
PHYSICAL REVIEW A 86, 053802 (2012)

Theoretical modeling of single-molecule fluorescence with complicated photon statistics
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The use of techniques for analyzing the fluorescence photon statistics of a single molecule for modeling
single-emitter dynamics is demonstrated. The photon distribution function measured in the fluorescence of
a single tetra-tert-butylterrylene molecule embedded in polyisobutylene is used to devise a theoretical model for
single emitters with complicated fluorescence photon statistics. Our analysis was carried out with the theoretical
approach developed by Osad’ko and co-workers [J. Chem. Phys. 130, 064904 (2009); J. Phys. Chem. C 114,
10349 (2010)] for photon distribution functions. Although the experimental data were obtained at cryogenic
temperature where narrow zero-phonon lines are present, the method is based on a purely statistical approach
and does not require spectrally resolved data. It can also be applied to the analysis of broad fluorescence bands
as measured at room temperature. Therefore, the method has prospects for revealing the quantum dynamics of
single biological objects and other single quantum emitters in ambient conditions.
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I. INTRODUCTION

Soon after work on single-molecule spectroscopy (SMS)
was published [1,2], it became clear that the optical line of
a single chromophore molecule embedded in an amorphous
matrix such as a polymer or glass can serve as an effective tool
for studying the quantum dynamics of the environment of the
guest molecule. It is well known that the optical spectrum of
a single chromophore consists of a narrow zero-phonon line
(ZPL) and a phonon sideband (PSB) [3]. The spectral position
of the ZPL is sensitive to the quantum state of the environment
of the dopant molecule. Since the probability of observing
ZPLs is highest at low temperatures, many SMS experiments
have been carried out at cryogenic temperatures [4–7]. By
repeated scanning of the laser excitation frequency in a selected
spectral range, one can observe “jumps” or “splittings” of
a ZPL. These jumps on the frequency axis demonstrate
directly the quantum dynamics of the environment of the
chromophore.

On the other hand, performing experiments at cryogenic
temperatures is not acceptable in many fields of research.
For instance, the quantum dynamics of biologically active
molecules, such as the folding or unfolding of proteins, is
interesting at ambient conditions, where narrow ZPLs cannot
be detected and the SM spectra are very broad. Hence, the
methods of spectral analysis become ineffective at room
temperature and the quantum dynamics should be studied in a
different way.

Since the mid-1990s, methods based on studying the
statistics of fluorescence blinking of single semiconductor
nanocrystals [8–12] and single molecules [13,14] have been
used. For instance, statistical analysis of fluorescence blinking
of single polymer molecules provided rich physical infor-
mation about the quantum dynamics of a polymer molecule
excited by cw laser light [13,14].

The statistical analysis of fluorescence blinking yields
distribution functions of various types which appear to be a
promising basis for designing a microscopic model for a single

emitter. The details of finding such a model were unclear at that
time, however. Probably this was the reason why the authors
of Refs. [13,14] did not offer a microscopic model to describe
the measured blinking effects.

Theoretical analysis of the experimental data obtained in
Refs. [13,14] was later carried out by Osad’ko [15] and then by
Osad’ko and Fedyanin [16,17]. These papers demonstrated the
high efficiency of methods based on the comparison between
calculated and measured photon distribution functions wN (T ).
These methods enabled the authors to find a microscopic model
for single-emitter dynamics. Meanwhile, theoretical formulas
for the probability wN (T ) of detecting N photons in a time
interval T have been derived [16–18].

A highly interesting problem which can potentially be
addressed with the developed theory is to clarify the micro-
scopic nature of fluorescence blinking of single dye molecules
embedded in disordered organic solids (glasses, polymers,
molecular crystals with defects). Fluorescence fluctuations
(blinking) of single emitters in these systems have been
observed in a broad range of low temperatures [19–22]. In
some cases the analysis of spectrally resolved data enabled
people to design a microscopic model of the observed spectral
dynamics (e.g., SM blinking caused by the interaction with
individual tunneling two-level systems of the disordered
matrix [19,20]). Often, however, [21,22] spectral analysis and
even the analysis of the distributions of on and off interval
lengths were not sufficient to shed light on the nature of the
intermittent fluorescence emission of single chromophores.
Analyzing the photon distribution function seems to be helpful
in this case.

The purpose of the present paper is to analyze and interpret
experimental data of fluorescence blinking of single tetra-tert-
butylterrylene (TBT) molecules embedded in polyisobutylene
[19] with the help of the modern theory of photon statistics
mentioned above. We will demonstrate how a microscopic
dynamical model for single emitters can be constructed on the
basis of the experimental data.
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II. EXPERIMENT

The experimental setup and the procedure of data
acquisition were described in detail in Refs. [19,23]. Here,
only the main features and experimental parameters will
be summarized, together with the method which we have
developed to obtain the SM photon distribution function.

The electronic spectra of TBT molecules at cryogenic
temperature consist of intense narrow ZPLs and relatively
broad PSBs. The ZPLs correspond to purely electronic
transitions in the chromophores. They were measured with the
fluorescence excitation technique [22]. In this experiment the
integral Stokes-shifted fluorescence is recorded while scanning
the excitation frequency of a narrowband laser. Repeated
recording of the fluorescence excitation spectra of selected
SMs in the same spectral region yields the temporal evolution
of their spectra, the so-called SM spectral trails [20,24,25].

The measurements were performed with a home-built
confocal microscope based on a tunable single-frequency
dye laser Coherent CR-599 (spectral linewidth including
jitter ∼2 MHz). The laser excitation wavelength was varied
between 570 and 590 nm with continuous tuning widths up to
36 GHz and frequency steps of 1 MHz. The detection system
consisted of an avalanche photodiode (APD) (Perkin-Elmer
SPCM AQR-15) and a photon counting system (Stanford
SR400). The exposure time was 5 ms per data point (this
allows measurement of zero-phonon lines with good signal-
to-noise ratio), which determines the temporal resolution
in the experiment. Note, however, that in this technique
the ultimate time resolution is limited by the avalanche
photodiode dead time, which is 50 ns, and one could realize
a better time resolution in future. Moreover, the detector
time resolution for photon pairs is about 400 ps. The APD
quantum efficiency is 65% at 650 nm. Afterpulsing probability
is 0.5%. The peak count rate in the experiment was about
150 counts per 5 ms interval; hence, the relative number of
lost photons due to the dead time at peak intensity was only
1.5 × 10−3.

The investigated system was polyisobutylene (PIB) weakly
doped with tetra-tert-butylterrylene. The dye concentration
was adjusted by mixing toluene solutions of the initial material
and of pure PIB so that in the confocal spot (∼0.5 μm
diameter) only about one SM spectral line within a 36 GHz
scan range was detected. Films of ∼200 nm thickness were
prepared by spin coating on microscope cover glasses. The
sample was placed, together with a microscope objective
(Microthek, numerical aperture 0.85), in a 4He cryostat
(CryoVac) at a temperature of 10 K. The integral Stokes-
shifted fluorescence was selected with a long-pass interference
filter.

Figure 1(a) shows the spectral trail of a single TBT
molecule in the usual form of a two-dimensional (2D) plot. The
horizontal axis represents the optical excitation frequency, the
vertical axis the scan number; the signal intensity is encoded on
a gray scale. In the context of the present paper it is important to
note that each data point along the frequency axis was obtained
sequentially in time (from left to right).

The disadvantage of the spectral-trail technique for the
analysis of photon statistics is the loss of information about
the SM fluorescence during those periods when the laser

FIG. 1. (Color online) (a) Spectral trail (temporal evolution) of
a selected single tetra-tert-butylterrylene molecule in amorphous
polyisobutylene, as measured at 10 K with an exposure time of
5 ms per frequency point. (b) Spectrum of scan no. 4. The signal
variations are due to fluorescence blinking of the SM. In order to avoid
significant variations of the SM fluorescence intensity due to off-
resonant excitation, we used only the central part of the homogeneous
line profile for analysis (indicated by the dashed vertical lines).

frequency is not in resonance with the SM line. In the
present experiment this feature was of minor importance,
however, since the width of the individual ZPLs at 10 K
was sufficiently broad in comparison with the scan range. We
would also like to note that this technique allows analyzing
the spectral dependence of various parameters including
the blinking characteristics. Such studies were performed in
Ref. [26]. This will be of particular interest in the case of
SM systems with fast and chaotic spectral dynamics, such
as organic low-molecular-weight glasses and oligomers [22].
Here we do not extract any additional information from the
spectrally resolved data and use scanning simply as an efficient
method to find the initially unknown spectral position of the
molecule.

In order to avoid significant variations of the SM fluores-
cence intensity due to off-resonant excitation, we restricted our
analysis to the central part of the homogeneous line profile (as
indicated by the dashed vertical lines in Fig. 1), in which the
signal level was no more than 15% below that at the maximum.
Only the corresponding 250 data points of each scan were taken
into account; the other points were disregarded. For achieving
high statistical confidence, we combined the time traces of 57
consecutive scans, corresponding to a total data acquisition
time of ∼70 s (see Fig. 2, lower panel; the upper panel shows
a zoomed-in interval of 3 s). This combined fluorescence time
trace was used for calculating the photon statistics and further
theoretical analysis.

Short on and off intervals on a time scale of about
100 ms are clearly visible in both Figs. 1 and 2. Analyzing
the distribution functions of these short intervals yields
exponential functions with characteristic times τon = 40 ms
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FIG. 2. (Color online) Temporal fluctuations of the photon counts (14 250 data points) in the central parts of 57 consecutive scans of a single
tetra-tert-butylterrylene molecule in polyisobutylene. The exposure time for each data point was 5 ms. The upper panel shows a zoomed-in
portion of the total time trace.

and τoff = 20 ms, respectively. These are the average durations
of the short on and off intervals.

III. THEORETICAL MODEL

The fluorescence track of the single ТBТ molecule shown
in Fig. 2 was statistically analyzed with respect to the number
of photon counts within the acquisition time of 5 ms. The
corresponding distribution function wN (T ) with T = 5 ms is
presented in Fig. 3 in the form of a histogram.

Our task is to devise a theoretical model for the single emit-
ter that describes all the details of the measured distribution
function. The following details should be explained:

(1) The presence of two peaks in the photon distribution
function.

(2) The presence of the flat nonzero shelf between the two
peaks which is clearly visible in Fig. 3(b).

(3) The Gaussian shape of the broad peak.
(4) The intensity ratio between the shelf and the Gaussian

peak.
(5) The intensity ratio between the narrow and broad peaks.
(6) The occurrence of on-off intervals on both the 100 ms

and 10 s time scales as seen in Fig. 2.
We will use the method described in Ref. [15] for finding a

theoretical model for the observed fluorescence blinking [13].
The method is based on the combination of a few simple
models, each of which is able to explain only some (but not
all) details of the intermittent fluorescence emission. With their
combination we arrive at a more complex model which is able

to explain all the experimental details. This method, in more
complicated form, has been recently used in Refs. [16,17].

A. Photon distribution with two peaks

Let us first consider a model resulting in a photon distribu-
tion with two peaks. Such a photon distribution corresponds to
the emitter (guest molecule + environment) having two states
of fluorescence emission: weak and intense. This is possible
if the emitter has two conformational forms. The schematic
representation of this situation is depicted in Fig. 4. The
fluorescence is intense in form 0 and weak in form 2. Here
k0 and k2 are the rates of light absorption and G1 and G3

the rates of photon emission in the two conformational forms.
Such a model is typical for SM blinking due to its interaction
with a tunneling two-level system of the amorphous state.

The photon statistics of a similar two-conformation model
has recently been studied theoretically in detail by Fedyanin
and Osad’ko [17]. A photon distribution function with two
peaks (as measured by Barbara and co-workers [14] for the
fluorescence of a single polymer molecule) was successfully
explained on the basis of the two-conformation model (see,
for instance, Fig. 11 in Ref. [17]).

Monte Carlo simulations of the photon distribution function
for the scheme of Fig. 4 yield results like those shown in Fig. 5.
The distribution function presented in Fig. 5(a) has two peaks
and a flat shelf of nonzero photon counts between them, in
qualitative agreement with the measured distribution in Fig. 3.
At first glance, the model seems to be sufficient to explain the
experimental data. This is not true, however, since the peak
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FIG. 3. (Color online) Distribution of photon counts within 5 ms
bins of the fluorescence signal of the single tetra-tert-butylterrylene
molecule as shown in Fig. 2. (a) General view; (b) representation with
enlarged vertical scale.

around N = 150 has different widths in Figs. 3 and 5(a): In
Fig. 3 it is much broader. Our attempt to increase the width
of the calculated peak by increasing the value of k2 yields the
results shown in Figs. 5(b) and 5(c). The peak does not obtain
the necessary width; instead the flat shelf and the narrow peak
at low photon counts disappear. Hence, the model scheme of
Fig. 4 cannot explain the measured photon distribution.

On the other hand, the two-conformation model is able to
reproduce the flat shelf and, at least qualitatively, one (the
broad) peak. Hence, it can serve as part of a more general
model investigated below and it deserves more careful study.
The photon distribution for the two-conformation model [27]
with k2 = 0 is given by the following equations:

wN (T ) = 1

τ0

∫ T

0
(T − t){[s(λ)N−1]t − 2[s(λ)N ]t

+ [s(λ)N+1]t }dt (N � 1), (1)

FIG. 4. Sketch of the two-conformation model leading to two
different fluorescence intensities.

FIG. 5. (Color online) Photon distribution functions (solid lines)
calculated for the scheme of Fig. 4 with the parameters k0 = 3 ×
104 s−1, G1 = G3 = G = 108 s−1, B = b = 50 s−1, and k2 = 1.5 ×
103 s−1 (a); k2 = 2.4 × 104 s−1 (b); k2 = 2.6 × 104 s−1 (c). Poisson
distributions are indicated as dashed lines.

w0(T ) = 1

τ0

∫ ∞

0

[
1 −

∫ T +t

0
s(x)dx

]
dt,

(1′)
τ0 =

∫ ∞

0

(
1 −

∫ t

0
s(x)dx

)
dt =

∫ ∞

0
ts(t)dt.

The derivation of these equations can be found in Refs. [16,18].
Here τ0 is the average time interval between two consecutively
detected fluorescence photons. The average time interval and
the photon distribution function wN (T ) in time interval T are
expressed via a single function s(t), which is the probability
per time of finding two adjacent photons separated by the time
interval t . Since s(t) determines the correlation between two
adjacent fluorescence photons, it can be dubbed the start-stop
correlator. s(λ) is its Laplace transform. The calculation of
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FIG. 6. (Color online) Photon distribution function calculated
with Eq. (1) for Т= 5 ms and B = b = 50 s−1, k0 = 3 × 104 s−1,

k2 = 0, G = 108 s−1.

the start-stop correlator for the energy scheme in Fig. 4 with
k2 = 0 and then the calculation of the photon distribution
function according to Eq. (1) yield the result plotted in Fig. 6.

The origin of the flat nonzero shelf in the photon distribution
function can be understood with the sketch in Fig. 7. For
k2 = 0, state 2 in Fig. 4 is a “dark” state, since the molecular
fluorescence stops in spite of continuing cw excitation, if
the molecule is transferred to state 2. Fluorescence emission
starts again after the molecule leaves state 2. Therefore, the
fluorescence signal consists of on and off intervals as shown
in Fig. 7.

Figure 7 shows equal time intervals T in which different
numbers of photon counts are recorded. Interval 1 is located
entirely within an on interval. Intervals of this type form the
broad Poisson peak around N = 150 in the photon distribution
function. Interval 2 extends partially into an off interval, so cor-
respondingly fewer photons are counted. These intervals form
the shelf in the photon distribution function. Finally, interval
3 lies completely in an off interval. Counting the intervals of
this type yields the probability w0(T ) of finding zero photon
counts. For the set of parameters given in the caption of Fig. 6,
the probability w0(T ) calculated with Eq. (1′) is equal to 0.39.
Of course,

∑∞
N=0 wN (T ) = 1 for any value of T .

The shape of the shelf and the intensity ratio between the
shelf and the broad peak in the photon distribution function
depend strongly on whether the signal acquisition time T

is shorter or longer than the average duration of the on-off
intervals. See, for instance, Figs. 6 and 7 in Ref. [16].

In our work the time interval T = 5 ms is fixed, since it is
given by the experimental exposure time per frequency point.
In the simulations we can vary the parameters B and b and,
as a result, change the average duration of the on-off intervals
according to the equations τon = 1/B, τoff = 1/b. In this way
we can reproduce the correct intensity ratio between shelf and
peak.

FIG. 7. Explanation of the flat nonzero shelf and the broad peak
in the photon distribution function. Vertical lines indicate random
time instants of photon emission.

The position of the peak in Fig. 6 is determined by the
equation N = kT = (3 × 104 s−1) × (5 ms) = 150. Here and
further on we set k0 ≡ k. As noted before, however, the peak
is narrower in the simulations than in the experimental data
(Fig. 3). It is impossible to remove this discrepancy on the
basis of the model sketched in Fig. 4. Therefore, we must
consider another model aimed at explaining the correct width
of the peak.

B. Appearance of the broad Gaussian distribution
together with the flat shelf

If the binning time T is much longer than the duration of
the off intervals, the photon distribution function is a broad
Gaussian, as was shown in Ref. [28]. We will use this result
to explain the existence of the broad peak in the experimental
distribution function of Fig. 3.

For a fixed binning time T = 5 ms we must increase the rates
B and b so that the intervals τon = 1/B, τoff = 1/b become
shorter than 5 ms. The results of the calculation are shown in
Fig. 8.

If the duration of the on-off intervals τon,off is much longer
than the binning time T = 5 ms, we obtain the distribution

FIG. 8. (Color online) Influence of shortening the off intervals on
the photon distribution function. The simulation was performed for
k = 5.85 × 104 s−1, G = 108 s−1 , and 1/B = 1/b = 50 s (a), 0.5 s
(b), 0.05 s (c), 5 ms (d), 2 ms (e), 0.5 ms (f), 0.05 ms (g), and 0.005
ms (h). The values w0(5 ms) of the zero-photon probabilities are in-
dicated in (a)–(e). Poisson distributions are indicated by dashed lines.
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of Fig. 8(a). Here τon,off = 50 s and we observe a Poisson
distribution. Such long on-off intervals do not influence the
photon distribution function; it is very similar to that in the
case of continuous fluorescence emission.

If we shorten the on-off intervals by a factor of 100 to 0.5 s,
the photon distribution function changes because of the large
probability w0(5 ms) = 0.491 of finding time intervals with
zero photon counts. Figure 8(b) shows this distribution. If the
duration of the on-off intervals is ten times longer than the
binning time, the photon distribution function features a weak
flat shelf and the Poisson peak [Fig. 8(c)]. If the duration of
the on-off intervals equals the binning time, 5 ms, the shelf
becomes more pronounced and the Poisson peak decreases
strongly; see Fig. 8(d).

Further shortening of the on-off intervals leads to trans-
formation of the shelf to a bell-like distribution as shown in
Fig. 8(e). At τon,off = 0.5 ms the distribution function acquires
a Gaussian shape. The broad Gaussian distribution in Fig. 8(f)
indicates the existence of short off intervals which are not
directly detectable due to the long binning time.

If we continue to shorten the time 1/B = 1/b, the photon
distribution function becomes narrower and finally acquires
a Poissonian shape at 1/B = 1/b = 0.005 ms, as Fig. 8(h)
shows. The time interval 0.005 ms is shorter than the average
interval 1/k = 0.017 ms between two adjacent photons. At
such large rates B and b, the concept of on-off intervals loses its
meaning. The emitter simply behaves like a two-level molecule
with Poissonian photon statistics. The distribution function in
Fig. 8(f) already resembles the broad peak in Fig. 3. The flat
shelf, however, is absent.

Figures 8(a)–8(d) describe the situations for 1/B = 1/b �
5 ms. The position of the Poisson peak in the distribu-
tions can be found with the simple equation N0 = kT =
(5.85 × 104 s−1) × (5 ms) = 292. Figures 8(f)–8(h), on the
other hand, correspond to the opposite limit 1/B = 1/b �
5 ms. Here the molecule jumps from the on to the off state and
back with a frequency which is comparable to the average
frequency of photon emission. The probability of finding
the molecule in the on state is τon/(τon + τoff) = b/(B + b).
On the average, the molecule absorbs light during the time
T = (5 ms) × b/(B + b) = 2.5 ms and the position of the
maximum of the distribution in Figs. 8(f)–8(h) is calculated as
N0 = kT = (5.85 × 104 s−1) × (2.5 ms) = 146.

Thus, the model with only one dark state yields either a
shelf in the photon distribution function at small rates B and
b or a Gaussian peak of correct width at large rates. Since it
is impossible to combine both features within the framework
of this model, we are forced to consider a more complicated
model, for instance, one with two dark states. Such a model is
sketched in Fig. 9.

The transitions to the dark states 2 and 3 are slow and fast,
respectively. Slow transitions are responsible for the shelf in
the photon distribution function, whereas fast transitions are
responsible for the broad Gaussian peak. With this model,
we can again perform Monte Carlo simulations of the photon
distribution function using Eq. (1). With the parameters

B ′ = b′ = 1.4 × 104 s−1, B = b = 50 s−1,
(2)

k = 5.85 × 104 s−1, G = 108 s−1

FIG. 9. Theoretical model with two dark states 2 and 3.

we obtain the result shown in Fig. 10 (black line) together with
the experimental data.

The simulated and the measured photon distribution coin-
cide well for 25 < N < 255. The narrow peak at low photon
count numbers is not reproduced, however (cf. Fig. 3). Within
the model of Fig. 9 the emitter has only one rate of fluorescence
emission. Since the model is still not able to explain all the
experimental details, we must extend it further.

Specifically, the model sketched in Fig. 9 does not take
into account (1) on-off intervals with durations of 10–20 s,
and (2) the influence of dark counts of the photodetector and
parasitic background signals. The experimental distribution
presented in Fig. 3 comprises both fluorescence signal and dark
and background counts, whereas in the simulations we have
considered only the fluorescence signal so far. The influence
of points 1 and 2 will now be discussed in detail.

IV. CALCULATION OF THE PHOTON DISTRIBUTION
FUNCTION AND COMPARISON WITH THE

EXPERIMENTAL DATA

Let us consider a model with a third dark state 4 as sketched
in Fig. 11. This state will be responsible for the appearance of
long off intervals.

FIG. 10. (Color online) Photon distribution function calculated
with the set of parameters given in Eq. (2) and k = 6.2 × 104 s−1 for
the model sketched in Fig. 9 (black line) and measured distribution
(redline). The reason for using k = 6.2 × 104 s−1 instead of k =
5.85 × 104 s−1 will be explained further in the discussion of the
influence of the background counts.
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FIG. 11. Extension of the model with three dark states 2, 3, and 4.

At this point a comment concerning possible origins of the
dark states is in order. In various systems they can be of very
different physical nature. Very frequently, the triplet states of
the chromophore lead to off intervals on the microsecond to
millisecond time scale (the so-called photon-bunching effect)
[13,29–31]. In long polymer chains, the presence of exciton
traps is able to interrupt the fluorescence emission [13,14].
Other long-lived dark states can be related to various types of
photochemical reaction [32–36]. Off times in the fluorescence
of semiconductor quantum dots are related to processes of
Auger ionization [8–12,37]. The dark states in our system
are most probably due to the coupling to tunneling two-level
systems of the amorphous solid state. Unfortunately, the
photon distribution functions used in this paper cannot shed
light on the physical nature of the dark states. Additional
studies are necessary to clarify this nature. However, our
method enables us to determine the lifetimes of dark states
responsible for the appearance of very short off intervals which
are not directly visible in the fluorescence signal because of
the limited temporal resolution of the experiment.

The dynamics of the emitter with three dark states is
described by the following set of equations:

ρ̇0 = −(k + B + B ′ + B ′′)ρ0 + Gρ1 + bρ2 + b′ρ3 + b′′ρ4,

ρ̇1 = kρ0 − Gρ1,

ρ̇2 = Bρ0 − bρ2, (3)

ρ̇3 = B ′ρ0 − b′ρ3,

ρ̇4 = B ′′ρ0 − b′′ρ4.

This system describes the evolution of a so-called closed
system in which the full probability of the occupation of the
states is conserved, i.e.,

∑4
j=0 ρ̇j = 0. For the calculation of

the photon distribution function according to Eq. (1) we need
to know the start-stop correlator s(t). This function can be
found with the equations for the corresponding open system
in which the full probability is not conserved because of the
emission of fluorescence photons. The start-stop correlator is
given by the probability of population leakage from the open
system, viz.,

4∑
j=0

Ẇj = −GW1 = −s(t). (4)

The set of equations for the open system is obtained by omitting
the underlined term in Eqs. (3),

Ẇ0 = −(k + B + B ′ + B ′′)W0 + bW2 + b′W3 + b′′W4,

Ẇ1 = kW0 − GW1,

Ẇ2 = BW0 − bW2,

Ẇ3 = B ′W0 − b′W3,

Ẇ4 = B ′′W0 − b′′W4. (5)

We use Wi here instead of ρi as in Eqs. (3) because Eqs. (5)
differ from Eqs. (3) by the underlined term Gρ1. In order to
find the start-stop correlator we must solve Eqs. (5) for the
initial condition W0(0) = 1, which states that the first photon
of an adjacent pair of detected photons was emitted at t = 0.
The calculation yields

s(t) =
4∑

j=0

sj e
−λj t , (6)

where

sj = kG(b − λj )(b′ − λj )(b′′ − λj )

×
⎡
⎣(λj − λ)

4∏
p=0

1

(λp − λ)

⎤
⎦

λ=λj

. (7)

The rate constants λj are the roots of the equation

det(λ) = (λ − G)[(λ − k − B − B ′ − B ′′)(λ − b)

× (λ − b′)(λ − b′′) − bB(λ − b′)(λ − b′′)
− b′B ′(λ − b)(λ − b′′) − b′′B ′′(λ − b)(λ − b′)] = 0.

(8)

Figure 12 shows the start-stop correlator calculated with the
following parameters:

G = 108 s−1, k = 5.85 × 104 s−1, B = b = 0.1 s−1,

B ′ = b′ = 50 s−1, B ′′ = b′′ = 1.4 × 104 s−1. (9)

All dynamical processes are reflected in the function s(t). On
a logarithmic time scale, each of them manifests itself as a
smooth step extending over one order of magnitude in time.
The four panels of Fig. 12 show five steps which are related to
the rate 1/T1 of fluorescence emission, the rate k of absorption,
and the three rates of the system jumping into and out of the
three dark states.

Inserting Eq. (6) into Eq. (1′) yields the following expres-
sions for the average time interval τ0 between two adjacent

FIG. 12. (Color online) Start-stop correlator s(t) calculated with
Eqs. (6).
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FIG. 13. (Color online) Probability of finding a time interval of
length t without photon detection in the fluorescence of the emitter
with three dark states.

photons and the probability w0(t) of finding a time interval of
duration t without photon detection:

τ0 =
4∑

j=0

sj

λ2
j

, w0(t) = 1

τ0

4∑
j=0

sj

λ2
j

exp(−λj t). (10)

In the calculation we have used the equation
∑4

j=0 sj /

λj = 1 which corresponds to the normalizing condition∫ ∞
0 s(t)dt = 1: The probability of detecting the second photon

of the pair of adjacent photons at any time up to t = ∞ must be
unity. The average interval τ0 between two adjacent photons is
calculated as 8.65 × 10−5 s and the probability w0(t) is shown
in Fig. 13.

For t < τ0 ≈ 1/k we have w0(t) ≈ 1. The first smooth
step is related to time intervals t comparable to 1/B ′ ∼=
10−4 s, the second step to intervals of about 1/B ≈ 10−2 s,
and the third step to intervals of about 1/B ′′ ≈ 10 s. For
t = T = 5 ms (the experimental exposure time), we ob-
tain w0(5 ms) = 0.555. The probability of finding time
intervals of 5 ms length with photon detection is then∑∞

N=1 wN (5 ms) = 1 − 0.555 = 0.445.
Finally let us consider the influence of dark counts,

which are not due to detected fluorescence photons of the
single molecule but to other reasons, i.e., dark counts of
the photodetector, thermal noise, parasitic light, background
emission, fluorescence from nonresonantly excited impurities,
etc. (in our case a total of ∼1.1 × 103 counts per second).
Their consideration is of great importance in the analysis of
the measured distribution function. The distributions wn

M (T )
of dark counts and ws

M (T ) of photon counts are statistically
independent. Hence, we can use the expression [38,39]

ws+n
N (T ) =

N∑
m=0

wn
N−m(T )ws

m(T ) (12)

for the distribution function of all pulses recorded during
time interval T . If the source of the dark counts is known,
their distribution wn

M (T ) can be calculated in an analogous
way to the distribution ws

M (T ) of the signal counts. The dark
counts play an important role in the measured distribution if
the probability ws

0(T ) of detecting no fluorescence photons
is large. This situation is given in our experiment, since
we have w0(5 ms) = 0.555. We rewrite Eq. (12) in the
form

ws+n
N (T ) =

N∑
m=1

wn
N−m(T )ws

m(T ) + wn
N (T )ws

0(T ). (13)

FIG. 14. (Color online) Distribution of pulses measured in ex-
periment (red line) and calculated with Eq. (13) for T = 5 ms,
q = 1.1 × 103 s−1, and the parameters given in Eqs. (9) (black line).
The narrow peak around N = 6 originates from dark counts (see text).

Taking dark counts with a Poisson distribution into account,
i.e., wn

M (T ) = (qT )M exp(−qT )/M! with the average rate
q = 1.1 × 103 s−1, and using the dynamical parameters of
Eqs. (9), we arrive at the combined distribution function (signal
and dark counts) which is shown in Fig. 14 by the black
line.

The integrated intensities of the peak around N = 6 in
the measured and the calculated distributions coincide. In the
experimental distribution function (red line) the peak is slightly
broader than in the model calculation based on Poissonian
dark counts. The influence of the dark counts on the flat
shelf is negligible. Also, they do not affect the width of
the broad Gaussian peak around N = 150 but slightly shift
its maximum to larger count numbers. We have allowed for
this effect by using k = 6.2 × 104 s−1 in Fig. 10 instead of
k = 5.85 × 104 s−1 as before. On the other hand, the narrow
peak around N = 6 is solely due to dark counts and disappears
if they are not taken into account.

The photon distribution function calculated with our model
agrees well with the experimental data, as Fig. 14 shows.
Its shape depends strongly on the binning time, however.
If the model is correct, it must reproduce the experimental
distribution function for other binning times also without any
changes of the rate parameters. In order to test this we have
calculated the distribution function of the experimental data
for the binning time T = 10 ms. The results are presented in
Fig. 15 by the red line. The theoretical distribution calculated
for T = 10 ms with all other parameters unchanged is plotted
in black.

The calculated and the experimental distribution are in good
agreement for T = 10 ms as well. Hence, we may conclude
that our model describes the salient features of the emitter
correctly.

FIG. 15. (Color online) As Fig. 14 but for T = 10 ms.
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V. CONCLUSION

In this paper we have demonstrated how techniques for
the analysis of fluorescence photon statistics of a single
molecule can be applied to theoretical modeling of the
dynamics of a single quantum emitter. The analysis has been
performed for the example of fluorescence blinking of a single
tetra-tert-butylterrylene molecule embedded in amorphous
polyisobutylene, as measured with the spectral-trail technique
at a temperature of 10 K. The experimental data were first
processed to obtain the time trace of SM fluorescence blinking
(Fig. 2) and the corresponding photon distribution function
(Fig. 3).

In order to find a microscopic model for the dynamics of
this single emitter we performed a theoretical analysis of the
photon statistics. Specifically, the photon distribution function
was analyzed in detail for various ratios of the duration of
on-off intervals to the binning time. A preliminary analysis of
this kind was performed theoretically in Ref. [16]. Here we
demonstrate how such an analysis can be implemented in the
evaluation of experimental data.

The resulting model comprises three dark states of the
molecule with different lifetimes, including the short-lived
state 3 which is not directly visible in the fluorescence time
trace. The contribution of dark counts to the recorded signal
also had to be taken into account. With these ingredients we
were able to explain all the details of the photon distribution
function.

The theoretical model illustrated in Fig. 11, together with
the dark counts, interprets the main features of the photon
distribution function in the following way.

(1) The narrow peak in Fig. 3 is entirely due to dark
counts (other than fluorescence from the single molecule under
investigation) with an average count rate of 1.1 × 103 s−1.
The broad peak corresponds to the combined count rate of
signal + dark pulses, the signal having an average rate of
5.85 × 104 s−1.

(2) The flat nonzero shelf is due to dark state 2 with a
lifetime of 0.02 s. This time agrees with the average length of
the short dark periods in the fluorescence time trace.

(3) The Gaussian shape and width of the broad peak are
caused by short-lived dark state 3 with 7.14 × 10−5 s lifetime.

This time is almost two orders of magnitude shorter than
the experimental binning time of 5 ms; hence, the state cannot
be seen in the fluorescence time trace. It manifests itself only
in the shape and width of the photon distribution function.

(4) Our model correctly reproduces the intensity ratio of
the shelf and the broad peak. This ratio is due to the lifetime
of dark state 2 of 0.02 s.

(5) The intensity ratio between the narrow and the broad
peaks is determined by long-lived dark state 4 with a lifetime
of 20 s. Off intervals of this duration are also directly visible
in the fluorescence time trace of Fig. 2.

Thus, the theory is not only able to construct a microscopic
model for a single emitter but reveals also the presence of fast
rates in its dynamics which are not directly visible due to the
experimental binning time. The data analyzed in this study
were measured at cryogenic temperature, so the dark states
are most probably caused by coupling to tunneling two-level
systems of the disordered matrix.

In our analysis we did not make any use of the spectral
dependence of the recorded data. Hence, the method can be
applied equally well if the absorption and/or fluorescence band
of the emitter is broad. This fact is of great importance, since
it permits the study of biological systems, e.g., proteins, and
other quantum objects, whose dynamics is most interesting at
ambient conditions.
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