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Fabry-Perot complex plasmonic eigenfrequencies for equally spaced noble-metal parallel plates
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The eigenvalue condition for computing the Fabry-Perot eigenmodes of n-identical equally spaced metallic
parallel plates is obtained. The frequency and decay rate of the plasmonic resonances for gold and silver are
computed for quarter-wave metallic plates. I show that the system’s plasmonic frequency can be tuned in silver
to any desired value in the optical regime through a specific choice of the ratio of the dielectric to metal plate
thickness. I also show that the eigenmodes with wave vectors having Re(v) ∼= 0 form narrow resonances.
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I. INTRODUCTION

As far back as the end of the 19th century, Lord Rayleigh [1]
studied the propagation of waves in periodically stratified
media. This field has remained an active area of research since
then. The advances made in this field until the 1950’s are
summarized in the classic book of Brillouin [2], who himself
made seminal contributions to the advancement of this field.
A landmark in modern physics is the work of Bloch [3],
who generalized the work of Floquet [4] on the solutions
of differential equations with a periodic potential to lay the
foundations for the theory of electrons in crystals. In optics,
the field was pioneered by Abeles [5], who formulated an
elegant approach for treating problems of stratified optical thin
films. This formulation was at the basis of the later theoretical
treatment of filters, antireflection films, beam splitters, and
polarizers. In the past four decades, the theory of periodic
structures provided as well the framework for the development
of theories of distributed feedback lasers [6,7] and photonic
crystals [8]. Friedberg and I [9] benefited from all these
earlier works to analyze the phenomenon of “precocious
superradiance” earlier predicted by myself [10].

Recently, finding the resonant plasmonic frequencies of
different geometric structures became highly sought in the
exploding field of nanoscience. Different approaches for find-
ing the resonant plasmonic frequencies for different geometric
structures used tools from perturbatively corrected electrostat-
ics [11], the hybridization theory of quantum chemistry [12],
and the theory of electrodynamics eigenfunctions [13]. In this
paper, I use the theory of transfer matrices earlier reformulated
in Ref. [9] to find the plasmonic complex eigenfrequencies of
a stack of parallel quarter plates of noble metals (silver and
gold) alternating with plates of a dielectric. This configuration
is of interest at both the microscopic and nanoscopic levels.
(Results from experiments on an ensemble of nanospheres
interacting with a metallic planar structure already have been
reported on in the literature [14].)

The objective of this paper is to obtain the Fabry-Perot
complex eigenfrequencies of the system when the periodic
structure has a finite number of elements, when the thickness
of the metal plate is a quarter plate of the plasmonic resonance
frequency, but that of the dielectric plate is allowed to vary. In
particular, the ratio of the thickness of the dielectric to metal
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plate thickness is identified as the parameter which controls the
tuning of the plasmonic resonant frequency. The eigenmodes
of the system which have small decay rates are identified as
well. The mode with a near-zero value for the real part of
its wave vector is found in all cases to be the best candidate.
Both results help achieve the stated goal of facilitating the
identification of the narrow plasmonic resonances of the
system.

In Sec. II, the mathematical tools [9] that will subsequently
be used in the calculations are reviewed. In Sec. III, the transfer
matrix for a unit cell ( 1

2 dielectric plate, 1 metal plate, 1
2

dielectric plate) is derived. In Sec. IV, the eigenvalue condition
for the combined system is calculated. In Sec. V, the expression
and parameters of the Drude model used in the constitutive
equation (dielectric function as function of the frequency) for
the metal are given. In Sec. VI, the complex eigenfrequencies
of interest are computed. Section VII concludes.

II. MATHEMATICAL BACKGROUND

In this section, I shall review, in the language of transfer ma-
trices, the mathematical techniques that I use in obtaining the
eigenmodes of an arbitrary system consisting of multislices,
and as previously derived in Ref. [9].

In the present geometry, I shall consider the propagation
normal to the plates, and therefore only the Fabry-Perot
modes (and not the waveguiding modes) shall be considered.
Furthermore, the electric field shall be taken to be a scalar.
[The transverse electric (TE) and transverse magnetic (TM)
modes are indistinguishable.]

I shall first give the elementary transfer matrices from
which all subsequent ones for the multislice problems can
be constructed. Then I summarize other theorems that will
prove useful in obtaining or verifying subsequently reported
results.

In one-dimensional (1D) structures, the classical field to the
left of z ∼= zL in the same uniform medium can be written as

�L(z) = AL exp[−ikL(z − zL)] + BL exp[ikL(z − zL)].

(1)

Similarly, the classical field to the right of z ∼= zR in the
same medium can be written as

�R(z) = AR exp[−ikR(z − zR)] + BR exp[ikR(z − zR)].

(2)
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The transfer matrix M is defined as(
AL

BL

)
= M

(
AR

BR

)
. (3)

Theorem 1: The interface transfer matrix between two
regions is equal to

M = MB(kL,kR) = 1

2kL

(
kL + kR kL − kR

kL − kR kL + kR

)

= 1

2kL

[(kL + kR)I + (kL − kR)τ1]

= exp[λ(τ1 − I)], (4)

where λ = 1
2 ln( kL

kR
), I is the (2 ⊗ 2) identity matrix, and τ ’s

are the Pauli matrices given by

τ1 =
(

0 1

1 0

)
, τ2 =

(
0 −i

i 0

)
, τ3 =

(
1 0

0 −1

)
. (5)

Proof : At the interface between two media, we have
z = zL = zR . At that point, the field and its derivative should
be continuous (�L = �R and d�L

dz
= d�R

dz
). These boundary

conditions lead to the system of equations:

AL + BL = AR + BR, (6a)

kL(AL − BL) = kR(AR − BR). (6b)

This system of equations represents the first equality in
Eq. (4).

Then, we used the Pauli’s algebra result that

exp(i �τ · n̂θ ) = cos(θ )I + i �τ · n̂ sin(θ ) (7)

in going from the first line to the second line of Eq. (4).
Theorem 2: The transfer matrix representing the propaga-

tion in a uniform medium is given by

M = MP(kl) =
(

exp(ikl) 0

0 exp(−ikl)

)
= exp(iklτ3), (8)

where l is the distance of propagation.
Proof : In propagating in a uniform medium, only the field

phase changes. If kL = kR = k and zR − zL = l, then

AL exp(ikzL) = AR exp(ikzR), (9a)

BL exp(−ikzL) = BR exp(−ikzR). (9b)

Combining Eqs. (9) and (7), one obtains Eq. (8).
Theorem 3 (Invisible gap theorem): Inserting a gap with

kl = mπ (where l is the length of the gap and k is the wave
vector of propagation in the gap) at any location within a
uniform medium will at most change the sign of the overall
transfer matrix.

Proof : Let the wave vector in the uniform medium where
the insertion occurs be denoted by k′. Then the transfer matrix
corresponding to this insertion is given by

Mgap(k′,kL,k′) = MB(k′,k)MP(kL)MB(k,k′)
= exp[λ(I − τ1)] exp(ikLτ3) exp[−λ(I − τ1)]

= exp[λ(I − τ1)][cos(kL)I + i sin(kL)τ3]

× exp[−λ(I − τ1)], (10)

where λ = 1
2 ln( k′

k
). We used Eq. (7) to go from the second to

third line in Eq. (10).
If kL = mπ , the square bracket in Eq. (10) reduces to

(−1)mI, consequently giving

Mgap(k′,kL = mπ,k′) = (−1)mI. (11)

Theorem 4: The eigenmodes of a system are obtained by
solving the equation

(MT)22 = 0. (12)

Proof : The eigenmode condition is obtained by noting that,
in that instance, only outgoing fields should exist on the left-
and right-hand sides of the total transfer matrix of the system,
i.e., BL = AR = 0.

The above constraint leads to the identity 0 = (MT)22BR ,
which requires that (MT)22 = 0.

Theorem 5 (The Cayley-Hamilton-Sylvester theorem): This
theorem gives a closed-form expression for the nth power of a
unimodular matrix (a matrix whose determinant is equal to 1).

For the unimodular matrix given by

M =
(

a b

c d

)
, (13)

its nth power is given by

Mn =
(

a sin(nθ )−sin[(n−1)θ]
sin(θ)

b sin(nθ )
sin(θ)

c sin(nθ )
sin(θ)

d sin(nθ)−sin[(n−1)θ ]
sin(θ)

)
, (14)

where

cos(θ ) = 1
2 (a + d). (15)

Proof : As the matrix M is unimodular, its eigenvalues can
be written in the simple form λ1,2 = exp(±iθ ) to ensure that
the value of the determinant is 1. Equation (15) is directly
obtained from the invariance of the trace, upon a unitary
transformation.

As M is a (2 ⊗ 2) matrix, using the Cayley-Hamilton
theorem, one can write its nth power in the form

Mn = δI + μM. (16)

Using again the Cayley-Hamilton theorem, which states
that a matrix obeys the same equations as its eigenvalues, we
deduce that

exp(inθ ) = δ + μ exp(iθ ), (17a)

exp(−inθ ) = δ + μ exp(−iθ ). (17b)

The system (17) of two equations in two unknowns can be
solved to give

μ = sin(nθ )

sin(θ )
, (18a)

δ = − sin[(n − 1)θ]

sin(θ )
, (18b)

from which one obtains directly Eq. (14), which constitutes
the statement of the Sylvester theorem.
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III. TRANSFER MATRIX FOR THE UNIT CELL

Consider the unit cell consisting of the following structure:

0 � z � βl/2 dielectric,

βl/2 � z � βl/2 + l metal,

βl/2 + l � z � βl + l dielectric,

and vacuum everywhere else.
The matrix MC corresponding to this unit cell is given by

MC = MP (βkl/2)MB(k,k′)MP (k′l)MB(k′,k)MP (βkl/2),

(19)

where k and k′ are, respectively, the wave numbers in the
dielectric and in the metal.

Introducing the dimensionless variables u = kl, v = k′l,
and λ = 1

2 ln( u
v
), the matrix MC can be expressed as

MC = [cos(βu) cos(v) − sin(βu) cosh(2λ) sin(v)]I

+ i[sin(βu) cos(v) + cos(βu) cosh(2λ) sin(v)]τ3

+ sinh(2λ) sin(v)τ2. (20)

IV. EIGENVALUE CONDITION FOR A SYSTEM
WITH n CELLS

Let us next compute the transfer matrix for a system
consisting of n unit cells placed in series. Its general expression
is given by

MT = MB(u0,u)(MC)nMB(u,u0), (21)

where u = nru0 and nr is the index of refraction of the
dielectric material.

From Theorem 5 and Eq. (20), one obtains

cos(θ ) = cos(βu) cos(v) − sin(βu) cosh(2λ) sin(v), (22)

where λ = 1
2 ln( u

v
).

The eigenvalue condition MT
22 = 0, with MT

22 given by
Eqs. (20) and (21) and θ given by Eq. (22), shall be used
to compute numerically complex v for each of the modes.

For nr = 1, the eigenvalue condition can be written in the
simple form

[sin(βu0) cos(v) + cos(βu0) cosh(2λ) sin(v)]

= −i sin(θ ) cot(nθ ). (23)

V. THE DIELECTRIC FUNCTION FOR THE METAL

Having obtained the complex wave number of a mode, by
finding a solution of the system of equations (22) and MT

22 = 0,
the plasmonic resonance frequency and the decay rate of the
mode are directly obtained by using the frequency-dependent
dielectric function of the metal, which we assume here to be
given by the Drude model,

ε(ω) = ε∞ − ω2
p

ω2 + iγ ω
, (24)

and the dispersion relation

ε(ω(s)) = v2
s

u2
0

. (25)

We shall further assume the validity of the Kramer-Kroning
relations (which only requires causality) and analytically
continue (24) in the lower complex plane. The normalized
complex eigenfrequency can be written

�̃(s) = ω̃(s)

ωp

= 1

2

⎛
⎝−i +

√√√√ 4

ε∞ − v2
s

u2
0

− 2

⎞
⎠, (26)

where  = γ /ωp and s is the index of the mode. Re(�̃(s)) is the
plasmonic resonance frequency of the mode s and −Im(�̃(s))
is its decay rate.

In the subsequent numerical computations I shall use the
Drude’s parameters for silver and gold as fitted by Sonnichsen
[15] from Johnson and Christy’s data [16], namely,

Ag : ε∞ = 3.7, λp = 1.36 nm,  = γ /ωp = 1.92 × 10−3,

Au : ε∞ = 9.84, λp = 1.36 nm,  = γ /ωp = 6.94 × 10−3.

VI. RESULTS

Let us recall that everywhere in the subsequent results,
u0 = π/2 (all the metal slabs are quarter-wave plates).

A. Locus of narrow resonances

The functional form of Eq. (26) restricts all narrow reso-
nances to eigenmodes with Re(v)/u0 <

√
εinf . Consequently,

in my search, I shall consider the set of modes with Re(v) < 4
and thus ensure that I have included all viable candidates.

0 1 2 3
Re v

0.1

0.5

2
Im v

a

0.3 0.7 1.1 Re

0.3

0.7

1.1
Im

b

0.3 0.38 0.46 Re
0.003

0.013

0.023
Im

c

FIG. 1. (Color online) Quantities shown are for all modes with Re(v) < 4. The ratio of the dielectric to metal plate thickness, β = 1. The
number of cells, n = 10. (a) The locus of the normalized complex wave vectors. (b) The locus of the normalized complex eigenfrequencies.
Silver [the origin of the axes in this graph is at (0, − 0.1)]. (c) The locus of the normalized complex eigenfrequencies.Gold.
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b
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0.003
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Im
c

FIG. 2. (Color online) Same as in Fig. 1, except n = 20.

The dimension of the ensemble of possible candidates
increases with an increase in the number of unit cells. I shall
explore the cases where n is large but not excessively so. I shall
consider for illustrative purposes the cases of n = 10, n = 20,
and n = 30 for β = 1, nr = 1. I plot in Figs 1–3 the locus of
the complex wave vectors and the complex eigenfrequencies
for both silver and gold for the above different values of n.
It is clear from these figures that not all modes satisfy the
narrow mode criterion [−Im(�̃) ≈ /2]. Actually, only one
such mode strictly satisfies this criterion for n = 30, the mode
having Re(v) ∼= 0.

B. The mode with Re(v) ∼= 0

Having established that the decay rate for the mode with
Re(v) ∼= 0 is comparable to /2, I explore in Fig. 4 a
mechanism for tuning the resonance frequency of this mode.
I plot as a function of β the complex wave vector in the metal
and the complex eigenfrequency for silver and gold for n = 20,
for the cases where nr = 1 and nr = 3/2. One notes that it
is possible to tune the resonant frequency to any value in the
entire optical and near-infrared window by varying the value of
β in this structure with silver as the metal. One further notices
that the decay rate of this mode approximately maintains its
minimum value for all values of β.

In Fig. 5, I explore the dependence of the complex wave
vector in the metal and the complex eigenfrequency in silver
and gold for different values of β as a function of n, the
number of cells. One notes that as n increases beyond 10,
almost no change is observed in the different values, leading
us to conclude that this mode is very stable.

C. The mode with Re(v) ∼= π/2

Although I convincingly established above that the mode
with Re(v) ∼= 0 is the best candidate for the purpose of achiev-

ing tuning to any desired plasmonic frequency resonance, one
may still inquire about the variation to the resonance frequency
and its decay rate for the other modes as n, the number of unit
cells, increases. I choose for this investigation the configuration
with β = 1, and the mode with Re(v) ∼= π/2 (i.e., the Bragg
configuration).

For this mode, I write the wave vector in the form

v = π

2
− i

�

n
. (27)

The expressions for θ and for the eigenvalue condition
reduce in this case to

cos(θ ) = − cosh(2λ) cosh

(
�

n

)
, (28)

sinh

(
�

n

)
= − sin(θ ) cot(nθ ). (29)

The next step is to evaluate analytically the different
parameters. Making a ( 1

n
) expansion, one obtains

cosh(2λ) ∼= 1 − 2�2

n2π2
− i

4�3

n3π3
+ O

((
1

n

)4
)

, (30)

cosh

(
�

n

)
∼= 1 + �2

2n2
+ O

((
1

n

)3
)

. (31)

Inserting Eqs. (30) and (31) in Eq. (28), one obtains

cos(θ ) = −
(

1 + x2 �2

2n2

)
, (32)

which gives

θ = π − i
�

n
x, (33)

0 1 2 3
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0.02

0.1

0.5

2
Im v

a

0.3 0.9 1.5 Re
0.3

0.8

1.3

Im
b

0.3 0.39 0.48 Re
0.002

0.007

0.012
Im

c

FIG. 3. (Color online) Same as in Fig. 1, except n = 30.
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Re
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0.003470

0.003465
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FIG. 4. (Color online) The quantities for the mode with Re(v) ∼= 0 are plotted as a function of β, the ratio of the dielectric to metal plate
thickness. The number of cells is n = 20. Solid line: nr = 1.5. Dashed line: nr = 1.0. (a), (b) The normalized real and imaginary parts of the
normalized wave vector. (c), (d) The normalized real and imaginary parts of the plasmonic resonance frequency with silver as the metal. (e),
(f) The normalized real and imaginary parts of the plasmonic resonance frequency with gold as the metal.

where

�

n
x =

[
�2

n2
−

(
2

π

)2
�2

n2
− i

(
2

π

)3
�3

n3

]1/2

∼= �

n

⎧⎨
⎩

[
1 −

(
2

π

)2
]1/2

− i

n

⎛
⎝ 4�

π3
√

1 − (
2
π

)2

⎞
⎠

⎫⎬
⎭ . (34)

Combining (29), (33), and (34), one obtains
x cot(nθ ) = i. (35)

Upon a Taylor expansion of tanh(x) near x0 =
[1 − ( 2

π
)2]1/2, and using (35), one deduces that

� = �0 − i
δ

n
, (36)

where �0 = 1.327 and δ = 0.328.
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FIG. 5. (Color online) The quantities for the mode with Re(v) ∼= 0 are plotted as a function of n, the number of cells. The index of refraction
of the dielectric is nr = 1.5. ∗: β = 0.6. × : β = 1. (a)–(f) are the same quantities as in the graphs of Fig. 4.
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FIG. 6. (Color online) The quantities for the mode with Re(v) ∼= π/2 are plotted as a function of n, the number of cells. The index of
refraction of the dielectric is nr = 1.0. The ratio of the dielectric to metal plate thickness, β = 1. (a) The deviation of the normalized real part
of the wave vector from π/2. (b) The imaginary part of the normalized wave vector. (c), (d) The normalized real and imaginary parts of the
plasmonic resonance frequency with silver as the metal. (e), (f) The normalized real and imaginary parts of the plasmonic resonance frequency
with gold as the metal.

The second term on the right-hand side of (36) gives the
correction to Re(v) for large n from π/2. In Fig. 6(a), I plot the
numerically computed value of ( n2

δ
)[Re(v) − π

2 ] as a function
of n. The curve goes asymptotically to −1, as predicted by (36).

The dashed line in Fig. 6(b) plots the approximate asymp-
totic analytic expression for Im(v) as deduced from (27)
and (36). The agreement with the numerical computation is
remarkable for large n.

In Figs. 6(c) and 6(d) and Figs. 6 and 6(f), respectively, the
real and imaginary complex eigenfrequencies for both silver
and gold are plotted as a function of the number of cells.

Replacing Eq. (36) in Eq. (26), and Taylor expanding
in powers of 1/n, one can obtain approximate analytic
expressions for the complex eigenfrequencies of silver and
gold for this mode, namely,

�̃Ag
∼= (0.608 58 − 0.000 96i) + 0.186 945

(
1

n

)
i

− 0.210 73

(
1

n

)2

+ O

((
1

n

)3)
, (37)

�̃Au
∼= (0.336 318 − 0.003 47i) + 0.0315 575

(
1

n

)
i

− 0.025 472 8

(
1

n

)2

+ O

((
1

n

)3)
. (38)

These asymptotic expressions for the resonant frequencies
reproduce very accurately the graphs in Figs 6(b), 6(c), 6(d),
and 6(f) for n > 10.

One notes that the decay rate decreases as n increases, but
one needs to go to a much higher value of n than for the
mode with Re(v) ∼= 0 for the decay rate to be comparable to
/2, thus confirming that the latter mode is the best choice for
achieving a narrow resonance.

VII. CONCLUSION

Although the general theory for determining the complex
wave numbers of the different modes of an infinite periodic 1D
structure has been known for almost 80 years, the particulars
of the complex eigenfrequencies for finite number of cells n

and for different constituent equations (dispersion relations)
need to be computed in detail for different cases.

In this paper, I showed that the mode with Re(v) ∼= 0 is the
best choice for obtaining narrow plasmonic resonances when
the system consists of quarter-wave plates of noble metals
alternating with a dielectric. Furthermore, I showed that by
varying the ratio of the thicknesses of the dielectric material
to that of the metal in each of the unit cells, one can tune the
plasmonic frequency, especially for silver, to any desired value
in the optical and near-infrared window.
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