
PHYSICAL REVIEW A 86, 053611 (2012)

Collisions of anisotropic two-dimensional bright solitons in dipolar Bose-Einstein condensates
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We investigate the coherent collision of anisotropic quasi-two-dimensional bright solitons in dipolar Bose-
Einstein condensates. Our analysis is based on the extended Gross-Pitaevskii equation, and we use the split-
operator method for the grid calculations and the time-dependent variational principle with an Ansatz of coupled
Gaussian functions to calculate the time evolution of the ground state. We compare the results of both approaches
for collisions where initially the solitons are in the repelling side-by-side configuration and move towards each
other with a specific momentum. We change the relative phases of the condensates, and introduce a total angular
momentum by shifting the solitons in opposite directions along the polarization axis. Our calculations show that
collisions result in breathing-mode-like excitations of the solitons.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) of magnetic atoms have
attracted much attention since their experimental realization
with 52Cr atoms [1]. Recently, the creation of condensates
of 164Dy [2] and 168Er [3] atoms with much larger magnetic
moments than 52Cr has also been reported. Furthermore, there
has been fast progress towards the condensation of polar
molecules with electric dipole moments [4], where the dipole-
dipole interaction (DDI) is even more dominant. A review of
the physics of dipolar bosonic quantum gases has recently been
given by Lahaye et al. [5]. The features of the DDI being a
nonlocal long-ranged and anisotropic interaction give rise to a
variety of new effects. One example is the creation of solitary
waves, where in analogy to nonlinear optics the effects of
dispersion and nonlinearity may cancel each other. This leads
to a condensate with a shape constant in time. The experimental
realization of one-dimensional solitons in self-attractive BECs
of 7Li atoms has been reported [6]. Tikhonenkov et al. have
theoretically predicted two-dimensional (2D) solitons [7],
and Köberle et al. have proposed a realistic experimental
setup for the creation of a 2D soliton [8]. An exciting
aspect of multidimensional solitons is their anisotropic nature,
based on the in-plane polarization of the dipoles of such
solitons. 2D solitons have already been studied using a
variational Ansatz with a single Gaussian and with coupled
Gaussian functions [9]. Adhikari and Muruganandam have
recently investigated axially symmetric and vortex solitons
on a one-dimensional optical lattice [10]. Note that, in
contrast to systems with harmonic traps, where the density
distribution in the trap direction is an approximate Gaussian,
systems in an optical lattice will have an exponential density
distribution.

The collision of axially symmetric bright 2D solitons has
been studied by Pedri and Santos [11] and Adhikari and
Muruganandam [10]. Pedri and Santos investigated a system
with dipoles aligned parallel to the harmonic trap, while
Adhikari and Muruganandam used an optical lattice instead.
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In both cases, the sign of the DDI has to be inverted by fast
rotation of the orientation of the dipoles [12]. The resulting
interaction energy becomes Ud(R) = −α(3 cos2 ϑ − 1)/R3,
where ϑ is the angle between the polarization axis and
R = r − r ′. The factor α can continuously be changed from
−1/2 to 1. This provides the possibility to change the dipolar
interaction from attractive to repulsive.

In addition to the analysis of the collision of 2D solitons,
Young et al. [13] have investigated the collision of one-
dimensional bright and vortex solitons. The investigations
in [7–9] concentrated on the creation and the stability of
2D solitons with respect to small perturbations. However, one
important property of solitons is that their shape is constant
in time even when they are moving. Therefore, the collision
of two solitons is an adequate scenario for the investigation of
soliton dynamics far beyond small excitations. The influence
of the nonlinear contact interaction and the DDI is of particular
interest in such calculations.

As mentioned above, the creation of a BEC of magnetic
atoms has been realized with a variety of species. Our
results are valid for all dipolar systems, but we will add the
corresponding values for a system with 20 000 52Cr atoms per
soliton in parentheses.

At sufficiently low temperatures, the dynamics of a Bose-
Einstein condensate can be described by the extended Gross-
Pitaevskii equation (GPE) which in atomic units and with
particle-number scaling [14] reads

H (t)�(r,t) = (−� + Vhar + Vsc + Vd) �(r,t) = i∂t�(r,t),

with Vhar = γ 2
y y2, Vsc = 8πa|�(r,t)|2, (1)

Vd =
∫

d3r ′ 1 − 3 cos2 ϑ

|r − r ′|3 |�(r ′,t)|2.

Here a is the scattering length and � designates the mean-field
wave function. The dipoles are polarized along the z axis, so
that ϑ is the angle between the z axis and the vector r − r ′. We
choose the y direction as the axis of confinement perpendicular
to the polarization axis where γy = 20 000 (420 Hz), while the
condensate is free in the x and z directions. All simulations
deal with condensates of low densities, and only a small period
of time in which the two condensates merge to one transient
condensate with higher density. This means that we do not need
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to take a three-body-loss term [8] into account, as the resulting
absorption images (|ψ |2 integrated along the y axis) would
be only slightly affected. We checked this assumption for the
calculation of the collision without difference in phase and
without angular momentum, which up to the time of t = 0.06
(t = 0.001 corresponds to 15 ms) resulted in a loss of only
about 5.5% of the particles.

As has been shown in [9], solitons exist only in a certain
range of values of the scattering length, which can be tuned
by the use of Feshbach resonances [15]. For too large values,
the condensate will disperse, while too small values lead to
the collapse of the condensate. In the following the scattering
length is chosen to be 0.14 (12.7aB, where aB is the Bohr
radius).

II. NUMERICAL APPROACH

The main theoretical task for the grid calculations is how
to apply the time evolution operator U = e−iH t on a state
|ψ〉. For this, one splits U symmetrically by using the Baker-
Campbell-Hausdorff formula [16]

U (�t) = e−iH�t = e−i(T +V )�t

≈ e−i 1
2 T �te−iV �te−i 1

2 T �t , (2)

where V = VHar + Vsc + Vd. One projects the action of the
approximated time evolution operator on the basis of the
position operator and makes use of the possibility to insert∫

dν|ν〉〈ν| = 1:

ψ(r,t + �t) = 〈r|U (�t)|ψ〉=
∫

d3p′d3r ′d3p〈r|e−i
p2

2 �t | p′〉

× 〈 p′|e−iV (r)�t |r ′〉〈r ′|e−i
p2

2 �t | p〉〈 p|ψ〉
= 1

√
2π

9

∫
d3p′d3r ′d3peir p′

e−i
p′2

2 �t

× e−i p′ r ′
e−iV (r ′)�teir ′ pe−i

p2

2 �t ψ̃( p). (3)

The structure of (3) suggests the following algorithmic
procedure:

(1) Fourier transform ψ(r) in order to obtain ψ̃( p).

(2) Multiply by e−i
p2

2 �t .
(3) Inverse Fourier transform to real space.
(4) Multiply by e−iV (r)�t .
(5) Fourier transform to momentum space.

(6) Multiply by e−i
p2

2 �t .
(7) Inverse Fourier transform to real space.
The potential V consists of the harmonic potential, the

scattering potential, and the DDI potential. The scattering
potential and the DDI potential have to be calculated at
each time step. The latter can be evaluated by means of
the convolution theorem, which results in two more Fourier
transforms:

�dd(r) = 4π

3
F−1

{(
3k2

z

k2
− 1

)
F {|ψ(r)|2}

}
. (4)

Here k and kz denote the momentum and the momentum in the
z direction, respectively. Altogether, we have to perform six

Fourier transforms for each time step. Note that the first and
last Fourier transforms described in the algorithmic procedure
of the time evolution are necessary only if one is interested
in physical quantities whose evaluation requires the wave
function in real space.

For the simulations, the spatial domain was discretized
with up to 512 × 128 × 512 grid points. Since this scheme
is numerically very demanding, it has been implemented for
graphics processing units (GPUs) using CUDA, enabling a
very high degree of parallelization. Using the Tesla C2070
improves the performance of our algorithm by a factor of about
80 for double precision in comparison to the corresponding
C algorithm using the well-known FFTW library for computing
the discrete Fourier transform on an IBM system x3400 with a
Quad-Core Intel Xeon Processor E5430 (2.66 GHz, 12 Mbyte,
L2, 1333 MHz, 80w) and four 4 Gbyte PC2-5300s, CL5 ECC
DDR2 Chipkill Low Power FBDIMM, 667 MHz.

To investigate the coherent collision of solitons we have ap-
plied the following procedure. The first step is the computation
of the ground state of one condensate using the split-operator
method with imaginary time evolution (t = −iτ ). Afterwards
we double the size of the grid in the x direction and place
two solitons in the repelling side-by-side configuration. The
distance between the condensates is chosen such that they
are not affected by the mutual dipole-dipole interaction. To
introduce momentum in the system, we multiply the left-hand
side of the wave function by a plane wave eikx (for the soliton
moving to the right) and the right-hand side by e−ikx (for the
soliton moving to the left), respectively.

III. TIME-DEPENDENT VARIATIONAL ANSATZ

Variational calculations using coupled Gaussian wave pack-
ets (GWPs) have been shown to be a full-fledged alternative
to numerical grid calculations for the calculation of ground
states of dipolar BECs [9,17]. The applicability of such
Ansätze to dynamical simulations is a challenging task. The
decisive extension of the previous work [9,17] is that additional
translational and rotational degrees of freedom are included
in the Ansatz with coupled GWPs to describe the dynamics
of the condensate wave function. For the convenience of
the reader we briefly review the time-dependent variational
principle (TDVP) in this section, and subsequently apply it
to the Ansatz of coupled GWPs. We make use of the TDVP
in the formulation of McLachlan [18] where φ is varied such
that

I = ‖iφ − H�(t)‖2 != min , (5)

and set φ ≡ �̇ afterwards. The wave function � is considered
to be parametrized by the variational parameters � = �(z(t)).
The minimization of the quantity I in Eq. (5) leads to

〈
∂�

∂ z

∣∣∣∣i�̇ − H�

〉
= 0, (6)

which can be written in the short form

K ż = −ih, (7)
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with the positive definite Hermitian matrix K . We use a linear
superposition of N Gaussian wave packets

� =
N∑

k=1

e−[(xT −qk )T Ak(x−qk)−i( pk)T (x−qk)+γ k ] ≡
N∑

k=1

gk, (8)

as an Ansatz for the wave function in Eq. (5). In general, Ak

are 3 × 3 complex matrices (determining the width and the
orientation of the GWP), pk and qk are three-dimensional real
vectors (representing the momentum and center of the GWP),
and γ k are complex numbers (where the real part stands for
the amplitude and the imaginary part for the phase of the
GWP). In this work we will make use of the strong confinement
in one direction perpendicular to the dipole axis and omit
the translational and rotational degrees of freedom in the y

direction,

Ak
yσ = Ak

σy = 0, pk
y = 0 , qk

y = 0, (9)

with σ = x,z. Inserting the Ansatz Eq. (8) in Eq. (6), sorting
the result by powers of x, and identifying these terms with the
coefficients of a time-dependent effective harmonic potential

V k
eff = vk

0 + vk
1x + xV k

2 x (10)

yields the equations of motion (EOMs) for the variational
parameters,

Ȧk = −4i(Ak)2 + iV k
2 , (11a)

ṗk = − Re vk
1 − 2 Im Ak(q̇k − 2 pk) − 2 Re V k

2 qk, (11b)

q̇k = 2 pk + 1
2 (Re Ak)−1

(
Im vk

1 + 2 Im V k
2 qk

)
, (11c)

γ̇ k = 2i Tr Ak − iqkV k
2 qk + 4 pkAkqk + i( pk)2

− iqk ṗk − i pk q̇k − 2qkAk q̇k + ivk
0 . (11d)

If we write Eq. (7) explicitly for GWPs, the set of linear
equations for ż can be rewritten as one for the vector v

containing the coefficients of V k
eff ,

Kv = r; (12)

for details, see [19,20]. With the transformation given in
Appendix A the EOMs can now be integrated with a standard
algorithm such as Runge-Kutta, where Eq. (12) has to be
solved at every time step. The right-hand-side vector r with
the components

r l =
N∑

k=1

〈gl|xm
α xn

βV (x)|gk〉, (13)

where l = 1, . . . ,N, α,β = 1, . . . ,3, and 0 � n + m � 2,
contains integrals of the potentials in the GPE. It is one of
the most important advantages of the method that nearly all
of these integrals can be calculated analytically. However,
the dipolar integral 〈�|Vd|�〉 can be calculated analytically
only for GWPs centered at the origin without the additional
translational degrees of freedom introduced in the Ansatz (8).
The analytical and numerical treatment of the dipolar integral
is presented in Appendix B.

The procedure for the calculations is as follows: First the
equations of motion (11) for one soliton are integrated in
imaginary time, with the wave function being normalized
after every time step. Afterwards every GWP of the wave

function is copied and the resulting two solitons are positioned
in the same way as given in Sec. II. Then for each GWP
a corresponding momentum pk = ±pk

xex is added. For this
starting configuration the EOMs are finally integrated in real
time.

IV. RESULTS

In Fig. 1 three grid calculations of colliding solitons without
angular momenta prepared in the way given above are shown.
For no phase difference constructive interference occurs and
the condensates merge and split up into two solitons again.
Note that the condensates after the split (t = 0.049; t = 0.001
corresponds to 15 ms) have a larger spatial distribution

FIG. 1. (Color online) Absorption images (|ψ |2 integrated along
the y axis) of grid calculations for the collision of solitons. The value
of the momentum for each soliton is k = 10 (velocity v = 127 μm/s)
and the field of view is 1.4 × 1.4 (135 × 135 μm2). All absorption
images have been normalized to the maximum value. Left column:
Absorption images for a collision without difference in phase. Middle
column: Absorption images for a collision with a difference of φ =
π/2 in phase. Right column: Absorption images for a collision with
a difference of φ = π in phase.
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FIG. 2. (Color online) Absorption images for grid calculations and the variational Ansatz of the simulation of two colliding solitons with
angular momentum. All absorption images have been normalized to the maximum value. The parameters are the same as given in Fig. 1. The
columns (a), (b), and (c) show calculations for differences of φ = 0, φ = π/2, and φ = π in phase, where the left column is the result of the
grid calculations and the column on the right-hand side presents the results of the variational Ansatz. For all three calculations six GWPs (three
for each soliton) were used. The variational calculation is able to reproduce the transient ringlike structure during the collision for a difference
of φ = π in phase and yields the correct results for the configuration at the end of all three calculations.

than before (t = 0.011). This indicates that the transfer of
kinetic energy to internal energy has excited the solitons. This
might either induce the dispersal of the solitons or lead to
breathing-mode-like oscillations. The column in the middle
shows a simulation with a difference of φ = π/2 in phase,
resulting in a collision where the soliton on the right eventually
has a lower amplitude than the one on the left, so that we do
not have symmetric behavior anymore. The transfer of kinetic
energy is not as large as for φ = 0, resulting in only slightly
larger condensates at t = 0.049. In the case of a collision
with a difference of φ = π in phase we can see destructive
interference (column on the right); the solitons effectively
repel each other. The transfer of kinetic energy into internal
energy is once again smaller, corresponding to a just slightly
larger condensate at t = 0.049. The occurrence of the broken
symmetry in the x direction can be understood if one considers
that a difference in phase of φ = 0 or φ = π yields a wave
function which is an eigenfunction of the parity operator, in the
sense that �±�(r,t) = ±�(−r,t). A difference of φ = π/2,
on the other hand, does not result in an eigenfunction of the
parity operator, thus yielding an asymmetric dynamic of the
condensates.

In Fig. 2 we compare the results for grid calculations and
the variational Ansatz for simulations where we shifted the two
condensates in opposite directions along the polarization axis
in order to introduce angular momentum. Both approaches
are in very good agreement with only slight differences, in
particular for times where both condensates merge, and when
comparing the extensions of the solitons at t = 0.049. It is
remarkable that a total number of only six GWPs is sufficient
to reproduce the structures of the grid calculations and give
the correct result for the configuration at the end of all three
simulations. The first case without a difference in phase
[Fig. 2(a)] once again leads the solitons to merge and split
up afterwards, while a transient eddylike structure appears
in the course of the collision. As in the case with no angular
momentum, either the solitons seem to disperse, or a breathing-
mode-like oscillation has been excited. The amount of kinetic
energy which has been transferred is lower than in the former
case, leading to condensates with smaller extension at t =
0.049 than their corresponding condensates in the simulation
presented above. A difference of φ = π/2 in phase [Fig. 2(b)]
shows a similar behavior as in the case without angular
momentum, resulting once again in an asymmetric situation

053611-4



COLLISIONS OF ANISOTROPIC TWO-DIMENSIONAL . . . PHYSICAL REVIEW A 86, 053611 (2012)

 20
20

0

 20
40

0

 20
60

0

 20
80

0

 21
00

0

 0.01  0.02  0.03  0.04  0.05  0.06

E
ki

n

t

var. φ = 0
var. φ = π/2

var. φ = π
num. φ = 0

num. φ = π/2
num. φ = π

 20200

 20400

 20600

 0.1  0.2

FIG. 3. (Color online) Kinetic energy as a function of time for
the collisions with angular momentum (Fig. 2). The dots show
the numerical results; the lines show the results obtained by the
variational calculations. The kinetic energy increases while the
condensates merge. After the split, the condensates have a lower
kinetic energy than before, indicative of a transfer from kinetic to
internal energy, thus resulting in excitation of the condensates. The
inset shows the kinetic energy obtained by the variational calculations
for large time scales. The oscillatory behavior indicates the excitation
of the solitons. Note the larger kinetic energy obtained by the grid
calculations shortly after the split. This is due to the finite grid size,
which manifests itself in oscillations of the wave function’s amplitude
for large times.

where after the collision the condensates do not have the same
amplitudes anymore. But for finite angular momentum one
may actually speak of a merged condensate at t = 0.031. Fi-
nally the collision with a difference of φ = π [Fig. 2(c)] shows
the condensates effectively repelling each other, but in this case
introducing angular momentum leads to a transient ringlike
structure. The extension of the condensates after the collision is
much larger compared to the case with no difference in phase,
which means that the amount of transferred kinetic energy in
internal energy is larger than in the former case. The case with
angular momentum is suited best to show how the transfer of
kinetic energy affects the spatial distribution of the condensate.
In Fig. 3 we show the kinetic energy as a function of time for
the collisions with angular momentum. Comparing the curves
in Fig. 3 with the absorption images in Fig. 2, it is obvious that
a larger transfer of kinetic energy implies a larger condensate at
t = 0.049. The slightly smaller transfer observed at the end of
the full numerical calculations (this leads to a smaller extension
of the solitons after the collision; cf. Fig. 2) originates from
finite grid sizes and thus has no physical meaning. Variational
calculations show an oscillation of the kinetic energy for large
time scales, which corresponds to the excitation of the solitons.

The amount of kinetic energy transferred into internal
energy of the solitons depends on the overlap of the wave
functions during the collision process. A large overlap of
the solitons enhances the nonlinear coupling in the GPE as
|�(x,t)|2 increases and a small one diminishes the coupling.
This can be seen best in Fig. 1 (right column) where
the destructive interference for the calculation with phase
difference φ = π leads to |�(0,t)|2 = 0. For the correspond-
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FIG. 4. (Color online) Variance �σ of a single soliton (right
soliton in the absorption images in the upper panel) as a function
of time. The collision occurs at t ≈ 0.03. The thick solid line and
the double-dashed line show the �x and �z variance of three GWPs,
respectively. The thin solid line and the normal dashed line show the
�x and �z variance of the dominant GWP g0.

ing calculation with nonzero angular momentum [Fig. 2(c)]
we find |�(0,t)|2 = 0, too. However, the ringlike structure
increases the overlap during the collision.

In Fig. 4 the variance �σ = 〈σ 2〉 − 〈σ 〉2 with σ = x,z is
plotted as a function of time. The variance has been calculated
for the three GWPs representing the solitons on the left-hand
side in the starting configuration and for the GWP which has
the largest amplitude after the collision process. This dominant
GWP g0 shows oscillatory behavior while the other GWPs
with much smaller amplitudes describe particles leaving the
soliton. This effect can hardly be seen in the absorption images
in the upper panel of Fig. 4. However, the absorption images
show that a soliton still exists, although this would be difficult
to see in an actual experiment due to the very long time scale.

We have also performed simulations with smaller and larger
momenta of the solitons. The former case leads to one merged
condensate which does not split up again after the collision but
shows oscillatory behavior. This is very similar to the collision
presented in [11]. In the latter case the wavelength of the
interference pattern is smaller and becomes more pronounced.
Note that grid calculations with high momenta are problematic,
because the condensates quickly reach the edge of the grid.
An approach with a variational Ansatz is better suited to the
analysis of these scenarios.

V. CONCLUSION

We have studied the collisions of anisotropic two-
dimensional bright solitons in dipolar Bose-Einstein con-
densates with both a fully numerical Ansatz and a time-
dependent variational principle with coupled Gaussians. The
calculations presented show that the collision process leads to
an energy transfer from kinetic energy to “inner” energy of
the solitons, which leads to excited solitons with larger extent.
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The absorption images show very good qualitative agreement
of the results gained by the two different methods.

The advantages of the grid calculations are the simplicity
of the numerical scheme (although the implementation for
the massively parallel computation requires some effort), the
freedom in describing all different shapes of wave functions,
and the numerical stability of the method. The advantages of
the variational calculations are the much smaller numerical
effort, enabling one to run long calculations on standard PCs,
the independence of the finite grid size, and the small amount
of parameters to be saved.

Both methods can be used to simulate the time-dependent
GPE, supporting each other mutually. One further application
would be the inclusion of additional external potentials such
as optical lattices, and the comparison of the methods in such
scenarios. Our results should stimulate experimental efforts to
study the collisions of 2D anisotropic solitons.
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APPENDIX A: TRANSFORMATION TO C B VARIABLES

The direct numerical integration of Eqs. (11) leads to
numerical difficulties [21]. These can be dealt with by
the introduction of two auxiliary matrices B and C. With
A = BC−1 the equations of motion for the width matrices
can be written as

Ȧk = −4i(Ak)2 + iV k
2 , (A1)

Ȧk = Ḃk(Ck)−1 − Bk(Ck)−2Ċk, (A2)

where C and B are 3 × 3 complex matrices. Omitting the index
k we obtain from these equations

B−1ḂC−1 − C−2Ċ = −4iB−1A2 + iB−1V2 (A3)

⇒ B−1Ḃ − C−2ĊC = −4iC−1B + iB−1V2C. (A4)

By comparison we obtain the equations of motion for C and B:

Ḃk = iV k
2 Ck, (A5)

Ċk = 4iBk. (A6)

The reduction (9) can be done for those matrices, too. Note,
however, that the matrices B and C do not preserve the same
symmetry as the matrices A, which are complex symmetric.
Therefore, all five complex entries in B and C have to be
integrated.

APPENDIX B: SOLUTION OF THE DIPOLAR INTEGRAL

The calculation of the dipolar integrals needed in the
TDVP 〈�|αnβmVd|�〉 with α,β = x,y,z and 0 � n + m � 2
is shown here for the simplest case n = m = 0. The other
integrals are calculated analogously. We start from the six-

dimensional nonlocal integral

〈�|Vd|�〉 =
∑
l,k,j,i

∫∫
d3rd3r ′ gl∗(r)gj ∗

(r ′)gi(r ′)gk(r)

×
(

1 − 3(z − z′)2

|r − r ′|2
)

1

|r − r ′|3 . (B1)

By the use of the convolution theorem of Fourier analysis we
can evaluate one of the three-dimensional integrals directly,
while the inverse Fourier transform

〈�|Vd|�〉 = 1

6π2

∑
l,k,j,i

I kl
0 I

ij

0

∫
d3k exp

{
−1

4
kT Āklij k

+ 1

2
i( p̄klij )T k

}(
3k2

z

k2
− 1

)
(B2)

remains to be done. Here I kl
0 denotes the overlap integral of the

Gaussian functions k and l, and we have used the abbreviations

Āklij = (Akl)−1 + (Aij )−1, (B3)

p̄klij = (Aij )−1 pij − (Akl)−1 pkl, (B4)

with Akl = Ak + Al∗ and pkl = pk + pl∗, and analogously
for i and j . The integral (B2) can be split into two parts,
one leading to a shift in the scattering length (this is the
short-range part of the DDI) and a second part 〈�|Vd,eff|�〉 =∑

l,k,j,i I kl
0 I

ij

0 J
klij

2 . After a principal-component analysis of
the exponential in Eq. (B2) the analytical integration in the
ky direction is possible when we make use of Eq. (9). The
remaining result reads

J
klij

2 = 1

4π

∫ ∞

0
dρ w

(
i

√
Ā

klij
y

ρ

2

)
ρ2e− 1

8 (Āklij
x +Ā

klij
z )ρ2

×
∑
±xc
±xs

∫ 1

−1
dx

(±c1xc ± c0xs)2

√
1 − x2

× e− 1
8 (Āklij

x −Ā
klij
z )ρ2x+ i

2 (±p̄
klij
x ρxc±p̄

klij
z ρxs), (B5)

with xc = √
(1 + x)/2, xs = √

(1 − x)/2, the coefficients
c0,c1 of the rotation matrix from the principal-component
analysis, and the Faddeeva function w(z) = e−z2

erfc(−iz).
The numerical evaluation of this integral can efficiently be
performed by a Taylor expansion of the Faddeeva function for
which the single terms can be obtained by a recursion formula
and use of a Chebyshev quadrature for the x integration. To
improve the result we apply a Padé approximation to the Taylor
series.

The numerical integration of the dipolar integrals is the
crucial part in this method. Depending on the number of
Gaussian functions N there is a total number of Cnum =
(N4 + N2 − 2N )/4 integrals to be calculated numerically and
Celliptic = N (N + 1)/2 which can be expressed in terms of
elliptic integrals.
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