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Spin diffusion of lattice fermions in one dimension
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We study long-time spin diffusion of harmonically trapped lattice fermions in one dimension. Combining
thermodynamic Bethe ansatz approach and local-density approximation, we calculate spin current and spin-
diffusion coefficient driven by the population imbalance. We find spin current is driven by susceptibility effects
rather than typical diffusion where magnetization would transport from regions of high magnetization to low.
As expected, spin transport is zero through insulating regions and only present in the metallic regions. In the
weak-coupling limit, the local spin-diffusion coefficient shows maxima at all the insulating regions. Further, we
estimate damping rate of diffusion modes in the weak-coupling limit within the lower metallic portion of the
cloud.
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I. INTRODUCTION

The transport of fermions is central to many areas in
physics. Fermion transport can be seen in various systems,
including electronic matter, stars during collapses and explo-
sions, and quark-gluon plasma. In particular, the transport of
spin is highly relevant to potential technological applications
known as spintronics. The subject of spintronics is to design
devices to control spin evolution and dynamics for information
storage, transfer, and manipulation [1]. Thanks to the current
state of cold gas experiments, cold gas systems provide a
unique opportunity to study these transport properties in a
controlled fashion.

The ability of engineering optical lattices in arbitrary
geometries in different dimensionalities opens up exciting
avenues to visualize and gain deeper understanding of funda-
mental many-body physics. Recent progress in experimental
techniques of ultracold atoms, such as the technique of
detecting a single site [2,3], allows one to probe not only the
static properties, but also the dynamics of the atoms in optical
lattices.

On shorter time scales, a system of ultracold atoms can
be used as an effective simulator for thermal equilibrium
physics in closed many-body quantum systems. In contrast, on
longer time scales, the presence of underlying inhomogeneous
trapping potential provides an ideal platform for studying nu-
merous nonequilibrium phenomena. In cold gas experiments
in the presence of population imbalance, inhomogeneous
trapping potential creates a density imbalance throughout the
lattice. This density imbalance mimics a magnetization and
drives the spin current in the cold atom setups. In solid-state
devices spin current is produced by injecting spins into the
device and can thus be probed by magnetic microscopy or
neutron scattering. After the recent proposal on the ultracold
atom analog of electronic semiconductor devices known as
“atomtronics” [4,5], the study of transport phenomena gained
a tremendous momentum [6–15]. In the absence of optical
lattice, spin transport in strongly interacting Fermi gases has
been experimentally investigated in two laboratories at MIT
and Rice University [8,11]. In general, the nonequilibrium
dynamics of cold atoms in optical lattices are studied after an
adiabatic or sudden change of the atom or lattice parameters
[16–24]. While the dynamics for the adiabatic process are

expected to follow the change of the system Hamiltonian, the
sudden quench leads to the nonequilibrium physics that allows
for the understanding of relaxation dynamics in the presence of
many-body interactions. Although nonequilibrium dynamics
due to the adiabatic or sudden changes have been widely
studied, longer time scale dynamics due to the inhomogeneous
trapping potential have been largely unexplored.

The spin of the atoms referred to in this paper are one of
two hyperfine states available to the atoms. Therefore, we treat
the spin as a scalar quantity which points either parallel (up) or
antiparallel (down) to some arbitrary direction of quantization.
The magnetization M defined below is proportional to the
difference in up and down atom densities. As the overall mag-
netization in the system is produced by the fixed population
imbalance and the interactions are spin-independent, the total
magnetization is a conserved quantity. The local magnetization
cannot disappear locally, but can only relax slowly over the
entire system. The purpose of this paper is to investigate how
atoms relax by the magnetization being physically transported
within the trap. Indeed, this transport process occurs only in the
presence of inhomogeneous potential via a diffusion motion
in a larger time scale provided by the underlying harmonic
potential.

In the present paper, we study the spin diffusion of one-
dimensional lattice fermions in the presence of an external
harmonic potential. We consider longer time scale (defined
later) dynamics of population imbalanced fermions and study
the spin-diffusion current and local spin-diffusion coefficient,
and how these values affect the damping rate of the spin-
diffusion modes. We find evidence of spin current in the
metallic regions of the lattice, with there being no spin current
in insulating regions. Further, in the weak-coupling limit, we
calculate local spin-diffusion coefficient for all regions of the
lattice. The damping rate of spin-diffusion modes are estimated
using the continuity equation.

The structure of the paper is as follows. In Sec. II, we
introduce our model and formalism. In Sec. III, we calculate
the ratio of spin current to local diffusion coefficient for
characteristic values of large and small interaction, and show
the interplay between magnetization and susceptibility effects
to spin current. Further, the local spin-diffusion coefficient is
found over the lattice for the weak-coupling limit. Finally,
the damping rate of diffusion modes is estimated within a
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metallic portion of the cloud. We display our results with
figures in the appropriate dimensionless quantities. In Sec. IV,
we summarize the results and connect them to experiments.

II. FORMALISM

We consider a cloud of atoms consisting of two hyperfine
states denoted by spin ↑ and ↓. We assume that the population
imbalance P = (N↑ − N↓)/N is finite, where N = N↑ + N↓
is the total number of atoms in two hyperfine states of the
same atom. These atoms are subjected to a combined optical
lattice and harmonic trapping potential. The Hamiltonian of
the system can be represented by the one-dimensional Hubbard
model,

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓

−μ
∑
iσ

c
†
iσ ciσ − h

∑
iσ

σ c
†
iσ ciσ , (1)

where c
†
iσ (ciσ ) creates (destroys) a Fermi atom with pseu-

dospin σ =↑, ↓ at lattice site i. The density operator is
niσ = c

†
iσ ciσ and 〈ij 〉 indicates the nearest-neighbor pair of

sites. The average chemical potential μ = (μ↑ + μ↓)/2 and
the chemical potential difference h = (μ↑ − μ↓)/2, where μσ

is the chemical potential of hyperfine state σ . The on-site
interaction U can be repulsive or attractive. Its magnitude
and sign can be controlled by the s-wave scattering length
of the two Fermi species. In the present work, we consider
only the positive U . In cold-gas experiments, the ratio U/t

is controlled by the intensity of the standing laser waves (the
tunneling amplitude t is exponentially sensitive to the laser
intensity, while the on-site interaction U is weakly sensitive).
Experimentally, the one-dimensional geometry can be realized
by a strong confinement in the transverse direction with an
additional periodic potential applied along the other direction.
We consider a tight one-dimensional geometry such that the
level spacing in transverse direction is much larger than the
energy per particle of the axial direction.

In the presence of the underlying harmonic oscillator
potential, the average chemical potential μ(z) monotonically
decreases from the center to the edge of the trap. The
spin-diffusion current driven by this spatial variation of the
chemical potential is given by the modified Fick’s law [14],

jm = −Dχ
∂(M/χ )

∂z
, (2)

where the magnetization density M(z) = n↑(z) − n↓(z), the
spin susceptibility χ (z) = ∂M/∂h, and the spin-diffusion co-
efficient D(z) are values that vary in space, even at equilibrium.
Here nσ (z) is the density of hyperfine state σ at position z. First,
we solve the homogeneous Hubbard model for the population
imbalance system using the thermodynamic Bethe ansatz
(TBA) technique and numerically calculate the magnetization
and the spin susceptibility as discussed in Refs. [25,26].
By combining the TBA solutions with the local density
approximation (LDA), we then extract the local quantities m(z)
and χ (z). In LDA, the external trapping potential, which is
independent of hyperfine state, is Vi = mω2z2/2 at site i. This
is related to the local chemical potential through the relation

μi = μ0 − Vi , where μ0 is the central chemical potential and
z = id, with lattice constant d as the spatial coordinate. We
notice that while μz is spatially dependent due to LDA, h is
not and remains constant.

III. RESULTS

The spin current given in Eq. (2) is driven by the density
imbalance and is a longer time scale result. There are
several time scales associated with the experimental setup.
The equilibrium time scale is the maximum of h̄/U or
h̄/t . There are two other larger time scales, one associated
with trapping frequency π/ω and the other associated with
the lattice λ/(2vF ), where vF is the Fermi velocity. The
time scale we consider here is T > π/ω � h̄/t . Systems
of trapped Fermi atoms without the presence of an optical
lattice have been studied experimentally in Refs. [8,11],
where T > π/ω; thus the addition of a lattice with the time
scale parameter regime being T > π/ω ∼ λ/(2vF ) � h̄/t is
feasible in current setups.

A. Spin current

Using LDA, the derivative with respect to spatial coordinate
can be converted into a derivative over the average chemical
potential μ. Noticing that h is independent of the spatial
coordinate and using the relations ∂/∂z = (∂μ/∂z)∂/∂μ and
(∂μ/∂z) = −mω2z, spatial dependence of the ratio of spin
current and diffusion coefficient is written as

jm/D = mω2z

[
χ

∂M

∂μ
− M

∂χ

∂μ

]
. (3)

Figure 1 shows the results for relatively low temperature and
large on-site interactions where Mott insulating state is present
in the middle of the trap. We find that all the local quantities,
including spin current, show a considerable spatial variation
even in equilibrium (see Fig. 1 caption for the details).

As seen in Fig. 1, the magnetization is smallest at the
edge and the center of the trap. The spin current flows from
low magnetization to high magnetization regions. This current
pattern originates from two contributions as shown in Fig. 2
and the atoms diffuse towards the Mott insulating region. On
the other hand, the local diffusion arises from the collisions
with opposite spin atoms. As the time between scattering
event τ is proportional to the local spin-diffusion coefficient
(D), D becomes very large when the density n and holes
(1 − n) are small. This is the reason why the ratio of spin
current to diffusion coefficient (jm/D) is almost zero at the
center and at the edges. The magnetization is almost constant
in the Mott insulator region, so that (jm/D) is zero in this
region. A similar current pattern (from edge towards the center)
has been observed for attractively interacting one-dimensional
nonlattice fermions [9,11].

The results for a weak-coupling limit are shown in Fig. 3.
We find few qualitative differences other than the disappear-
ance of Mott insulating region. As one expects, Mott region
disappears at high temperatures and small interactions but
the current pattern remains the same. We find that the spatial
variations of these quantities are greater for larger population
imbalance (or larger values of h).
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FIG. 1. For strong coupling, the spatial variations of jm(z)/D(z) [where jm(z) is the spin current and D(z) is the spin-diffusion coefficient],
magnetization M(z) = n↑(z) − n↓(z), polarization P (z) = [n↑(z) − n↓(z)]/[n↑(z) + n↓(z)], and atom density n(z) = n↑(z) + n↓(z) are shown
in panels (a)–(d), respectively. We define the scaled length z̃ = z

√
mω2/2. Quantities plotted are dimensionless. We fixed the on-site interaction

(U = 5t), the inverse temperature (β = 5/t), and the chemical potential difference (h = 0.4t).

B. Local spin-diffusion coefficient

The fluctuation-dissipation theorem

χ ′′(k,ω) = 1

2h̄
(1 − eβh̄ω)S(k,ω), (4)

where the inverse temperature β = (kBT )−1, and the imagi-
nary part of the dynamic magnetization response function

χ ′′(k,ω) = 1

2

∫ ∞

−∞
dt

∫
dz eiωt−ikz〈[M̂(z,t),M̂(0,0)]〉, (5)
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FIG. 2. (Color online) Dimensionless spin current for the same
parameters as in Fig. 1. The total spin current (blue dashed line) jm =
j1 + j2 is the sum of two contributions. The magnetic contribution
(gray line) is j1/2D = −∂M/∂z and the susceptibility contribution
(black line) is j1/2D = (M/χ )∂χ/∂z.

is related to the magnetization correlation function

S(k,ω) =
∑

i

∫
dt eiωt−ikzS(z,t). (6)

Here S(z,t) = 〈M̂(z,t)M̂(0,0)〉 and [A,B] represents the com-
mutator between the operators A and B. 〈M̂〉 = M represents
the expectation value with respect to the Hamiltonian H .

First, we use general hydrodynamics description to derive
the magnetization [27]. Inserting the spin current jm into the
continuity equation ∂tM + ∂zjm = 0, the diffusion equation
has the form ∂tM(z,t) = Dχ∇2[M(z,t)/χ ]. Multiplying this
by eiωt and integrating the left-hand side, and taking Laplace
transformation and Fourier transformation, the solution of the
diffusion equation can be written as

M(k,ω) = i

ω + iDk2
M(k,t = 0). (7)

Notice that the diffusion process is reflected by the diffusion
pole on the negative imaginary axis at ω = −iDk2. As the
diffusion coefficient is local, the diffusion pole may not be as
simple as it looks.

In order to establish the connection between the hydro-
dynamic diffusion equation and the dynamic magnetization
response function, we assume that spatially varying chemical
potential difference h(z,t) = h(z)eεt is adiabatically turned
on to mechanically induce a nonzero magnetization. At time
t = 0, the chemical potential difference is switched off and
allows the induced magnetization to be relaxed as the system
returns to equilibrium. The induced magnetization at t = 0 is

M(z,t = 0) = 2i

∫ ∞

0
dτ

∫
dz′χ ′′(z − z′,τ )e−ετ h(z′). (8)
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FIG. 3. For weak coupling, the spatial variations of jm(z)/D(z) [where jm(z) is the spin current and D(z) is the spin-diffusion coefficient],
magnetization M(z) = n↑(z) − n↓(z), polarization P (z) = [n↑(z) − n↓(z)]/[n↑(z) + n↓(z)], and atom density n(z) = n↑(z) + n↓(z) are shown
in panels (a)–(d), respectively. We define the scaled length z̃ = z

√
mω2/2. Quantities plotted are dimensionless. We fixed the on-site interaction

(U = 0.8t), the inverse temperature (β = 5/t), and the chemical potential difference (h = 0.2t).

The Fourier transform of this equation has the form M(k,t =
0) = χ (k)h(k), where

χ (k) =
∫

dω

πω
χ ′′(k,ω). (9)

For t > 0, the Laplace transformation of the induced magne-
tization,

M(z,t) = 2i

∫ 0

−∞
dτ

∫
dz′χ ′′(z − z′,t − τ )eετh(z′), (10)

has the form

M(k,η) =
∫

dω

πi

χ ′′(k,ω)

ω(ω − η)
h(k). (11)

Using h(k) = M(k,t = 0)/χ (k) and

χ (k,η) =
∫

dω

π

χ ′′(k,ω)

(ω − η)
, (12)

we find

M(k,η) = 1

iη

[
χ (k,η)

χ (k)
− 1

]
M(k,t = 0). (13)

Comparing this with Eq. (7), the dynamical magnetization
response function can be extracted:

χ (k,η) = iDk2

η + iDk2
χ (k). (14)

Setting η = ω + iε and taking the imaginary part at the limit
of ε → 0, we get

χ ′′(k,ω) = Dk2ω

ω2 + (Dk2)2
χ (k). (15)

Since χ ′′(k,ω) is related to the magnetization correlation
function S(k,ω) through the Eq. (4), we notice that S(k,ω)
gives a quasielastic peak with width �(k) = 2Dk2.

On the other hand, the spin conductivity D̃(ω) can be
written in terms of the spin current Is(k,t)

D̃(ω) = 2ω

χ
lim
k→0

1

k2
χ ′′(k,ω) = 2a2

ωχ
Im(ω). (16)

Here the spin current response function is

(ω) = − i

N
lim
k→0

∫ ∞

0
dt eiωt 〈[Is(k,t),Is(−k,0)]〉, (17)

where the spin current operator I (k,t) =∑
k′,σ σ sin(k′d)c†k′,σ ck′+k,σ . Combining Eqs. (15) and

(17), the spin-diffusion coefficient can be related to the spin
conductivity as D = D̃(0)/2 [28]. Following Ref. [29], the
long-time spin-diffusion coefficient of the one-dimensional
Hubbard model can be casted into

D = d2t2

h̄χkBT

C0

2

[
2πC0

C2

] 1
2

, (18)

where d is the lattice constant and the coefficients C0 =
〈I 2(0,0)〉 and C2 = 〈I (0,0)[[I (0,0),H ],H ]〉 are the first two
short-time expansion coefficients of the current correlation
function. Note that the long-time spin-diffusion coefficient is
written in terms of two lowest order short-time expansion
coefficients of the current correlation function [29].
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FIG. 4. Diffusion coefficient as a function of position for the
weak-coupling case. The scaled length z̃ = z

√
mω2/2, the on-site

interaction (U = 0.8t), the inverse temperature (β = 5/t), and the
chemical potential difference (h = 0.2t).

In the weak-coupling limit, by generalizing the results in
Ref. [29], we find

C0 =
[

1

N

∑
k

sin(kd)(nk↑ − nk↓)

]2

+ 1

N

∑
kσ

sin2(kd)nkσ (1 − nkσ ) (19)

and

C2 = U 2C0

⎧⎨
⎩
[

1

N

∑
k

(nk↑ − nk↓)

]2

+ 1

N

∑
kσ

nkσ (1 − nkσ )

⎫⎬
⎭ .

(20)

Here the Fermi function nkσ = (eβεkσ + 1)−1, and εkσ =
2t cos(kd) − μσ . The spatial dependence of the diffusion
coefficient enters through the local chemical potential μiσ =
μ0σ − γ i2.

As shown in Fig. 4, we find the diffusion coefficient to
be small through the middle of the trap, though there is a
local maximum at the center of the trap as predicted since the
trap center is occupied by both up and down spin particles.
A maximum is also seen when the local density is equal to
unity, a remnant of the Mott transition, as well as at the edge
of the trap, where the density is almost zero, showing that D

is large when density and holes are small. Further, the spin-
diffusion coefficient tends to reach a local maximum when
the magnetization is a local minimum, and visa versa. By
combining Fig. 3(a) and Fig. 4, one can see that the spin
current is large at the edges of the trap in the lower metallic
region, finite but small in the upper metallic region, and zero
in the insulating regions.

C. Damping rate

Taking the inverse Laplace transformation of Eq. (7), one
can write

M(k,t) = e−Dk2tM(k,t = 0). (21)

This shows that the damping rate of hydrodynamic diffusion
mode τ (k) = 1/(Dk2) is consistent with the quasielastic peak
of S(k,ω). As the diffusion coefficient D = D(k) for trapped
fermions, Eq. (21) does not give us much information on the
damping rate of the diffusion mode. However, the damping
rate of the diffusion modes can be estimated directly from
the continuity equation by assuming M(z,t) has the form
M(z,t) = exp[−τ t]M(z). Inserting this into the continuity
equation and integrating both sides, we find

τ = jm(zf ) − jm(zi)∫ zf

zi
M(z)dz

. (22)

When estimating τ using this equation, one must consider
only a part of the metallic cloud with edges z̃i and z̃j , since
the spin does not transport through an insulating region. We
estimate τ from a small region in the lower metallic band, from
z̃i = 2.21 to z̃j = 2.42, and find τ ≈ 21h̄/(kBd2).

IV. DISCUSSION AND SUMMARY

The local spin current patterns predicted above for neutral
atomic fermions in an optical lattice can experimentally be
probed by measuring lattice scale modulations of the atom
density. Noise correlations [30,31], Bragg scattering [32], and
in situ imaging in the lattice scaling [2] are commonly used
density mapping tools in cold atom experiments. While Bragg
scattering is similar to x-ray-scattering probes of the crystal
structures of solids, in situ imaging is analogous to scanning
tunneling microscopy. Imaging the subsequent lattice scale
density modulations as done for one-dimensional Bose gases
[33], local spin current patterns can be probed.

In this paper we have found evidence of longer time scale
spin current in both the strong- and weak-coupling cases. By
calculating the ratio jm(z)/D(z), we find that the spin current
is driven primarily by susceptibility rather than directly from
magnetization density. In the weak-coupling limit, we further
found how the local spin diffusion coefficient varies within the
trap, having maximums at the insulating regions. We find spin
current to be primarily located at the edges of the trap. Finally,
we estimated the damping rate of diffusion modes in a metallic
portion of the cloud.
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