be further simplified to

γC =
∮

C

dkR(k) −
∫ T

0
dt

(
esAs

h̄
ṙ − es

h̄
(ṙ × Bs)r

)

=
∮

C

dkR(k) + es

2h̄

∫ T

0
dt((ṙ × Bs)r), (40)

where T is the period of the motion. The first term of the
integrand is the Berry phase accumulated along the path,
�C ≡ ∮

C
dkR(k). The second term can be written entirely

in momentum space,

es

2h̄

∫ T

0
dt((ṙ × Bs)r)

= es

2h̄

∫ T

0
dt

(
h̄

esBs

k̇ × ẑ × Bs

)(
h̄

esBs

k × ẑ
)

= h̄

2esBs

∮
C

dk(k × ẑ) = h̄

esBs

SC, (41)

where dk(k × ẑ) ≡ 2 dS is twice the surface area element for
the surface enclosed by the curve C(E) in momentum space.
Collecting the two pieces, the full phase acquired by the wave
packet around a closed loop in momentum space is

γC = �C + h̄

esBs

SC. (42)

The arriving wave packet will interfere with the emitted wave
packet and the amplitude will be maximal if

�C + h̄

esBs

SC = 2π (n + νM ), n = integer, (43)

where the Maslov index [96] is taken to be νM = 1
2 . There

is an implicit energy dependence in the trajectory C = C(E);
therefore, the phases in Eq. (43) are energy dependent. This
last equation is the Onsager relation [97] and can be viewed
as a Bohr-Sommerfeld quantization condition for the closed
trajectories in phase space. An analogous situation occurs in
electronic systems, in the de Haas-van Alphen effect [93],
where peaks in the magnetization as a function of the external
magnetic field are a result of such a resonant behavior.

In a photon system, the Berry phases can be accessed as
follows. Suppose that a wave packet of known energy E and
initial momentum kc(t = 0) can be produced. Upon tracing a
closed path in real space, the traveling wave packet returns and
interferes with the emitted signal. One can tune the external
field Bs such that the amplitude at the emitter is resonant.
Two consecutive resonances determine the area SC of the
common closed path in momentum space [see Eq. (43)]. This
allows for the determination of the Berry phase along the path
C(E) up to a multiple of 2π . By keeping the energy E fixed
and changing initial momentum one can explore all curves at
the given energy within the Brioullin zone. Two examples are
given in Fig. 7. What such a measurement would yield with
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and without disorder is presented in Sec. VI in connection to a
realization of the anomalous Hall effect in the Kagomé photon
system.

We have shown that an interference experiment can be
realized to measure the Berry phase of a wave packet injected at
a specific energy and initial momentum. Berry phases appear
in measurements of a photonic equivalent of the anomalous
Hall effect, as explained in the next section.

Moreover, the measurement can be changed to probe
Landau levels. Instead of keeping the energy fixed and varying
the magnetic field Bs , let us keep the field fixed and vary the
energy. Separations between resonant orbits discussed above
correspond to transitions between Landau levels. The analysis
of level splitting in the presence of Bs allows us to directly
probe the Chern number of a Bloch band. This is the subject
of Sec. V C.

C. Direct determination of Chern number from level counting
in the Hofstadter spectrum

In this section we present a way to directly determine
the Chern number of a Bloch band from the spectrum in
a synthetic magnetic field. In a magnetic field, the three
original Bloch bands will split into subbands, sometimes called
magnetic Bloch bands. The resonant semiclassical trajectories
of Sec. V B correspond to the magnetic subbands of the original
Bloch band under the influence of the synthetic magnetic field
Bs . The Chern number influences how a Bloch band splits into
magnetic subbands [91]. There exists a maximum number of
closed resonant trajectories within the Brillouin zone. This
is obtained by observing that the maximal area of a single
resonant closed trajectory C, SC , has to be equal to the area
of the first Brillouin zone. This dictates, then, that the number
of subbands obtained by splitting any one of the Bloch bands
is given by

D =
[
ν + 1

f

]
, (44)

where ν is the Chern number associated with the band, f =
Bsa

2
√

3
2 is the flux through the unit cell of a uniform synthetic

magnetic field Bs , in units of h
e2 , and the square brackets

indicate the integer part of the real number. The field Bs has
to be small enough such that the resulting subbands cannot
become degenerate. This is argued in more detail numerically
in what follows.

We are aiming to solve the Hofstadter problem of a
tight-binding system in a magnetic field [73]. Let us pick the
Landau gauge, As = (−Bsy,0), where the two components
are Cartesian. Due to the presence of a magnetic field, the
Hamiltonian will couple different points in the Brillouin zone.
If the flux f introduced above for the uniform synthetic field is
a rational number expressed as p/q with p and q non-negative
integers which are relatively prime, then, in general, the
resulting Hamiltonian will couple ky to ky ± 4πf

a
√

3
and to

ky ± 8πf

a
√

3
. This momentum space coupling can be removed

by remarking that translational invariance is recovered if one
reverts to a q times larger unit cell in real space, and a q

times smaller Brillouin zone, called the magnetic Brillouin
zone, defined for our lattice as [0, 2π

qa
] × [0, 4π

a
√

3
]. The original

three-band Hamiltonian becomes a 3q-band problem defined
on the reduced Brillouin zone. Folding of bands appears, and at
a general level the 3q bands are allowed to become degenerate
within the magnetic Brillouin zone. Technical details are given
in Appendix A 2. For now we focus on counting the magnetic
subbands obtained from a given Bloch band, which provides
a direct way of determining the Chern number of the original
(zero field) bands.

Assume for simplicity that the dimensionless flux per unit
cell is f = 1

Q
for some positive integer Q. For large-enough Q,

the field is weak, and any one of the three original Bloch bands
will split, according to Eq. (44), into [ν + Q], where ν is the
Chern number on each of the three original Bloch bands. This
is consistent with the fact that the spectrum in a magnetic field
at flux 1/Q should exhibit 3Q levels. Taking the band structure
at φ = π

4 (see Fig. 1) as representative for our time-reversal
symmetry broken phase with gapless edge modes, the formula
in Eq. (44) predicts that the lower, middle, and upper bands
will split into Q − 1, Q, and Q + 1 subbands, respectively.
The caveat to this discussion is that for special fractions f

one can expect that the resulting subbands become degenerate
even if the original system is nondegenerate [15,91].

One can directly access the Chern number of a specific
band as follows (see Fig. 8): set the external synthetic field
to a specific rational number dimensionless flux and count
the resonant trajectories corresponding to each of the three
original Bloch bands (they will be typically separated by gaps
of order |t |, as in the original system, if the field is weak). For
example (see Fig. 8), at f = 1/5, the lower, middle, and upper
Bloch bands split into [ν + 5] = 4,5,6 subbands, consistent
with their Chern numbers ν = −1,0,1, respectively. There are
a total of 15 subbands, but the 5 subbands corresponding to
the middle band are degenerate. Importantly, at f = 1/4, the
spectrum has no energy gaps, in which case Chern numbers
are exchanged between bands. We have proved numerically
the requirement f < 1/4 to probe the Chern numbers of the
original Bloch bands. Since the spectrum of the Hofstadter

FIG. 8. Low-magnetic-field Bs spectrum of the Kagomé lattice
with φ = π

4 . At 0 external field, we recover the original bandstructure
of Fig. 1. At flux p/q there are 3q subbands with possible
degeneracies. For example, at p/q = 1/5, the density of states reveals
that there are six separated subbands in the upper band, five degenerate
subbands in the middle band, and four separated subbands in the
lower band, in agreement with Eq. (44) and consistent with the fact
that the lower and upper Bloch bands have Chern numbers −1 and
1, respectively. The bands become degenerate (no energy gaps in the
spectrum) at p/q = 1/4. See text for details.
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problem is periodic in f , this requirement actually translates
to f ∈ [0,1/4) ∪ [2,9/4) ∪ · · · .

D. Bounds on the strength of the synthetic magnetic field

When the external field is too strong, or varies too quickly,
tunneling to a different band becomes possible. To be safe
from Landau-Zener tunneling [98], the magnetic field has to
be small. This translates to a condition [93] on the period
of motion on a closed loop, T , introduced in our calculation
above,

h̄

T
� Eg

√
Eg

E
, (45)

where Eg is the size of the gap, which in our problem is of the
order of the hopping energy, Eg ∼ |t |, and E is the constant
energy along the loop C(E). The period of motion can be
further reexpressed by making an estimate from Eq. (36),

T ∼ h̄lC(E)
es

h̄
ZBs

(
∂E
∂kc

)
Bs

, (46)

where the averages are taken over the path C, whose length
in momentum space is denoted lC(E). Collecting equations
yields the following condition:

h̄lC(E)

esZBs
(kc)

(
∂E
∂kc

)
Bs


 1

|t |

√
E

|t | . (47)

It turns out that this bound is independent of the lattice spacing
a or the absolute value of the hopping integral |t |. For the
typical values of the Berry curvature, etc., the bound of Eq. (47)
is satisfied by taking the flux of Bs , f � 1, which is consistent
with the results in Sec. V B.

VI. ANOMALOUS HALL EFFECTS OF PHOTONS

In this section, we discuss the anomalous Hall effects of
light and evaluations of Chern numbers for the clean case and
the disordered case.

A. Chern number

The experiment of Sec. V B amounts to measuring line
integrals of the Berry gauge field R(k) [18]:

�C(E) =
∮

C

dkR(k). (48)

Since C(E) is a constant energy curve in the Brillouin zone,
the phase can be reexpressed as a sum only over the states of the
Bloch band which lie below the given energy of the curve, E,

�C(E) =
∫

BZ
d2k θ (E − E(k))Fk. (49)

This value is, in general, not quantized: Only after summing
over the full Bloch band can the phase become a multiple
integer of 2π . In electronic systems, the nonquantized part is
the intrinsic contribution to the anomalous Hall effect [95,99]
of a partially filled band (nonquantized Hall conductivity σxy)
and can be interpreted as a Berry phase of quasiparticles at
the Fermi surface [51]. In a bosonic system, we interpret this
as the anomalous transport of a wave packet whose energy
overlaps with that of a bulk band.

So far, we have dealt with a single Bloch band. In a multiple
band system, we can define the following quantity as a sum
over states below some energy,

ν(E) = 1

2π

∑
n

∫
BZ

d2kθ (E − En(k))F (n)
k , (50)

where now the Berry curvature F (n)
k is defined as in Eqs. (7)

and (34) but for the nth Bloch band |nk〉. ν(E) is plotted in
Fig. 9. When the energy E lies in a gap, ν(E) is an integer, and

(a) (b) (c)

FIG. 9. (Color online) (a) Dispersive middle band for φ = π

4 . The Chern number, computed with the formula of Eq. (50) gives a nonquantized
value in the overlap region which can be measured directly in an interference experiment. (b) Chern number calculation for the flat-band system
φ = π

6 with increasing amplitude of phase disorder: Wφ = 0, π

6 × 2
5 , π

6 , π

6 × 9
5 . (c) Flat-band system with increasing amplitude of on-site

disorder Wsite = 0, |t |
2 ,|t |, 3|t |

2 . The disorder potential has no spatial correlation and is drawn from a uniform distribution (see text).
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it is the sum of the Chern numbers of all bands that lie below
the given energy. We may rewrite this quantity in a form that
is manifestly invariant under gauge transformations of Bloch
vectors and will be useful as we tackle the disordered case in
Sec. VI B. We define the projector Pk = Pk(E) onto the Bloch
states of energy below E. The projection operator is obtained
from the Bloch eigenvectors of the tight-binding problem and
is therefore k dependent. We can rewrite Eq. (50) as

ν(E) = 1

2πi
Tr

{
Pk

[
∂kx

Pk,∂ky
Pk

]}
. (51)

The number ν(E) is an integer only when the energy lies
between two bulk bands without touching them, inside of a
gap, and it takes nonuniversal values for the slightest overlap in
energy with the bulk bands (see Fig. 9). The quantization of this
quantity corresponds to the existence of counterpropagating
edge modes (see Sec. III). The detuning of the phase φ will
make ν(E) take a nonquantized value, which corresponds
to edge modes that can decay into the bulk of the material.
We corroborate that disorder is similar in effect to changes
of the phase φ: It also spreads the middle band, leading to
nonquantized values of the Chern number. This is explained
in the next section and summarized in Fig. 9.

B. Disordered system

In this section we investigate the robustness of edge states
in the disordered system. The Bloch state formulation used
so far cannot be used since the system breaks translational
invariance. To arrive at the formula for the Chern number in
real space for disordered systems, we start from the clean case.
The trace in Eq. (51) can be taken with respect to the basis of
states localized at each site, |m〉, where m = (m1,m2) indexes
a site on the lattice. In this section we return to the x,y basis, as
this is more useful for deriving formulas suitable for numerical
computations. Letting as usual rm = m1�1 + m2�2,

ν(E) = − lim
N→∞

2πi

N

∑
m

〈rm|P (E)

× [−i[x,P (E)],−i[y,P (E)]]|rm〉, (52)

where P (E) is the Fourier transform of the operator Pk(E)
defined above and projects onto states with energy below E.
The total number of sites in the system is denoted by N . In
the thermodynamic limit for a clean system, this formula is
exactly that from Eqs. (50) and (51). Its advantage is that
it allows us to compute the Chern number in a disordered
system. In Ref. [100] it was shown that the Chern number
ν(E) is an integer as long as the energy E belongs to a gap in
the spectrum. The integer value can change to a different one
only if the energy E crosses a region of extended states, such
as traversing a bulk band.

When the system is disordered and finite, the problem of
averaging over disorder configurations arises along with that
of taking the thermodynamic limit. The Chern number can be
defined as an ensemble average over disorder configurations
[100,101],

ν(E) =
∫

dμ(δ)νδ(E), (53)

where the disorder configurations δ are distributed according
to a measure dμ(δ) and νδ(E) is the value of the Chern
number for the specific disorder configuration. One defines
a Hamiltonian Hδ for each disorder configuration δ and
associates the projector Pδ(E) to it as in the clean case, which
gives a formula for νδ(E):

νδ(E) = −2πi

N

∑
m

〈rm|Pδ(E)

× [−i[x,Pδ(E)],−i[y,Pδ(E)]]|rm〉, (54)

where now x,y are the position operators in Cartesian
coordinates. This equation has the property that the average
over an ensemble of disorder configurations can replace the
thermodynamic limit of a single system. The technical details
and reformulations suitable for numerics are reserved for
Appendix B.

We have computed the Chern number for the Kagomé
system with a flat middle band using the methods described in
Ref. [101] at φ = π

6 , implemented on a lattice of 24 × 24
sites, or 192 unit cells. At each point, the Chern number
was computed for 40 disorder configurations and averaged.
A white-noise disorder potential (uncorrelated from site to
site) was sampled on the lattice. For a disorder amplitude W , a
random number between [−W

2 ,W
2 ] is produced. The two types

of disorder that can appear on the lattice are scalar disorder
on the on-site frequencies, which we denote Wsite, and vector
disorder on the hopping phases, denoted Wφ .

Figure 9 shows our results for Wsite between 0 and 1.5|t |
and Wφ between 0 and 3π

10 . The originally flat middle band
spreads with disorder; in view of Sec. IV B, the broadening
of the middle band is associated with states leaking out of
the hexagonal plaquettes due to the detuning of the flux.
Comparatively, the role of scalar or vector disorder potentials
is the same. We are not addressing here the interesting question
of comparing the two types of disorder.

VII. ANISOTROPIES

Recently it has become possible to realize, shift, and
merge Dirac cones in optical lattices [102,103]. Anisotropies
on the honeycomb lattice have been studied [104]. In the
cQED realization of the Kagomé lattice, anisotropies are
inherent: The on-site energies h̄ωA,B,C and hopping amplitudes
tA,B,C obtained after integrating passive circuit elements are
generally distinct (this is presented in detail in Ref. [21]).
Small anisotropies leave the main features of the band structure
intact. Below is a quantiative analysis of the effects of
anisotropies.

Dirac cones are stable due to discrete symmetries [105,106].
The isotropic Kagomé lattice (isotropic hopping amplitudes
and site potentials) is symmetric under inversions with respect
to the center of a hexagonal plaquette and, under rotations by
2π/3, up to the permutation of the sublattice indices (lattice
geometry in Fig. 1). Additionally, for special values of the
phase φ the system is invariant under time-reversal symmetry.
These three symmetries fix the position of the Dirac cones at
the corners of the Brillouin zone between two bands. Two more
Dirac cones are merged at the � point (where the dispersion
of one of the bands is flat and that of the other is quadratic).
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If the rotational symmetry is broken due to anisotropy, then
the Dirac cones can be shifted in k space. For strong-enough
anisotropy, Dirac cones meet at time-reversal invariant points
in the Brillouin zone, where they can annihilate. Such points
are the � point and the M points. In the example below, Dirac
points annihilate at the M points.

Using the notations introduced in Sec. II, let us define
c1,2,12 ≡ cos(α1,2,12). The Hamiltonian including anisotropies
is

Hk =

⎛
⎜⎝

h̄ωA 2tAB cos α1 2tAC cos α2

2tBA cos α1 h̄ωB 2tBC cos α12

2tCA cos α2 2tCB cos α12 h̄ωC

⎞
⎟⎠ , (55)

which leads to the following equation for the three energy
levels:

−E3 + h̄(ωA + ωB + ωC)E2 − [
h̄2(ωAωB + ωBωC + ωCωA)

− 4
(|tAB |2c2

1 + |tAC |2c2
2 + |tBC |2c2

12

)]
E − 4h̄

(
ωAc2

12|tBC |2
+ωBc2

2|tAC |2 + ωCc2
1|tAB |2) + 16|tABtACtBC |c1c2c12 cos(3φ)

+ h̄3ωAωBωC = 0. (56)

Let us consider, for example, the case when the hopping
integrals are isotropic, but there is an anisotropy between
the on-site energies h̄ωA,B,C at the level of each triangular
plaquette. The spectrum can become degenerate at the M

points defined by kx = 0, ky = ± 2π

a
√

3
. One has c1 = 1, c2 = 0,

and c12 = 0. Then for all φ, a degeneracy occurs if ωC =
[ωA + ωB ±

√
(ωA − ωB)2 + 16

h̄2 |tAB |2]/2. At the other two

pairs of M points, kx = ±π
a

, ky = ± π

a
√

3
, and kx = ±π

a
,

ky = ∓ π

a
√

3
the degeneracy occurs if the cyclic permutations of

the condition above hold. This procedure allows us to produce
a degeneracy between the upper and middle bands or the
lower and middle bands (although all three bands cannot be
degenerate at the same k). The values for ωA,B,C necessary
for this degeneracy are on the order of the hopping amplitude
|t |. The touching cannot be lifted by varying the phase φ.
The degeneracy at the M points is quadratic in at least one
direction in k space, which is a feature of the fact that two Dirac
cones with linear dispersion annihilate at the time-reversal
invariant point (see, for example, Ref. [105]). One can tune
the anisotropy as to annihilate a pair of Dirac cones between
the lower and middle bands, for example. As soon as the Dirac
cones have annihilated, the bands are no longer degenerate and
the respective gap no longer carries edge modes.

In an experiment it is plausible to consider the case of
anisotropic phases 3φup and 3φdown around the up-pointing
and down-pointing triangular plaquettes, respectively. This
arrangement maintains the requirement that there is zero flux
per unit cell, and the effect will be to merely shift the Dirac
cones due to the anisotropy.

VIII. INTERACTIONS

In this section we address the stability of the topological
phase in the presence of interaction effects. A host of methods
have been used to show that the topological phases are stable
even in the presence of interactions [107,108]. At a simple

perturbative level, we show that interactions cannot change the
effective free-particle dispersion band structure: They cannot
cause the bands to become degenerate and reopen the gap.
The general argument goes as follows: If the system is in a
topological phase with gaps between bulk bands, then it is
enough to show that for weak-enough interactions the shifts
in the energy levels are smaller than the free-particle spectrum
gap size of order the hopping strength |t |.

The following are interaction Hamiltonians, which can be
potentially implemented in arrays of resonators. The boson
Hubbard model was discussed, for example, in an important
paper by Fisher et al. [109]. The Jaynes-Cummings Hamilto-
nian [81], on the other hand, models an interaction between
lattice photons and quantum two-level systems situated at
each site. Both the boson Hubbard model and the Jaynes-
Cummings model exhibit a phase transition from a superfluid
to a bosonic Mott insulator state. Both interactions are, in
principle, realizable in a cQED experiment [24,26]. For com-
pleteness, we add a brief analysis of fermionic interactions in
Appendix C.

A. Bose-Hubbard model

We start with the unperturbed Hamiltonian, the one pre-
sented in Eq. (3),

H =
∑
k∈BZ

ψ
†
kHkψk =

∑
α,β,k∈BZ

a
†
α,kH

αβ

k aβ,k, (57)

where the Greek indices indicate the sublattice in the spinor
ψ

†
k = (a†

Ak,a
†
Bk,a

†
Ck). The interaction Hamiltonian for the

Bose-Hubbard model is quartic in the creation and annihilation
operators,

HBH = U

2

∑
m

a†
mam(a†

mam − 1)

=
∑

k

∑
α=A,B,C

⎛
⎝ U

2N

∑
k1,k2

a
†
α,k1−ka

†
α,k2+kaα,k2aα,k1

⎞
⎠ ,

(58)

where N is the number of unit cells and we have used
the Fourier transform on each sublattice α = A,B,C as
aα,k = 1√

N

∑
m ∈ α e−ik·Rmam. We would like to describe the

spectrum of elementary excitations above the ground state.
The minimum of the spectrum is at the � point: The ground
state of the bosonic system has all photons condensed at k = 0
in the lowest band (see Fig. 1). Let us denote the minimum
single-particle energy at the � point by E0.

In the following treatment we restrict to a subspace of
constant particle number n, where n ≡ Nn0. We have denoted
by N the number of unit cells in the lattice, implying that
there are 3N sites, and by n0 the number of condensate
particles per unit cell. The spectrum of elementary excitations
in the superfluid phase is determined by using the Bogoliubov
approximation [110],

aα,k ≡
√

Nn0δk + bα,k. (59)
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Equation (59) defines the excited state operators bα,k �=0. The
full Hamiltonian can be brought into the form

Ht = H + HBH

= EG +
∑
kαβ

[
b
†
α,k

(
H αβ

k − E0δ
αβ

)
bβ,k

]

+ Un0

2

∑
k �=0,α

(2b
†
α,kbα,k + bα,kbα,−k + b

†
α,kb

†
α,−k), (60)

where EG ≡ nE0 is the total ground-state energy, and the
remainder describes the excitation spectrum. We only focus
on the excitation spectrum and drop the ground-state energy
from our notation. The Hamiltonian can be diagonalized by a
Bogoliubov transformation [110] from the particle operators
bα,k to a new set of quasiparticle operators b̃n,k, which
annihilate a quasiparticle in the nth band. The details of the
Bogoliubov transformation are reserved for Appendix D. The
Hamiltonian of Eq. (60) can be recast into a diagonal form from
which one can extract the quasiparticle dispersions, which we
denote by ξn(k),

Ht =
∑
k,n

ξn(k)b̃†nkb̃nk. (61)

In the following, we discuss the stability of the topological
phase when the Bose-Hubbard interaction is introduced. In
general, if the interactions induce no band crossings, the
Chern numbers on individual bands will be conserved, and
the topological phase is maintained. The Hubbard interaction
induced dispersion ξn(k) can only change significantly from
the free-particle dispersion En(k) of Eq. (5) in the vicinity
of the band minimum at the � point, where the quasiparticle
has a linear dispersion (the sound mode). Figure 10 shows
the quasiparticle dispersion in comparison to the free-particle
dispersion, in the flat-band system at φ = π

6 . As long as the
Bose-Hubbard coupling U is on the order of |t | or smaller, the
shift in the energy levels cannot make the gap close and reopen,
and the topological phase is protected. In the weak interaction
regime, the middle flat band can acquire a dispersion: This
situation is similar to the effect of detuning the hopping phase
φ, or the effect of disorder.

0
0

0-1/2a

|t|/3

-1/2a
1/2a

1/2a

FIG. 10. (Color online) (Left) Deviation of the effective quasi-
particle dispersion ξn(k) (black line) from the free-particle dispersion
En(k) (dashed red line) for the φ = π

6 system with U/|t | = 0.13
(the plot is along the line kx = 0). (Right) Low-energy quasiparticle
spectrum exhibits linear dispersion (magenta) at the � point k = 0;
plotted for comparison is the free-particle dispersion (light gray).

B. Jaynes-Cummings interaction

We proceed with the Jaynes-Cummings interaction [81]
which couples photons to quantum two-level systems at each
site. The Jaynes-Cummings system exhibits a quantum phase
transition of polaritons from a superfluid phase to a Mott
insulating phase [33], resembling that of the Bose-Hubbard
model. The system is governed by the following Hamiltonian
which describes the tight-binding photons, the two-level
systems, and the coupling between these,

Ht =
∑
m,n

tm,na
†
man +

∑
m

εσ+
m σ−

m +
∑

m

g(σ+
m am + H.c.),

(62)

where we have written the tight-binding Hamiltonian in a more
generic form as a sum over all pairs of sites, in terms of generic
hopping integrals tm,n. Note that here the on-site energies h̄ω

have been included in the diagonal terms tm,m. Here σ±
m ≡

σx,m ± iσy,m are Pauli ladder operators describing a two-level
system at lattice coordinate m.

To characterize the stability of the anomalous Hall phases in
the presence of a weak (finite) Jaynes-Cummings interaction,
in Appendix E, we find an effective low-energy Hamiltonian
for the photon sector H eff . We consider the following limit of
small conversion g,

g � |t | < h̄ω. (63)

This assumption is prompted by the following stability
condition specific to the Jaynes-Cummings lattice [33]. If the
ground-state energy of the single particle spectrum, E0, has
a negative value, there is no mechanism to limit the number
of photons that populate the ground state, and therefore the
system becomes unstable. We therefore need E0 � 0, which
translates to a condition that h̄ω > z|t |, where here z = 4 is the
coordination number of the Kagomé lattice. In a typical cQED
experiment, we expect |t | to not exceed 100 MHz and ω to lie
in the GHz range. Additionally, under reasonable experimental
conditions the two-level system excitation energy ε and
the (renormalized) resonator frequencies ω will both lie in
the (microwave) GHz range. The condition that h̄ω ≈ ε is
sufficient to order the two-level systems in the ground state, and
the determination of an effective photon-photon interaction is
well motivated. This, as we show below, leads to a positive
value of the Hubbard coupling, that is, a repulsive interaction.

To fourth order in the Jaynes-Cummings coupling g, we
obtain the following effective low-energy Hamiltonian:

H eff = E0 + f2g
2

E0 − ε
a
†
l0al0 + f4g

4

(2E0 − ε)3
a
†
l0al0a

†
l0al0, (64)

where f2 and f4 are positive dimensionless factors which can
be found in Appendix E and the operator a

†
l0 creates a particle

in the ground state of the photon tight-binding Hamiltonian
(lower band at the � point, k = 0). Equation (64) shows that to
lowest order the interaction shifts the (lowest) band minimum
by an amount f2g

2

E0−ε
. The next nonvanishing contribution

appears at the quartic order. The repulsive character is
obtainable under reasonable experimental conditions for the
Jaynes-Cummings model, where both h̄ω and ε would be in
the microwave range. One way to understand the presence
of a repulsive photon-photon interaction is by noting that the
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two-level systems are bosons with hard-core on-site repulsion.
More precisely, if two-level systems are represented by bosons
with interactions, the Jaynes-Cummings term can be absorbed
by a shift of the bosonic two-level system field, and then the
interaction term of the two-level systems also generates an
on-site interaction for the photon in the shifted basis. The
correspondence between the Jaynes-Cummings lattice and
Bose-Hubbard model has also been demonstrated through a
field theory approach close to the Mott-superfluid transition
of light [33]. In the calculation that led to Eq. (64), we have
considered the ground state with all photons at wave vector
k = 0. This does not provide precise information about the
range of the interaction, but it is telling that a Hubbard-type
repulsive photon-photon interaction can emerge. Finally, as
long as the perturbation g is weak compared to the size of
the gap, which is of order |t |, the detuning ε, and the on-site
energy h̄ω, the interactions cannot cause degeneracies, and the
topological phase will be stable.

IX. CONCLUSIONS

Motivated by the recent experimental progress in the con-
text of arrays of electromagnetic superconducting resonators
[22], we have investigated the anomalous Hall effect of light
on the Kagomé lattice with artificial gauge fields [21]. The
photonic system here exhibits equivalents of the quantum
Hall effect without Landau levels, and the anomalous Hall
effect with a nonquantized Chern number. In particular, we
have shown that a topologically trivial band can affect the
quantization of Chern numbers as well as the robustness
of the chiral edge modes. We have discussed observables
which are accessible experimentally. We have introduced a
method to measure Berry’s phases around loops of constant
energy in the Brillouin zone. The method is based solely on
wave-packet interference and can be used to determine band
Chern numbers or the photonic equivalent of the anomalous
Hall response. It provides an alternative to a recent method
proposed to measure line integrals of the Berry gauge field
in cold-atomic systems, which relies on the measurement
of group velocities of wave packets and a force-reversal
protocol [53]. In cQED systems, this is realized by adjusting
the frequency of each resonator individually, which has
become experimentally possible [38,55,56,90]. It is noted that
interference experiments can also be envisioned to probe the
Landau levels, emerging when placing the Kagomé lattice in
a uniform magnetic field. An open and interesting matter to
investigate in the near future would be the influence of artificial
gauge fields on the superfluid-Mott transition of light in cQED
photon-based lattices, following a similar line of thought to
that used in recent theoretical investigations [108,111]. Recent
progress in this direction has been realized in Ref. [112],
where a chiral Mott insulator with a gap to all excitations
and staggered fluxes has been found. Transport of microwave
photons through cQED lattices with artificial gauge fields and
disorder would be an interesting topic to explore. Another
relevant subject to consider more thoroughly both theoretically
and experimentally is the realization of quantum impurity
models exhibiting fingerprints of many-body physics such as
the Kondo model and spin-Boson models [113–116].
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APPENDIX A: SYNTHETIC GAUGE FIELDS

In this Appendix we present a more detailed derivation of
the results in Sec. V A.

1. Magnetic field

This derivation starts from an idea used in Ref. [89] for
square lattices. Consider the time-dependent Hamiltonian of
Eq. (31), which we reproduce here:

Hτ = H +
∑

m

[h̄ω + h̄ω0 cos (�τ + m2θ ) m1] a†
mam. (A1)

We construct the solution to the Schrödinger equation as
follows. If the hopping is supressed, |t | = 0, then the following
function solves the time-dependent Schrödinger equation:

|ψ〉 =
∑

m

eiφm |m〉,
(A2)

φm(τ ) = −ωτ − ω0

�
sin (�τ + θm2) m1.

The solution for |t | �= 0 is constructed from this as

|ψ〉 =
∑

m

dmeiφm |m〉, (A3)

where the dm must now obey the following differential
equation:

ih̄ḋm =
∑

n

tm,ne
i(φm−φn)dn. (A4)

In this last equation, the tm,n is the tight-binding hopping
integral, which takes the value |t |e±iφ for nearest neighbors and
zero otherwise, and φm are the phases computed in Eq. (A2).
The perturbation has induced a time-dependent phase factor
ei(φm−φn), which we now simplify by keeping only those parts
that oscillate very slowly (rotating wave approximation). We
use the following expansion:

eiz sin α =
+∞∑

l=−∞
eilαJl(z), (A5)

where Jl(z) are the Bessel functions of the first kind. Upon
inspection of the expansion in Eq. (A5) and of the phase φm
in Eq. (A2) we find that, in general, one must have the driving
frequency � be an integer multiple of the on-site frequency
ω, that is, lω, in order to obtain at least one time-independent
term in the expansion. The largest contribution is obtained if
we take � = ω. We obtain the following effective changes to
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the hopping amplitudes:

bond ‖ �̂1 : |t |e−iφ → |t |e−iφ · J−1

(
ω0

�

)
e−im2θ ,

bond ‖ �̂2 : |t |e−iφ → |t |e−iφ

bond ‖ (�̂2 − �̂1) : |t |e−iφ

→ |t |e−iφ

[
J−1

(
ω0

�
(m1 + 1)

)
e−iθm2

+J−1

(
− ω0

�
m1

)
e−iθ(m2+1)

]
. (A6)

The ratio ω0
�

provides an additional experimental parameter to
tune the hopping strength via the Bessel functions of the first
kind J−1.

The time-dependent perturbation has induced spatially
dependent phases and a dressing of the hopping integral |t |.
These spatially dependent phases mimic the phases that would
be produced by a gauge field in the minimal substitution. The
fact that an additional phase is acquired along oblique bonds
parallel to �̂2 − �̂1 implies that at the level of each unit cell
the phases will correspond to a field that is nonuniform across
the unit cell. However, the total phase acquired by a photon
traversing around a parallelogram unit cell of area |�1 × �2|
(see Fig. 1) is going to be a constant equal to f = 2θ . Since
the uniformity of the field at the level of the unit cell can be
recovered by a gauge transformation, we perform all of our
calculations (Appendix A 2 ) for a uniform field.

2. Spectrum in a magnetic field

In this Appendix we show the detailed calculations for the
spectrum of the Kagomé system placed in a uniform magnetic
field Bs . The phase acquired by a particle along an elementary

parallelogram unit cell of the Kagomé lattice (see Fig. 1) is

f ≡ Bsa
2
√

3
2 ≡ 8πf ≡ √

3ba, where f is dimensionless, and
b has units of inverse length. The phase acquired by a photon
around the unit cell is eight times the phase acquired on a
counterclockwise loop around a triangular plaquette. Let us for
simplicity pick the following gauge field in the Landau gauge,
As = (−Bsy,0), where the two components are Cartesian.
Due to the presence of a magnetic field, the Hamiltonian will
couple ky to ky ± b

2 and to ky ± b. Without loss of generality,
we take h̄ω = 0. The Hamiltonian reads

H = |t |eiφ
∑

k

eik�1a
†
Akx,ky

aBkx,ky+b + a
†
Akx,ky

aBkx,ky−b

+ ei
f

16
(
e−ik�2a

†
C,kx ,ky

aB,kx ,ky+ b
2
+ a

†
C,kx ,ky

aB,kx ,ky− b
2

)
+ e−i

f

16
(
e−ik(�1−�2)−i ba

√
3

8 a
†
A,kx ,ky

aC,kx ,ky+ b
2

+ ei ba
√

3
8 a

†
A,kx ,ky

aC,kx ,ky− b
2

) + H.c. (A7)

For rational values of f = p

q
, where p,q are relatively

prime integers, one can reduce the Brillouin zone from the
original [0, 2π

a
] × [0, 4π

a
√

3
] to the magnetic Brillouin zone

[0, 2π
qa

] × [0, 4π

a
√

3
]. The couplings between different momenta

disappear and we have replaced the original problem with that
of a periodic one-dimensional chain of 3q sites. Let us take a
generic wave function to be

|ψ〉 =
q−1∑

n=0,α=A,B,C

ψαna
†
αkx,k0

y+n b
2
|0〉, (A8)

where a
†
αkx,k0

y+n b
2

creates a photon on sublattice α at a given

momentum. Then the Schrödinger equation is equivalent to
the following set of three Harper equations:

Ekx,k0
y
ψAm = |t |eiφ−i

f

16
(
e+i b

√
3

2 ψC,m−1 + e−i(kx ,k
0
y+m b

2 )(�1−�2)ψC,m+1
) + |t |e−iφ

(
e−i(kx ,k

0
y+m b

2 )�1ψB,m+2 + ψB,m−2
)
,

Ekx,k0
y
ψBm = |t |eiφ

(
ei(kx ,k

0
y+(m−2) b

2 )�1ψA,m−2 + ψA,m+2
) + |t |e−iφ− f

16
(
ei(kx ,k

0
y+(m−1) b

2 )�2ψC,m−1 + ψC,m+1
)
,

Ekx,k0
y
ψCm = |t |eiφ+i

f

16
(
e−i(kx ,k

0
y+m b

2 )�2ψB,m+1 + ψB,m−1
) + |t |e−iφ+i

f

16
(
ei(kx ,k

0
y+(m−1) b

2 )(�1−�2)+i ba
√

3
8 ψA,m−1 + e−i ba

√
3

8 ψA,m+1
)
.

The solution to these equations gives the spectrum of the
system for every rational flux f = p/q, and the pattern of
splittings into magnetic subbands is known as the Hofstadter
butterfly [73]. The spectrum of the problem is periodic in f

of period 2, for example f = 0 and f = 2 systems have the
same spectrum, etc.

APPENDIX B: EVALUATION OF CHERN NUMBERS
IN DISORDERED SYSTEMS

This Appendix is dedicated to presenting more rigorous
statements behind the real-space Chern number formulas of
Eqs. (53) and (54). The general theory was introduced in Refs.
[100,101]. To keep our discussion generic and more suitable
for numerics, we rescale our Brillouin zone to [0, 2π

a
] × [0, 2π

a
].

The results for the reciprocal unit cell of the Kagomé lattice
can be adapted from the following by the introduction of the
appropriate Jacobian.

Consider a two-dimensional lattice with K orbitals per site.
We may take {|mα〉|α = 1, . . . ,K} to be kets localized at each
site m = (m1,m2), corresponding to each orbital. This amounts
to a basis of the full Hilbert space. The orbitals α may represent
actual orbitals, or spin, isospin due to more ions per unit cell,
etc. The Bloch transformation is a unitary transformation that
takes the Hilbert space H to a direct sum of CK spaces of
K-tuples of complex numbers, U : H → ⊕k∈BZCK . A ket
localized at site m transforms as

U |mα〉 = 1

2π
⊕k∈BZ e−ik·rmξα, (B1)
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where rm = m1�1 + m2�2, and ξα is the column vector of K

elements with the αth entry equal to 1, and the rest 0.
The Fourier transform of any operator A is

UAU † = ⊕k∈BZA(k). (B2)

The momentum space derivatives of an operator transform
as

U †[⊕k∈BZ∂kj
A(k)

]
U = −i[rj ,A], j = x,y. (B3)

The following identity of traces has to hold for a clean
infinite system,

1

(2π )2

∫
Tr{A(k)}d2k = lim

A→∞
1

ATrA{A}, (B4)

where Tr is the trace over orbitals, whereas TrA is the trace over
orbitals and over the sites included in a patch of the system of
area A.

Spatial disorder configurations δ are distributed accord-
ing to a probability measure dμ(δ), which by assumption
obeys the following properties. The probability measure for
disorder configurations is invariant under spatial translations
(homogeneity); any subset of the disorder configuration space
invariant under translations is a set of measure 0. These
properties amount to requiring that the probability measure
for disorder configurations is ergodic with respect to spatial
translations. Ergodicity implies that spatial and disorder
configuration averages are interchangeable. The averaging in
Eq. (53) can be performed over a small system with many
disorder configurations to the same effect as on a system in
the thermodynamic limit with a single disorder configuration
(self-averaging property).

For each disorder configuration δ, one defines an operator
Aδ (for example, the Hamiltonian Hδ). One cannot define k-
space calculus rules because the Fourier transform is no longer
defined, but one may replace calculus rules in the Brillouin
zone with the “noncommutative” rule,

∂kj
Aδ → −i[rj ,Aδ], ∀ δ, (B5)

and integration becomes

lim
A→∞

1

ATrA{A} =
∫

dμ(δ)tr0{Aδ}, (B6)

where the trace at the origin is given by tr0{A} ≡ Tr{π0Aπ0}
involving the projector π0 = ∑

α |0,α〉〈0,α| onto quantum
states at the origin m = (0,0).

With the help of such calculus rules, the Chern number in
the disordered continuum becomes

ν(E) = 2πi

∫
dμ(δ)tr0{Pδ(E)

× [ − i[x,Pδ(E)], − i[y,Pδ(E)]]}. (B7)

Reference [100] contains a proof of the fact that this expression
for an infinite system is the analytical index of a Fredholm
operator and thus an integer. This integer can change only
if the energy E crosses a region of extended states in the
spectrum, that is, something like a bulk band. For our numerical
calculations, we used the developments in Ref. [101], which
gives a fast converging formula for the Chern number of
Eq. (B7). The Brillouin torus is discretized into Nx × Ny

patches of momentum space area �x�y , and integration is
approximated by Riemann summation.

Derivatives in k space are approximated by a finite-
differences formula

∂ki
Pk → δki

Pkn ≡
Q∑

j=1

cj

[
Pkn+j�i

− Pkn−j�i

]
, i = x,y,

(B8)

where the coefficients cm are chosen to ensure exponential
convergence in the limit of large Nx,y , and Q is an adjustable
number of order Nx,y . Then the Chern number becomes

ν(E) = 1

2πi

∑
kn

Tr
{
Pkn

[
δk1Pkn

,δk2Pkn

]}
�2

= −2πiTr
{ ⊕kn∈BZ

(
Pkn

[
δk1Pkn

,δk2Pkn

])}
. (B9)

We can now replace the derivatives in momentum space by
their real-space counterparts through U [e−ir�P (E)eir�]U † =
⊕k∈BZPk+�(E). We arrive at the final formula for the Chern
number,

νδ(E) = − 2πi

NxNy

∑
m,α

〈mα|Pδ(E)

× [−i�x,Pδ(E)�, − i�y,Pδ(E)�]|mα〉, (B10)

where the sum is now manifestly over a finite system. The
bracket used above is derived from the original commutator
[x,Pδ(E)],

�x,Pδ(E)� = i

Q∑
j=1

cj [e−ijx�x Pδ(E)eijx�x

− eijx�x Pδ(E)e−ijx�x ], (B11)

and an analogous equation holds for y. The result needs to be
averaged over disorder configurations,

ν(E) =
∫

dμ(δ)νδ(E). (B12)

APPENDIX C: INTERACTING FERMIONS ON THE
KAGOMÉ LATTICE

In this Appendix we analyze a Hamiltonian describing a
fermionic nearest-neighbor interaction on the Kagomé lattice:

HI = V
∑
〈ij〉

ninj . (C1)

The Fourier transformed interaction Hamiltonian reads

HI = V

N

∑
l·n·k

[
cos

(
k

�1

2

)
a
†
A,l−kaA,la

†
B,n+kaB,n

+ cos

(
k

�2

2

)
a
†
A,l−kaA,la

†
C,n+kaC,n

+ cos

(
k

�1 − �2

2

)
a
†
C,l−kaC,la

†
B,n+kaB,n

]
, (C2)

where N is the number of unit cells on the lattice. We begin
with the model containing a flat middle band at φ = π

6 . Mean-
field theory is performed easily if we switch to the band basis
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(a†
lk,a

†
mk,a

†
uk), where the operators create particles of given

momentum in each of the three bands, “lower,” “middle,” and
“upper.” In the band basis, the tight-binding Hamiltonian Hk
of Eq. (3) describing free particles is diagonal,

T
†

k HkTk = diag(El(k),Em(k),Eu(k)). (C3)

The columns of T are the Bloch eigenvectors of Hk. Then the
two bases are related by the following unitary transformation:⎛

⎝ aAk
aBk
aCk

⎞
⎠ = Tk

⎛
⎝ alk

amk
auk

⎞
⎠ , where

Tk ≡
⎛
⎝TAl(k) TAm(k) TAu(k)

TBl(k) TBm(k) TBu(k)
TCl(k) TCm(k) TCu(k)

⎞
⎠ . (C4)

At 1/3 filling, or when the lower band is completely occupied,
the resulting mean-field Hamiltonian amounts to simply

H MF
I = V

3

∑
k∈BZ

a
†
lkalk + const, (C5)

while at 2/3 filling, when both the lowest and the flat band are
filled, the mean-field Hamiltonian takes the form

H MF
I = 2V

3

∑
k∈BZ

(a†
lkalk + a

†
mkamk). (C6)

Then at mean-field level the nearest-neighbor interaction
amounts to shifting the bands by an amount constant in k
space. For strong-enough interactions V , the bands will close
gaps, but as long as V < |t |, which is the size of the band
gap at φ = π

6 , the picture cannot be changed qualitatively and
the topological phase is robust to this interaction effect. The
cancellation of any k-dependent shifts is a feature of the C3

symmetry of the lattice.

APPENDIX D: BOGOLIUBOV TRANSFORMATION

In this Appendix we present a way to diagonalize the
Hamiltonian of Eq. (60). The Hamiltonian matrix can be
written in the basis

�
†
k = (bAkb

†
A−kbBkb

†
B−kbCkb

†
C−k), (D1)

with the bαk operators as defined on each sublattice α ∈
{A,B,C} in Eq. (59);

Ht =
∑
k∈BZ

�
†
kHtk�k, (D2)

where now the Hamiltonian may be expressed as

Htk =
⎛
⎝hAA(k) hAB(k) hAC(k)

hBA(k) hBB(k) hBC(k)
hCA(k) hCB(k) hCC(k)

⎞
⎠ , (D3)

whose elements are 2 × 2 matrices defined as

hαα(k) =
(

0 Un0
2

Un0
2 H αα

−k + Un0
2

)
,

(D4)

hα �=β(k) =
(

H βα

k 0
0 H αβ

−k

)
,

where Hk is the free-particle Hamiltonian in Eq. (3). In
the weak coupling limit U � |t |, the Bogoliubov transfor-
mation can be performed as follows. The b operators can
be transformed to quasiparticle operators b̃ via a canonical
transformation,

�k = Bk�̃k, (D5)

with �̃ defined as in Eq. (D1), with b̃ replacing b where the
condition for Bk to preserve the bosonic commutation relations
between the b̃ operators, [b̃αk,b̃

†
βk′ ] = δαβδk·k′ and [b̃αk,b̃βk′ ] =

0 is the following pseudounitarity condition:

Bk�B
†
k = �, where � = I3×3 ⊗ σ3, (D6)

where I3×3 is the identity acting on sublattice space and σ3

is the third Pauli matrix. Bk must diagonalize the Bogoliubov
Hamiltonian of Eq. (D3); let

B
†
kHtkBk = Kk. (D7)

From the condition in Eq. (D6) one can reexpress this as

�B
†
k��HtkBk = B−1

k �HtkBk = �Kk, (D8)

whence the matrices �K and �Ht are similar and it suffices
to diagonalize the matrix �Ht to determine the spectrum of
Bogoliubov quasiparticles.

APPENDIX E: EFFECTIVE PHOTON HAMILTONIAN

In this appendix we derive an effective low-energy Hamil-
tonian H eff for the photons in the Jaynes-Cummings lattice
model deep in the superfluid (delocalized) phase.

The low-energy state is the condensate state of n photons
and all of the 3N two-level systems are in their ground state,

|Gn〉 = |gn〉 ⊗
⊗

m

|↓〉m, (E1)

where the operator a
†
lk creates a photon in the lowest band at

wave vector k and

|gn〉 = 1√
n!

(l†k=0)n|0〉 (E2)

and |0〉 is the photon vacuum.
Consider the regime of weak coupling between photons and

two-level systems described in the main text,

g � |t | < h̄ω. (E3)

Under realistic experimental conditions, h̄ω ≈ ε, which causes
the two-level systems to be ordered in the ground state and
motivates our desire to determine an effective photon-photon
interaction starting with the ket in Eq. (E1). Defining the
projector on the ground state and the projector onto all excited
states of the system gives

Q = |Gn〉〈Gn| and K = I − Q. (E4)

These operators project into the subspace with n polaritons,
where

∑
m a

†
mam + σ+

m σ−
m is the polariton number. The indices

m here represent the lattice coordinates.
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Then

HtQ = nEl(k = 0)Q

+
∑

m

gam|gn〉〈gn| ⊗ |↑〉m〈↓|m
⊗

n

|↓〉n〈↓|n,

QHt = nEl(k = 0)Q

+
∑

m

g|gn〉〈gn|a†
m ⊗ |↓〉m〈↑|m

⊗
n

|↓〉n〈↓|n.

(E5)

Above, El(k) is the dispersion of the lowest band. Similarly
we denote by Em,u the dispersion relations for the middle
and upper bands, respectively, of the original tight-binding
Hamiltonian. The following operators are now completely
specified using the equations above:

QHtQ = nEl(k = 0)Q,

KHtQ = HtQ − QHtQ, (E6)

QHtK = QHt − QHtQ.

Finally, the projections onto excited states can be expressed
simply in terms of the projector onto the ground state:

KHtK = Ht − QHt − HtQ + QHtQ

= Hp + Hε + Hg,

Hp =
∑
m,n

tm,na
†
man − nEl(k = 0)Q,

(E7)
Hε =

∑
m

εσ+
m σ−

m ,

Hg = g
∑

m

σ+
m am + σ−

m a†
m − QHt − HtQ + 2QHtQ.

The effective low-energy Hamiltonian is written as

H eff = QHtQ + QHtK
1

E − KHtK
KHtQ. (E8)

A perturbation series in the small parameter g can be obtained
by expanding the denominator:

1

E − KHtK
= 1

E − (Hp + Hε + Hg)

= 1

E − (Hp + Hε)

1

I − Hg

E−(Hp+Hε )

= 1

E − (Hp + Hε)

[
I +

(
Hg

E − (Hp + Hε)

)

+
(

Hg

E − (Hp + Hε)

)2

+ O(g3)

]
. (E9)

The main step is to invert

1

E − (Hp + Hε)
, (E10)

where

Hε =
∑

m

εσ+
m σ−

m . (E11)

There is a basis in which the operator Hp + Hε is diagonal:

Hp + Hε =
∑

k

a
†
lkalkEl(k) + a

†
mkamkEm(k) + a

†
ukaukEu(k)

− nEl(k = 0)Q + ε
∑

m

σ+
m σ−

m , (E12)

where we have introduced the operators creating a particle
in the lower, middle, and upper band as a

†
lk,a

†
mk and a

†
uk,

respectively. These band basis operators are related to the
original operators a

†
Ak, etc., by a linear transformation which

is written explicitly in Appendix C. The corresponding band
dispersion relations are El,m,u(k), and this form of the tight-
binding Hamiltonian is simply the diagonal form of Eq. (3).
We have now obtained a sum of decoupled Hamiltonians;
the tight-binding part is already diagonal in the band basis
introduced here; the two-level system piece is already diagonal
in coordinate space.

Let us compute the effective Hamiltonian up to lowest-order
contribution in g, from Eq. (E9):

H eff ⊃ QHtQ + QHtK
1

E − (Hp + Hε)
KHtQ. (E13)

Only the terms containing alk=0 contribute due to the projectors
Q at the two ends of the second term. Then we only need to
take the following terms for the evaluation of Eq. (E13):

Hp + Hε = a
†
l0al0El(0) − ε

∑
m

σ+
m σ−

m . (E14)

We have cast the denominator into a form which is diagonal
with respect to both photon quantum numbers and two-level
system quantum numbers. The |↓〉〈↑| of QH K and the |↑
〉〈↓| of KH Q acting on the diagonal matrix in between them
will yield the projector onto the down state |↓〉〈↓|; that is, the
second term in Eq. (E13) will be a c-number times Q. More
explicitly,

QH K
1

E − a
†
l0al0El(0) + nEl(0)Q − ε

∑
m σ+

m σ−
m

KH Q

= |gn〉〈gn| g2 ∑
m a

†
mam

E − a
†
l0al0El(0) − ε

|gn〉〈gn| ⊗
⊗

m

|↓〉m〈↓|m

= ng2

E − (n − 1)El(0) − ε
Q = g2a

†
l0al0

E − (n − 1)El(0) − ε
Q.

(E15)

Then to lowest order g2,

H eff = Q

(
El(0) + g2

E − (n − 1)El(0) − ε

)
a
†
l0al0Q.

(E16)

To retrieve the effective Hamiltonian for the theory, we need
to take the limit E → nEl(k = 0); that is, this is only a valid
expression close to the ground state onto which Q projects.
Taking the limit above gives us an effective shift of the k = 0
energy. Peeling off the projector Q, we obtain the following
effective low-energy Hamiltonian:

H eff =
(

El(0) + g2

El(0) − ε

)
a
†
l0al0, (E17)
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which shows that at lowest order the interaction shifts band
minimum by an amount g2

El (0)−ε
.

Higher-order contributions yield effective interactions for
the photons. The next nonvanishing contribution is in g4, and
comes from the term

H eff ⊃ QHtK

(
1

E − (Hp + Hε)

)2

Hg

×
(

1

E − (Hp + Hε)

)
HgKHtQ. (E18)

After a similar calculation to the one above, we obtain the
following form for this term:

H eff ⊃
(

g4

(2El(0) − ε)3

∑
m,m′

a†
ma

†
m′amam′

)
. (E19)

In the main text, we have denoted the ground-state energy of
the single-particle tight-binding model as El(0) = E0. Peeling

off the projector onto the ground state, Q, we may rewrite the
effective Hamiltonian H eff as

E0 + f2g
2

E0 − ε
a
†
l0al0 + f4g

4

(2E0 − ε)3
a
†
l0al0a

†
l0al0, (E20)

where f2 and f4 are dimensionless quantities defined
as f2 ≡ (|TAl0|2 + |TBl0|2 + |TCl0|2) and f4 ≡ (|TAl0|4 +
|TBl0|4 + |TCl0|4), where the T ’s are the elements of the unitary
transformation from sublattice basis to band basis, introduced
in Appendix C : aαk = Tαlkalk + Tαmka

†
mk + Tαuka

†
uk for each

α = A,B,C.
Under realistic experimental conditions, where both E0 and

ε are in the microwave range, one can obtain a repulsive
interaction with g4/(2E0 − ε)3 > 0. Since we have only
considered the ground state in which all photons are at
wave vector k = 0, this approach does not provide precise
information about the range of the interaction, but it is telling
that a Hubbard-type repulsive photon-photon interaction can
emerge.
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