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Analytical results for Josephson dynamics of ultracold bosons
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We study the dynamics of ultracold bosons in a double-well potential within the two-mode Bose-Hubbard
model by means of semiclassical methods. By applying a Wentzel-Kramers-Brillouin (WKB) quantization we
find analytical results for the energy spectrum, which are in excellent agreement with numerically exact results.
They are valid in the energy range of plasma oscillations, both in the Rabi and the Josephson regime. Adopting
the reflection principle and the Poisson summation formula we derive an analytical expression for the dynamics
of the population imbalance depending only on the few relevant parameters of the system. This allows us to
discuss its characteristic dynamics, especially the oscillation frequency and the collapse and revival time, as a
function of the model parameters, leading to a deeper understanding of Josephson physics. We find that our
formulas match previous experimental observations.
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I. INTRODUCTION

Fundamental issues of nonequilibrium physics of interact-
ing many-body quantum systems and of phase coherence and
phase stability, in particular, have a long history. A simple
yet relevant model, the two-site Bose-Hubbard Hamiltonian,
features phase and fluctuation decay and also revivals and thus,
over the years, many thorough investigations of its quantum
dynamics have appeared. Most remarkably, recent experiments
involving ultracold Bose gases trapped in an effectively one-
dimensional double-minimum potential represent an almost
ideal realizations of this fundamental model [1,2], with the
fascinating possibility to vary relevant model parameters over
a wide range.

A full many-body calculation of the dynamics of an
interacting, trapped ultracold Bose gas is only possible for
a very small number of particles, even for weakly interacting
bosons. Most often a mean-field approximation in form of
the Gross-Pitaevskii equation is applied, which provides good
results for low temperatures and for a large number N

of particles, if only for a limited time and for a limited
set of observables. These limits are intensively studied.
Once the field operators are replaced by a c-number field,
some truly quantum phenomena (e.g., wave-function revivals)
cannot be described. The double-well potential provides an
ideal playground to analyze these issues. Thus, a purely
classical-field approach quickly comes to its limits, and the
question arises whether semiclassical methods can improve
the theoretical treatment of such bosonic systems, allowing
us in the future to study more challenging problems whose
many-body Schrödinger equation can no longer be solved fully
numerically.

A number of articles deal with the discussion of
the consequences of the mean-field approximation and
many-body quantum corrections [3,4] and the many-body
quantum and classical dynamics in phase space [5].
Furthermore, semiclassical methods were applied to the
double-well system. In Refs. [6–12] a Wentzel-Kramers-
Brillouin (WKB) quantization is adopted to analyze the
energy spectrum and the wave functions in certain parameter
regions.

Despite this fair amount of investigations, it is remarkable
to realize that—leaving some fairly straightforward cases
aside—no analytical expressions for the relevant dynamical
quantities appear to be known. Thus, the purpose of this
article is to find a generally applicable analytical description
of the population imbalance dynamics of an ultracold Bose
gas in a double-well potential by applying semiclassical
methods. Since the full quantum dynamics can be determined
numerically up to many thousands of particles, we are able
to compare with exact results. Clearly, the interesting case of
very large N → ∞ can no longer be investigated numerically,
yet our analytical approach is suited to study this very limit in
detail.

At low temperatures a Bose-Einstein condensate in a
double-well potential can be described by a two-mode approx-
imation. The corresponding second-quantized many-particle
two-site Bose-Hubbard Hamiltonian is written as

ĤBH = −T (â†
1â2 + â

†
2â1) + U (â†

1â
†
1â1â1 + â

†
2â

†
2â2â2)

+ δ(n̂1 − n̂2), (1)

with the creation and annihilation operators for a boson in the
ith well denoted by â

†
i , âi , respectively, with [ai,a

†
j ] = δij .

Thus, the particle number operator of the ith site is n̂i = â
†
i âi .

U is a measure for the on-site two-body interaction strength,
T is a tunneling amplitude, which in experiments can be
controlled by varying the barrier hight. The tilt parameter δ

leads to an asymmetry in the one-particle site energies of the
two wells and is used to initiate the dynamics. Note that in
the standard notation adapted in Josephson physics we have
EJ = NT and EC = 4U [13].

It has been shown that the Bose-Hubbard Hamiltonian
describes the dynamics of the bosons in the double-well
potential properly [14], provided that the interaction energy
U is small compared to the level spacing of the trap potential,
such that only the two lowest-lying modes have to be taken
into account. Transverse modes should also be suppressed. It
should be mentioned that there are finer descriptions of the two-
mode limit that also take into account tunnel coupling energies
depending explicitly on the nonlinear two-body interaction
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term [15]. In this work, however, we restrict ourselves to the
standard Bose-Hubbard Hamiltonian (1).

First, there are three qualitatively quite different regimes
[13,16] with respect to crucial features of the energy spectra.
They are best explained by introducing the parameter

� = UN

T
, (2)

which thus separates the Rabi regime (� < 1) from the so-
called Josephson regime for which 1 < � � N2 and the Fock
regime with � � N2.

The Rabi regime is the noninteracting limit � � 1, when
the system consists of N independent particles leading to an
almost harmonic-oscillator energy spectrum and thus, after
an initial tilt, to plasma oscillations with the known plasma
frequency ωp = 2T

√
1 + � ≈ 2T [2,17].

In the Fock regime all eigenenergies are grouped in doublets
with a quasidegenerate symmetric and antisymmetric state.
Thus, the dynamics of the mean population imbalance follows
an extremely slow evolution in time which is called self-
trapping.

The Josephson regime combines the two characteristics of
the spectrum just discussed. We distinguish the self-trapping
regime E > 2NT from the plasma oscillating regime, where
E < 2NT holds. In the former regime, the energy eigenstates
appear as doublets again leading to self-trapping. In the latter
regime, the energy eigenstates correspond to an (anharmonic)
oscillator spectrum and the population imbalance oscillates
around zero.

Thus, in the Josephson regime the dynamics will depend on
the energy of the initial state. For low energies—the subject
of this work—the dynamics undergoes plasma oscillations,
for higher energies we see self-trapping, which is beyond the
scope of this paper.

In this article we have in mind an experiment as in Ref. [1],
so the double-well system is initially prepared in the ground
state ψ0 of a tilted potential [i.e., δ �= 0 in Eq. (1)]. Then,
at t = 0 it is quickly switched to a symmetric potential (i.e.,
δ = 0). Starting from an initial population imbalance unequal
to zero the system is left to evolve in time.

In our paper we first discuss the spectrum using the
semiclassical WKB or Bohr-Sommerfeld quantization. We
find a way to systematically obtain an approximate, useful
expression for energies in the plasma oscillating regime. In
order to describe imbalance dynamics, we need to explore
overlap matrix elements in the following section, which we
do with the help of the reflection principle. We then apply
the Poisson summation formula, which has a long history in
semiclassical approaches to quantum dynamics. As a result, we
find a useful expression for the time evolution of the imbalance,
containing parameters that can be obtained analytically on
the basis of the classical Hamiltonian. We then compare
exact calculations with our new formula and find remarkable
agreement over the whole relevant range of �, covering the
known Rabi region but also the plasma oscillating Josephson
region. In particular, the oscillation frequency and the collapse
and revival times are reproduced astonishingly well. We finally
discuss the corresponding analytical expressions. It should be
noted that the experimentally observed oscillation frequency
in Ref. [1] of about 40 ms follows directly from our formula.

II. SEMICLASSICAL DESCRIPTION

We follow mainly Braun [18] and his discrete WKB
method, as already applied to the double-well problem by
Korsch et al. [6]. The two-mode Bose-Hubbard Hamiltonian
can be written in the Schwinger spin representation by
transforming to angular momentum operators Ĵx = 1

2 (â†
1â2 +

â
†
2â1), Ĵy = 1

2i
(â†

1â2 − â
†
2â1), and Ĵz = 1

2 (â†
1â1 − â

†
2â2). With

the ladder operators Ĵ+ = Ĵx + iĴy and Ĵ− = Ĵx − iĴy the
Hamiltonian (1) becomes

Ĥ = 2UĴ 2
z + 2δĴz − T (Ĵ+ + Ĵ−) + 1

2UN̂2 − UN̂, (3)

where N̂ is the total particle number operator. For fixed
N a change from basis |n,N − n〉 to the angular mo-
mentum states |l,j 〉 is useful, with l = N/2 and j =
(n1 − n2)/2. With wj = 2Ul2 − 2Ul + 2Uj 2 + 2δj and pj =
−T

√
l(l + 1) − j (j − 1), the eigenvalues of the Hamiltonian

are determined by an equation of the form

pjcj−1 + (wj − E)cj + pj+1cj+1 = 0, (4)

as discussed in Ref. [18]. By introducing the “coordinate”
operator φ = i ∂

∂j
(note Ref. [19]), Eq. (4) can be written as

a Schrödinger equation for the function cj with eigenvalue E

and Hamilton operator Ĥ = w(j ) + p(j )e−iφ + p(j + 1)eiφ .
In the classical limit the operators turn to canonically conjugate
coordinate φ and momentum j (population imbalance), where
φ turns out to be the phase difference between the two wells.
Since p(j ) is a slowly varying function of j in the classical
limit (N → ∞) one can replace both pj and pj+1 by pj+ 1

2

and one finds the Hamilton function

H (j,φ) = w(j ) + 2p

(
j + 1

2

)
cos φ (5a)

= 1

2
UN2 − UN + 2Uj 2 + 2δj

− 2T
√

(N/2)2 − j 2 cos φ, (5b)

which can also be found from the mean-field Gross-
Pitaevskii functional in the two-mode limit [17,20]. The
classical dynamics of the population imbalance and the relative
phase (for δ = 0) is then determined by Hamilton’s equations
of motion:

dj

dt
= −∂H

∂φ
= −2T

√
(N/2)2 − j 2 sin φ,

(6)
dφ

dt
= ∂H

∂j
= 4Uj + 2Tj cos φ√

(N/2)2 − j 2
.

The rich dynamics in this “classical picture” have been
studied by several groups [14,21,22], focusing on the differ-
ences between the classical and the quantum description of
the dynamics [23–25]. Clearly a purely classical description
cannot picture the collapses and the revivals of the population
imbalance, but it is able to shed light on the transition from the
tunneling to the self-trapping regime. Recently, the phase space
region near the classical bifurcation was also investigated
experimentally with ultracold bosons [26].
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A. Semiclassical energy spectrum:
Bohr-Sommerfeld quantization

An analytical approach to the energy spectrum relies on
the WKB method following Braun [18] and others [6–9].
In Ref. [6], only the noninteracting case is investigated
analytically. In Refs. [8,9] the authors concentrate on energies
close to the extremal points, and in Ref. [7] the case of an
attractive gas for the single value of � = 1 is studied. We
here concentrate on the plasma oscillating regime and aim for
solutions over the whole range of � � 1 to � � 1.

For the Hamilton function (5b) it is convenient to introduce
two potential-energy curves

V +(j ) = H (j,π ) = T N + 2Uj 2 + 2T
√

(N/2)2−j 2, (7)

V −(j ) = H (j,0) = T N + 2Uj 2−2T
√

(N/2)2−j 2, (8)

such that the classically allowed energies lie in the region con-
fined by the two potential curves V + and V −. The minimum
energy is chosen to be V −(j = 0) = 0. The potential curves
display the transition from the Rabi regime to the Josephson
regime very nicely, as shown in Fig. 1. The energy eigenvalues
change from a (non-harmonic) oscillator like spectrum for
� < 1 to a spectrum with doublets for � > 1 due to tunneling,
which can be seen from the potential curves. For � > 1,
V + attains a local minimum which leads to doublets in the
spectrum for energies E > V +(0). The deeper the minimum,
the bigger this so-called Fock fraction of the spectrum. Since
we are interested in plasma oscillations, the Fock fraction will
not be investigated here, but a semiclassical analysis along
similar lines—if only more involved—is possible; see, for
instance, Ref. [27].

In the WKB approximation the eigenenergies En are
obtained from the quantization condition

S = S(E) =
∮

φ(j )dj =4
∫ j+(E)

0
arccos

×
(

E−T N−2Uj 2

2T
√

(N/2)2 − j 2

)
dj =2π

(
n+1

2

)
, (9)

where n is the quantum number and φ(j ) is determined by
the Hamilton function (5b) at fixed energy E [recall that zero
energy E = 0 corresponds to S(E = 0) = 0]. The integration
limit j+ is the (positive) classical turning point as obtained
from √

[V +(j ) − E][E − V −(j )]
!= 0, (10)

which leads to a quadratic equation in j 2 with solutions

(j 2)±(E) = 1

2U 2

{
[EU − (ωp/2)2]

±
√

(ωp/2)4 − EUω2
p/[2(1 + �)]

}
. (11)

Recall that ωp = 2T
√

1 + � is the plasma frequency. For the
plasma oscillating regime the relevant turning point is j+. Note
that j+ → 0 for E → 0, while (j 2

−) approaches the negative
constant (j 2

−) → −[ωp/(2U )]2 as E → 0.
The integral in Eq. (9) can be solved numerically and the

results agree very well with the exact quantum results even for
quite small numbers of particles, as has already been noticed in
Ref. [6]. We are unaware of a simple analytical expression for
the action integral. Because we aim for the plasma oscillation
regime, we expand in powers of E. First, however, we take the
derivative with respect to energy and rescale to find

∂S(E)

∂E
= 2

U |j−(E)|
∫ 1

0

dλ√
(1 − λ2)[1 + κ2(E)λ2]

. (12)

with κ2 = (j+)2/|j−|2. Since κ2 → 0 for E → 0, and 0 <

λ < 1, an expansion of (1 + κ2λ2)−1/2 in powers of κ2λ2

leads to a series in powers of E. The corresponding integrals∫ 1
0 dλλ2n/

√
1 − λ2 are known analytically. Finally, a system-

atic expansion of κ2n and 1/|j−| in E leads to

∂S

∂E
= 2π

ωp

+ 4π
U (1 + �/4)

ω3
p(1 + �)

E

+ 6π
3U 2[1 + �/3 + (�/4)2]

ω5
p(1 + �)2

E2 + · · · , (13)
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FIG. 1. (Color online) Potential curves V +, V − and the energy eigenvalues En for, from left to right, � = 0.1, 1, 10 and N = 30, T = 3.
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0
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FIG. 2. (Color online) Comparison of the analytical (15) (red, solid line, including third order in E) and the numerically exact spectrum
(blue squares) for, from left to right, � = 0.1, 1, 10 and for N = 30, T = 3. The vertical dashed lines illustrate the transition from the plasma
oscillating regime to the self-trapping regime at E = V +(0) = 2NT . We see excellent agreement in the plasma oscillating regime.

which is one of the important results of this paper. Apparently,
the formal expansion in E is an expansion in the dimensionless
parameter

ε = UE

ω2
p

= 1

2

�

1 + �

(
E

V +(0)

)
. (14)

The expression on the right-hand side clearly shows that our
results are expected to be valid in the plasma oscillating regime
E < V +(0), irrespective of the value of �. From a simple
integration together with the Bohr-Sommerfeld-quantization
condition (9) we find

n(E) = −1

2
+ 1

ωp

E + U (1 + �/4)

ω3
p(1 + �)

E2

+ 3U 2[1 + �/3 + (�/4)2]

ω5
p(1 + �)2

E3 + · · · . (15)

In Ref. [12] the inverse expansion E(n) up to second order
in n is considered, which is in agreement with Eq. (15) in
the corresponding orders. In Fig. 2 we show examples of
the spectrum for a wide range of values of � = 0.1, 1, 10,
covering both the Rabi and the Josephson regime. Apparently,
our approximation (15), including contributions up to third
order in E, coincides with the numerically exact spectrum with
high accuracy in the plasma oscillating regime [E < V +(0)]
for all values of �. Clearly, the doublet structure in the Fock
regime [high-energy regime E > V +(0) in the right diagram
of Fig. 2] cannot be captured by our series expansion (15).

III. EXACT QUANTUM DYNAMICS
OF POPULATION IMBALANCE

To determine the tunneling dynamics, the Bose-Hubbard
Hamiltonian (1) can be diagonalized numerically for a finite
number of bosons. Using the eigenbasis {|φn〉}, the dynamics
of |ψ(t)〉 is given by

|ψ(t)〉 =
∑

n

cne
−iEnt |φn〉, with cn = 〈φn|ψ0〉. (16)

The time evolution of the population imbalance ĵ = (n̂1 −
n̂2)/2 is then

j (t) = 〈ψ(t)|ĵ |ψ(t)〉 =
∑
n,m

Anme−i(En−Em)t , (17)

with the matrix

Anm = cnc
∗
m〈φm|ĵ |φn〉. (18)

The dynamics of the population imbalance thus depends
on the energy spectrum through the differences En − Em, and
on the matrix Anm, which contains the initial condition and
matrix elements 〈φm|ĵ |φn〉.

Figure 3 shows the matrix Anm for increasing �, obtained
from a numerically exact calculation.

Due to parity with respect to ĵ , Anm is zero for an even
number n − m, as can be seen in Fig. 3: 0 = Ann = Ann±2 =
Ann±4 + · · · . Among the nonzero matrix elements, there is a
strong hierarchy,

|Ann±1| � |Ann±3| � |Ann±5| � · · · , (19)

in particular for small �, which will be important later. It is
worth noting that in the limit U → 0 (and therefore � → 0,

n

m

n

m

n

m

n

m

0

1

FIG. 3. (Color online) Matrix Anm for � = 0.1, 0.5, 1, 10 and for N = 30, T = 3.
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for fixed N ) the dynamics is well described by a harmonic
oscillator. In that case it is easy to prove [the φn(j ) are Hermite
polynomials] that only the Ann±1 are in fact different from zero.

Along the diagonals, the matrix elements Ann±k (with k =
1, 3, 5, . . .) have a Gaussian-like n dependence. This is due to
the n dependence of the overlap cn = 〈φn|ψ0〉, which will be
discussed in the next section. By contrast, the n dependence
of the matrix elements 〈φn±k|ĵ |φn〉 is weak. Thus, it is safe to
assume the form

Ann±k ≈ cnc
∗
n±kdk, (20)

with n-independent parameters dk ≈ 〈φn̄±k|ĵ |φn̄〉 (with the
most relevant being n̄) for which, following Eq. (19), we expect

|d1| � |d3| � |d5| � · · · . (21)

IV. SEMICLASSICAL DYNAMICS
OF POPULATION IMBALANCE

For a semiclassical evaluation of j (t) according to Eqs. (17)
and (18) we need semiclassical expressions for En − En±k and
the overlap coefficients cn. While the spectrum was discussed
in Sec. II, we start here with the latter.

A. Reflection principle

The problem to find overlap integrals of an initial wave
packet ψ0(j ) localized near j ≈ j0 with eigenstates |φE〉 of
the Hamiltonian with potential V (j ) = V −(j ) is often encoun-
tered in molecular photodissociation [28]. The semiclassical
solution (reflection principle) states that

〈φE|ψ0〉 = cψ0

(
E − V (j0)

V ′(j0)

)
, (22)

with some constant c. It is important to note that here the
eigenstates are understood to be energy normalized [i.e.,
〈φE|φE′ 〉 = δ(E − E′)], since in typical applications these are
scattering states. For the coefficients cn we therefore find

cn = 〈φn|ψ0〉 =
√

dE
dn

〈φE|ψ0〉. The normalization condition

1 = ∑
n |cn|2 ≈ ∫

dn|cn|2 yields c = 1/
√

V ′(j0), and we get

cn = 〈φn|ψ0〉 ≈ 1√
V ′(j0)

√
dE(n)

dn
ψ0

(
En − V (j0)

V ′(j0)

)
.

(23)
In our calculations, following the experiments, the initial wave
function is prepared as the ground state of the tilted trap
potential [achieved through the term δ(n̂1 − n̂2) = 2δĵ in the
Bose-Hubbard Hamiltonian (1)]. In a harmonic approximation
near the potential minimum of the tilted potential we find the
Gaussian density

|ψ0(j )|2 = 1√
2πσ 2

exp

[
− (j − j0)2

2σ 2

]
, (24)

with j0 uniquely determined by the tilting strength δ and

σ 2 = N

4

1 − (2j0/N )2√
1 + �[1 − (2j0/N)2]3/2

. (25)

Clearly, the shape of the initial wave function determines
the shape of the cn as a function of n. On closer inspection of

Eq. (23), however, we observe that for the initial state (24), due
to the nonlinear relation between En and n, the coefficients cn

are gaussian in En but not in n.

B. Population imbalance

Having all the ingredients at hand we can now aim at a
semiclassical expression for the dynamics of the population
imbalance j (t) which we choose to write as

j (t) =
∑
n,k

Ann−k exp[−i(En − En−k)t] + c.c., (26)

with k = 1,3,5, . . . taking into account the diagonal structure
of Anm as discussed in the last section. Replacing Ann±k by
expression (20) and using the Poisson summation formula we
find

j (t) =
∑

k=1,3,5,...

dk

∞∑
m=−∞

I k
m(t) + c.c., (27)

with

I k
m(t) =

∫
dn

(
dE

dn

)
1

V ′(j0)
ψ0

(
En − V (j0)

V ′(j0)

)
ψ∗

0

×
(

En−k − V (j0)

V ′(j0)

)
e−i(En−En−k)t e2πimn. (28)

This rather complicated expression is readily simplified by
changing the integration variable from n to E. Further, as only
very small k (k = 1,3) are relevant [see Eq. (21)], it is safe
to replace En − En−k ≈ dE

dn
k = 2πk/S ′(E) and neglect the k

dependence in the reflection principle (i.e., c∗
n±k ≈ c∗

n). Finally,
we replace 2πn = S(E) − π according to the semiclassical
quantization rule (9). With τ = kt we find

I k
m(t) = Im(τ ) = eiπm

∫
dE

V ′(j0)

∣∣∣∣ψ0

(
E − V (j0)

V ′(j0)

)∣∣∣∣
2

× e−2πiτ/S ′(E)eimS(E). (29)

This expression, together with Eq. (27), is one of the main
results of our paper. As we will see, even with further
simplifications, the formula captures all essential details of
the dynamics, allows for a thorough understanding of decay
and revival dynamics, and, most importantly, is the starting
point for analytical expressions.

Due to the localization of the initial state ψ0(j ), the
energy integration in Eq. (29) is confined to a relatively small
interval near E ≈ V (j0), which we assume to be in the plasma
oscillating regime [E < V +(0)]. Therefore, for the evaluation
of the overall phase mS(E) − 2πkt/S ′(E) we can rely on our
semiclassical series expansions (13) and (15). With a Gaussian
initial state as in Eq. (24) and expanding the overall phase up to
second order around E ≈ V (j0) allows us to take the Gaussian
integral and leads us to the analytical result

Im(τ ) + c.c. = 2

(1 + A2)1/4
cos(ω̃pτ − ϕ̃)

× exp

[
− 1

2(1 + A2)

(
τ − mTrev

Tcollapse

)2
]

, (30)

with τ = kt . In the following we want to discuss the structure
of this central result. The most important features are the
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plasma oscillations (ω̃p), their collapse (Tcollapse), and their
revivals (Trev).

The phase ϕ̃ = ϕ̃(τ,m) can be ignored for a qualitative
discussion—it is a complicated expression and can be found
in the Appendix. Importantly, ϕ̃ varies slowly with time and
thus needs only to be taken into account when quantitative
agreement with exact calculations over extremely long time
scales is sought.

The parameter A = A(τ,m) = τ�τ − m�m (expressions
for the constants �τ and �m can be found in the Appendix)
describes an additional slow broadening and decay of the
signal. As for the phase ϕ̃, the inclusion of A leads to
quantitative agreement with exact calculations as shown later,
but need not be discussed further here.

Thus we concentrate on the important plasma oscillations
(ω̃p), their collapse (Tcollapse), and their revivals (Trev).

The analytical formula for the generalized plasma fre-
quency for arbitrary � is

ω̃p = ωp(1 − 2c1g − 5c2g
2), (31)

which is valid both in the Rabi and the Josephson regime. Here,
c1 = (1 + �/4)/(1 + �) and c2 = (1 + �/5 + �2/42)/(1 +
�)2 are �-dependent numbers of order unity and g =
UV (j0)/ω2

p is a dimensionless interaction parameter. We give
a more elaborate discussion of this expression in Sec. VI.

For the revival time we find

Trev = π

U

(1 + 2c1g)

(c1 + 5c2g)
, (32)

and for the collapse time

Tcollapse = 1

2g �V0 ωp(c1 + 5c2g)
, (33)

with

�V0 = σV ′(j0)/V (j0) (34)

being the width of the wave packet in energy in units of the
mean excited energy. Again, a more elaborate discussion of
these results will be given in Sec. VI.

C. Simple Rabi limit

In the well-studied Rabi limit (i.e., when � � 1), our
results simplify. In particular, ω̃p → ωp, Trev → π/U , and
Tcollapse → (2g�V0ωp)−1. Moreover, only the main off-
diagonal contribution k = 1 of the matrix Ann±k needs to be
taken into account. Thus, in the Rabi limit, the dynamics of the
population imbalance is governed by the simple expression

j (t) = j0

∑
m

cos(ωpt) exp

[
−2ω2

pg2(�V0)2

(
t − πm

U

)2
]

;

(35)

a result that with an appropriate identification of the parameters
can also be found in the literature [29].

V. COMPARISON OF RESULTS

Equation (30) describes the dynamics of the population
imbalance without any free parameter. The population im-
balance oscillates with the generalized plasma frequency ω̃p,

0 200 400 600 800 1000 1200 1400
j0

j0

t

j

0 200 400 600 800 1000 1200 1400
j0

j0

t

j

0 200 400 600 800 1000 1200 1400
j0

j0

t

j

FIG. 4. (Color online) Comparison of exact dynamics (top) of
population imbalance j with improved semiclassical expression (30)
(middle) and expression for Rabi limit (35) (bottom) as a function
of dimensionless time t̃ = ω̃pt/(2π ) for � = 0.1, T = 10, N = 100,
and an initial j0 = 20.

with roughly a Gaussian envelope of width Tcollapse (note that
the parameter A contributes to the envelope, in particular
for long times). The sum over m counts the revivals—the
initial collapse dynamics is captured by m = 0, the first revival
corresponds to the contribution of m = 1, and so on. The sum
over k takes into account further off-diagonal contributions in
the matrix Ann±k which lead to small revivals (of the order
of dk) at earlier times mTrev/k with k-fold frequency. For
� = 25, for instance, one can see tiny contributions of k = 3
at one third and two thirds of the full revival time in Fig. 7.

Figures 4–7 show a comparison of the exact dynamics of the
population imbalance, our analytical expression (30) (taking
into account k = 1 only), and the simple expression for the
Rabi limit (35), for different values of � between 0.1 and 25.

Obviously, our semiclassical expression (30) describes the
exact dynamics almost perfectly over this huge range of values
of �. By contrast, the simple expression (35) is valid, indeed,
for only very small values of � (� = 0.1), as expected. For
increasing � the simple Rabi expression fails, as can be seen
from Figs. 5 and 6.

VI. DISCUSSION

Having an analytical expression for the time evolution of
the population imbalance allows us to discuss the dependence
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FIG. 5. (Color online) Comparison of exact dynamics (top) of
population imbalance j with improved semiclassical expression (30)
(middle) and expression for Rabi limit (35) (bottom) as a function of
dimensionless time t̃ = ω̃pt/(2π ) for � = 1, T = 10, N = 100, and
an initial j0 = 20.

of the collapse and revival time and the plasma oscillation
frequency on the relevant parameters of the system.

A. Plasma oscillation frequency

The plasma oscillation frequency was found to be

ω̃p = ωp(1 − 2c1g − 5c2g
2), (36)

with c1 = (1 + �/4)/(1 + �), c2 = (1 + �/5 + �2/42)/
(1 + �)2, and g = UV (j0)/ω2

p. For very small �, the correct
ω̃p approaches the standard plasma frequency ωp, since the
constants c1 and c2 tend to unity in this limit, and the parameter
g approaches zero: with V (j0) ≈ ω2

pj 2
0 /(2NT ) (harmonic

approximation of the potential), it is worth writing the latter
parameter in the form

g ≈ �

8
(2j0/N )2, (37)

which shows that g tends to zero linearly in � for fixed
initial imbalance (j0/N ). However, for increasing � the
correction terms in ω̃p becomes more and more relevant,
especially for large j0, as can be seen from Eq. (37). Figure 8
shows a comparison of the plasma frequency obtained from
numerically exact results and the semiclassical expression
(31) as a function of � for different initial imbalance j0.
It can be seen that the classical plasma frequency ωp is
only a good approximation for very small �, as expected.
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j0

t

j

0 20 40 60 80 100 120 140
j0

j0

t

j

0 20 40 60 80 100 120 140
j0

j0

t

j

FIG. 6. (Color online) Comparison of exact dynamics (top) of
population imbalance j with improved semiclassical expression (30)
(middle) and expression for Rabi limit (35) (bottom) as a function
of dimensionless time t̃ = ω̃pt/(2π ) for � = 10, T = 10, N = 100,
and an initial j0 = 10.

Especially for relatively large initial imbalance j0 = 20 with
N = 100, the numerically exact plasma frequencies (circles)
differ strongly from ωp, but are in very good agreement with
the new semiclassical expression ω̃p (blue, solid line). Since
� = 25 and an initial j0/N ≈ 0.15 are typical experimental
values [2], this discrepancy becomes by all means relevant.
Sure enough, with the parameters given in Ref. [2], our formula
leads to 2π/ω̃p = 39 ms, which is the experimentally observed
value. By contrast, without our corrections one would find
2π/ωp = 30 ms.

B. Collapse time

According to Eq. (30), the collapse time is given by

Tcollapse = 1

2g�V0ωp(c1 + 5c2g)
. (38)

The expression in front of the brackets (which can be identified
with the collapse time in the Rabi regime; i.e., for small �)
can be approximated as N/[�ωp(2j0/N )]σ . Thus, assuming
� and (j0/N ) are kept fixed so that σ is proportional to

√
N ,

the collapse time is proportional to
√

N . This
√

N behavior has
been stated before in Refs. [7,30]. Our semiclassical formula
shows, however, that this statement is only correct for the
special case of fixed � and j0/N , or in the Rabi limit (� � 1).
In all the other cases, the collapse time depends in a nontrivial
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FIG. 7. (Color online) Comparison of exact dynamics (top) of
population imbalance j with improved semiclassical expression (30)
(bottom) as a function of dimensionless time t̃ = ω̃pt/(2π ) for � =
25, T = 10, N = 100, and an initial j0 = 10.

way on N through � and j0/N . Figures 4–7, and in detail
Fig. 9, show that our semiclassical expression for the collapse
time is remarkably reliable.

C. Revival time

Following Eq. (30), the revival time is

Trev = π

U

(1 + 2c1g)

(c1 + 5c2g)
. (39)

Most interestingly, in the Rabi limit it becomes independent
of the number of particles and in fact independent of any
other system parameter except the interaction strength U .
The revival time was already discussed in Ref. [25] where

0 10 20 30 400.7

0.8

0.9

1.0

Ωp

Ωp

FIG. 8. (Color online) Comparison of numerically exact (sym-
bols) and improved semiclassical analytical (31) (lines) plasma
oscillation frequency as a function of � for different j0. j0 = 5
(diamonds, dotted line), j0 = 10 (squares, dashed line), j0 = 20
(circles, solid line), for a total number of N = 100 particles. The
constant dash-dotted line indicates the simple plasma frequency ωp ,
valid only in the Rabi regime � � 1.

0 5 10 15

j0

j0

t

j

FIG. 9. (Color online) Detailed comparison of numerical exact
initial collapse dynamics of j (green, dashed line) and improved
semiclassical analytical results (blue, solid line) for � = 25, N =
100, T = 10, and j0 = 10 as a function of dimensionless time t̃ =
ω̃pt/(2π ).

it was found to be equal to 4π , with an interaction strength
of 1/4 (considering the different definition of parameters),
which we confirm here, in the Rabi limit. Furthermore, it is
stated in Refs. [7,25] that the revival time grows linearly with
the number N of particles. This is obviously true for those
investigations with UN = const only, as can be seen from our
expression (39). However, note that even only slightly away
from the Rabi limit, when � approaches or becomes greater
than unity, the constants c1 and c2 and the parameter g become
relevant. This can be seen from Fig. 10. Thus, for � > 1 no
simple scaling law for the revival time exists.

The figure shows that for increasing � the exact revival
times differ strongly from the revival time π/U predicted
by the Rabi-limit formula. On the other hand, it can be seen
that the improved semiclassical expression (39) reproduces the
exact revival times very nicely even for � > 1. For increasing
values of � the self-trapping fraction of the phase space is

0 10 20 30 40
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Trev
Π U

FIG. 10. (Color online) Comparison of numerically exact (sym-
bols) and improved semiclassical analytical revival time (lines) as a
function of � for different initial imbalance j0. j0 = 5 (diamonds,
dotted line), j0 = 10 (squares, dashed line), j0 = 20 (circles, solid
line), for a total number of N = 100 particles. The dashed-dotted
line indicates the result π/U of the Rabi limit, which is obviously
only valid for very small �.
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increasing as well, such that for large initial excitations (e.g.,
j0 = 20 for N = 100), the semiclassical analysis ceases to
give reliable results.

VII. CONCLUSION

We applied semiclassical methods to the well-known two-
mode Bose-Hubbard model in order to investigate in detail
Bose-Einstein condensate (BEC) tunneling in a double-well
trap. Within the plasma oscillation regime we found analytical
expressions for the energy spectrum and the initial state that
agrees nicely with numerically exact results. Employing the
reflection principle and the Poisson summation formula led us
to an analytical expression for the time evolution of the popula-
tion imbalance of the Bose gas in the double well. This allows
us to discuss the dependence of characteristic quantities of the
dynamics, like plasma oscillation frequency and collapse and
revival times on the relevant system parameters. Our results
thus provide a detailed understandingof the two-mode model.
Finally, our generalized formula for the plasma oscillation
frequency agrees perfectly well with experimental findings.
Challenging as it may be, we hope that our predictions for
collapse and revival times will be confirmed experimentally,
too.

Semiclassical methods are well suited to study nonequilib-
rium dynamics of a bosonic interacting many-body quantum
system. For systems with more degrees of freedom, an
explicitly time-dependent approach might prove useful.
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APPENDIX: PARAMETERS

In order to complete the discussion of our semiclassical
analytical result for the time evolution of the population
imbalance (30), we present here the definition of the remaining
parameters. The phase of the oscillation reads

ϕ̃ = −mϕm + 1

2
arctan A − A

2(1 + A2)

(
τ − mTrev

Tcollapse

)2

,

(A1)

where the dominantly m-dependent part is defined separately
as

ϕm = 2πV̄ [1 + c1g − 1/(2V̄ )]. (A2)

V̄ is the mean excited energy in units of the plasma frequency

V̄ = V (j0)/ωp. (A3)

Furthermore, the quantity

A = τ�τ − m�m (A4)

contributes to an overall slow spread and decay of the signal. It
can be separated in a τ - and a m-dependent contribution with

�τ = 10c2(�V0)2g2ωp (A5)

and

�m = 4πc1(�V0)2gV̄ . (A6)

For completeness, we repeat the expressions

c1 = (1 + �/4)

(1 + �)
, c2 = (1 + �/5 + �2/42)

(1 + �)2
,

g = UV (j0)

ω2
p

, �V0 = σV ′(j0)

V (j0)
,

from Sec. IV B.
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