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Measurement of phase fluctuations of Bose-Einstein condensates in an optical lattice
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Even at zero temperature, there exist phase fluctuations associated with an array of Bose-Einstein condensates
confined in a one-dimensional optical lattice. We demonstrate a method to measure the phase fluctuations based
on the Fourier spectrum of the atomic density for a condensate released from the optical lattice. The phase
variance is extracted from the relative intensities of different peaks in the Fourier spectrum. This method works
even for high lattice depth where interference peaks disappear in the atomic density distribution.
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I. INTRODUCTION

For Bose-Einstein condensates in an optical lattice, the
phase fluctuation is a significant quantity in the investigation of
quantum phase transitions [1]. The transition from superfluid
to Mott insulator is usually accompanied by significantly
increased phase fluctuations which can be manifested in the
interference pattern of the condensate samples. The vanishing
of the contrast of the interference fringes is widely regarded
as a characteristic of the quantum phase transition.

The simplest lattice configuration suitable for demonstrat-
ing phase fluctuations is a one-dimensional (1D) standing-
wave laser field loaded by Bose-Einstein condensates (BECs).
Such a 1D optical lattice is actually a common tool to test
quantum properties of the cold atoms in periodic potentials.
It has been used to demonstrate phase coherence [2,3], Bloch
oscillations [4], number squeezed state [5], Josephson current
[6], nonlinear self-trapping of matter waves [7,8], and so on.
In theory, quantum fluctuations in phase and atomic number
are often illustrated by considering a BEC in a double-well
potential [9–16]. Of course, experimental measurement of the
phase fluctuation plays a key role in understanding the quantum
process occurring in a lattice.

In a pioneering work by Orzel et al. [5], phase fluctuations
of the subcondensates in a 1D optical lattice were measured by
using the interference pattern of the released condensates. The
phase variance was extracted from the contrast of the observed
interference peaks. However, at very high lattice depth, the
typical interference peaks disappear completely due to the
large phase fluctuations, and this method is thus not valid any
more. In Ref. [17], it is also shown that, close to the Mott
insulator, the vanishing of the interference fringes makes it
difficult to describe the quantitative changes of the system
controlled with further increased lattice depth.

In this paper, we develop a method to measure the phase
variance by employing the Fourier spectrum of the released
atomic cloud. Particularly, a simple analytical expression is
found to extract the phase fluctuations. Our method works in
principle even when the visibility of the interference peaks
is completely lost, as demonstrated in our experiment. It is
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expected that this method provides a unique tool to other phase
transitions in cold atomic systems [18].

The paper is organized as follows: In Sec. II, we present
the theoretical model to extract the phase fluctuations from
the Fourier spectrum of the atomic density for a condensate
released from the optical lattice. In Sec. III, the theoretical
model is demonstrated in our experiment. The accuracy and
validity of our method are discussed, and a comparison with
the method in Ref. [5] is also presented. Finally in Sec. IV, we
summarize our obtained results.

II. THEORY

We now consider a 1D optical lattice in the dimension of
the x axis, formed by a conventional standing-wave laser field.
Its depth is usually measured in units of the recoil energy
Er = h2/(2mλ2), where m is the atomic mass, h is Planck’s
constant, and λ is the optical wavelength. In the tight-binding
limit, the condensate loaded to the lattice can be treated as
a chain of disk-shaped subcondensates equally spaced by the
lattice period d = λ/2. The total number of the lattice sites
occupied by the condensate is denoted by M . When suddenly
released from the optical lattice, the condensate undergoes a
free expansion process. After a time of flight (TOF) of τ , the
wave function of the atomic cloud can be written as

�(x,τ ) =
M∑
l=1

αl�l(x,τ ),

where �l(x,τ ) refers to the wave function of the subcondensate
initially centered at the ith lattice site, and |αl|2 represents the
probability for an atom roughly located at the lth lattice site.
The atomic density is then written as

|�(x,τ )|2 =
∑
l,q

α∗
l αq�

∗
l (x,τ )�q(x,τ )

= G0 +
M−1∑
n=1

Gn, (1)

where G0 reads

G0 =
M∑
l=1

|αl|2 |�l(x,τ )|2 ,
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while Gn with n � 1 takes the following form:

Gn =
M−n∑
l=1

α∗
l αl+n�

∗
l (x,τ )�l+n(x,τ ) + c.c. (2)

Note that G0 is physically different from other Gn with
n � 1. It contains no interference terms and is just a direct sum
of the atomic densities of all the subcondensates. Therefore, it
gives rise to a spatially smooth density profile. In contrast, Gn

describes the interference between the subcondensates spaced
by nd in the optical lattice. One characteristic associated
with Gn must be mentioned. The integration of Gn is zero
(
∫

Gndx = 0) due to the orthogonality between different �l ,
which implies that Gn would give rise to interference structures
rather than a smooth background in the density distribution.

A. Fourier spectrum

According to Eq. (2), the Fourier transform of Gn is

Fn = 1√
2π

∑
l

α∗
l αl+n

∫
�∗

l (x,τ )�l+n(x,τ )eikxdx + c.c.

= 1√
2π

w̃n(k,τ )
∑

l

α∗
l αl+ne

ikld + c.c. (3)

Here,

w̃n(k,τ ) =
∫

�∗(x,τ )�(x − nd,τ )eikxdx (4)

is independent of the lattice site l. The second line of Eq. (3) is
obtained using the fact that all �l are identical wave functions
except for their center positions. In the tight-binding limit
the Wannier function �(x,t = 0) can be well approximated
by a Gaussian wave packet (πσ 2)−1/4 exp(−x2/2σ 2), where
σ = √

h̄/(mω̃x) is the oscillator length, m is the atomic mass,
and ω̃x/(2π ) is the axial trapping frequency of the lattice wells.
After the TOF, the expanded subcondensate has a much larger
size than its initial wave packet (h̄τ/m � σ 2), then the wave
function of a single subcondensate can be written as [19]

�(x,τ ) = 1

π1/4σ 1/2

(
1 + ih̄τ

mσ 2

)−1/2

exp

(
imx2

2h̄τ

)
. (5)

Substituting Eq. (5) into Eq. (4), one gets

w̃n(k,τ ) = Wn

∫
exp [ix (k − nk1)] dx, (6)

where k1 = 2π/λ1, λ1 = 2πh̄τ/dm, and

Wn = 1√
πσ

∣∣∣∣1 + ih̄τ

mσ 2

∣∣∣∣−1

exp

(
in2md2

2h̄τ

)
.

Here, λ1 is a characteristic length equal to the travel distance of
an atom with a velocity twice the single-photon recoil velocity.
The integration term yields a δ-function-like peak at k = nk1,
and the peak width is inversely proportional to the spatial
size of the expanded wave packets. Similar analysis to the
conjugate part in Fn yields an identical peak at the symmetric
position, k = −nk1, instead. Therefore, the Fourier transform
of Gn shows a pair of peaks at k = ±nk1 (only one peak
for G0). Apparently, the characteristic length λ1 is actually
the spatial period of the Fourier component corresponding to

the peak of the n = 1 order. As such, coherence properties
associated with different spacings between subcondensates in
the optical lattice can be distinguished from one another just
by inspecting the Fourier spectrum of the density distribution
of the expanded atomic cloud. The whole power spectrum of
the atomic density is simply given by S(k) = �n |Fn|2.

Note that λ1 is much larger than the initial condensate size,
which means kld � 1, and hence eikld � 1. One may get from
Eq. (3) the peak intensities in the power spectrum S(k):

Pn = |Fn(k = nk1)|2 = AYn, (7)

where A = |w̃0(k = 0)|2 /(2π ) and Yn = |∑M−n
l=1 α∗

l αl+n|2. In
particular, Y0 = 1, as required by the normalization condition.
From the expression in Eq. (6), one sees that the amplitude of
w̃n(k = nk1), and hence A, is independent of n. Therefore, the
relative intensity of peaks in the power spectrum depends only
upon Yn.

B. Phase fluctuations

We now turn to consider the peak intensities in the power
spectrum, from which the phase fluctuation can be deduced.
In the optical lattice, the confined subcondensates undergo
phase fluctuations. The phase factor of each subcondensate
is contained in the corresponding coefficient αl , and the
summation term Yn in Eq. (7) is then rewritten as

Yn =
∣∣∣∣∣
M−n∑
l=1

|αlαl+n| eiδφln

∣∣∣∣∣
2

�
(∑

l

|αlαl+n|
)2 ∣∣∣∣∣ 1

M − n

∑
l

eiδφln

∣∣∣∣∣
2

,

where δφln ≡ φl+n − φl . Due to phase fluctuations of the
subcondensates when trapped in the optical lattice, δφln takes
random values with zero average. The last line of the above
equation is obtained by assuming that |αlαl+n| changes slowly
with l. As long as n � M , the summation term

∑
l |αlαl+n| is

constant for different n (i.e.,
∑

l |αlαl+n| � ∑
l |αl|2 = 1). Yn

is then simplified to

Yn =
∣∣∣∣∣ 1

M − n

∑
l

eiδφln

∣∣∣∣∣
2

. (8)

Apparently, for n > 0, Yn depends on the variance of δφln,
denoted by ξ 2 = 〈δφ2

ln〉. As shown in Fig. 1, Yn drops quickly
with increasing ξ . The randomness of δφln results in the
fluctuations of Yn around its averaged values. In the region
of larger phase variance, Yn has larger fractional fluctuations.
In computation, the total lattice site number is assumed to be
M = 200. We find, however, the averaged value of Yn is nearly
unchanged for different values of M .

Checking the summation
∑

l e
iδφln in Eq. (8), one sees that

it is nearly a real number as the imaginary terms are averaged
to zero. By replacing δφln by its variance ξ and assuming
ξ � 1, this summation term can be approximated by (M −
n)e− 1

2 ξ 2
. We then have an approximated expression of Yn in an

exponential form:

Yn = e−ξ 2
. (9)
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FIG. 1. The solid line shows the numerically calculated Yn versus
the variance of the random phase δφln for a total lattice number
M = 200. Each data point is an average of 1000 individual runs of
the computation. Shaded area corresponds to the standard error. The
dashed line is an exponential curve in the form of e−ξ2

. The inset is the
same figure on a logarithm vertical scale, highlighting the discrepancy
between the two curves.

This exponential curve is plotted in Fig. 1 as well. Surprisingly,
it shows a good match to the numerical data (the solid curve in
Fig. 1) even for the region far beyond ξ � 1. For example, the
relative error is only 5% at ξ = 0.5π . Of course, the tendency
to larger relative errors can be clearly seen as ξ is increased.

The phase fluctuation of two adjacent subcondensates can
be measured by a phase variance σ 2 = 〈δφ2

l1〉. Then one has

ξ 2 = 〈(φl+n − φl)
2〉

= 〈(δφl+n−1,1 + δφl+n−2,1 + · · · + δφl,1)2〉 = nσ 2,

where the last line is obtained under the assumption that there
is no correlation between different δφl,1. It means that two
subcondensates spaced by n times the lattice period correspond
to an n-times-larger phase variance. One knows from Eqs. (7)
and (9) that Pn = Ae−nσ 2

. Taking natural logarithm for both
sides of this formula, one obtains

ln Pn = ln A − nσ 2, (10)

which clearly shows the linear relation between the logarithmic
scale of the peak height and subcondensate spacing n. The
slope of this linear curve is just the phase variance σ 2.
Therefore, the phase fluctuations of the condensates confined
in discrete lattice wells can be easily determined by the
peak structures in the Fourier spectrum of the atomic density
distribution after the time of flight. We stress here that this
method to measure σ 2 does not need exact calibration of the
peak intensities, because σ 2 is unaffected by any identical scale
factors applied to all Pn. This clearly shows the convenience
of Eq. (10) in the measurement of σ 2.

There also exists an alternative method to measure the
phase variance, where σ 2 is determined by comparing the
experimentally measured Pn with numerically calculated Yn.
When ξ is very large, the analytical expression of Yn in Eq. (9)
is not a good approximation any more. In this case, the second

method is more reliable than the former one based on Eq. (10).
We shall make a comparison between the two methods later.

III. EXPERIMENT

Our experiments are carried out by using a nearly pure
87Rb condensate in the hyperfine state |F = 2,MF = 2〉 with
typically 105 atoms. The experimental setup was described
elsewhere [19]. The 1D optical lattice is formed by a retrore-
flected laser beam with a wavelength of λ = 1064 nm. Its
depth is calibrated using a method of Kapitza-Dirac scattering
[17,20]. The recoil energy is Er = h(2.03 kHz). The lattice
light is adiabatically applied to the cigar-shaped condensate
along its axial direction during a time of 50 ms. After a holding
time of 10 ms, the lattice light, as well as the magnetic trap, are
suddenly switched off. Finally, an absorption image is taken
for the released atomic cloud after a 30 ms TOF, by using
a probe light directed perpendicular to the lattice beam. The
experimental parameters correspond to a characteristic length
λ1 = 259 μm, which is much larger than the pixel size (9 μm)
of our CCD camera. In principle, the peaks up to the order
of n = 14 can be resolved by the CCD camera. In order to
obtain the statistics of the phase variance, the experiment was
repeated at least eleven times for each lattice depth.

The power spectrum S(k) is obtained from an absorption
image as follows: The spatial frequency spectrum is calculated
by Fourier transforming the image matrix. Taking the absolute
square to obtain the two-dimensional (2D) power spectral
density, S(k) is then obtained from the 2D matrix by making
a summation along the direction perpendicular to the lattice
beam. Thus, only the power spectrum along the lattice direction
remains in S(k). Finally, taking the natural logarithm of S(k),
we can find the peaks and extract σ 2 according to Eq. (10).

Figure 2 displays a power spectrum corresponding to the
absorption image of an atomic cloud released from the optical
lattice with a depth of 34.6Er . As predicted, S(k) consists
of a series of peaks equally spaced by k1. The peaks with
n = 0–2 are true signals of the cold atoms, whereas the peak
close to k/k1 = 3 is confirmed to be optical noise of the probe
light itself. This noise peak appears occasionally in repeated
experiments, even in the absence of the atomic cloud.

A higher phase variance means a weaker phase correlation.
In our experiment, subcondensate pairs with a spacing larger
than 2d can not yield a peak (n > 2) high enough to be visible
in S(k). We thus inferred that the phase correlation of two
subcondensates drops quickly with increased distance between
them, which is a natural consequence of the proportional
relation of ξ 2 = nσ 2.

To extract the phase variance σ 2, we used the data points
at the top of peaks in a power spectrum to perform the linear
fit in the form of Eq. (10). The standard error of a fitted slope
(σ 2) is usually small (�5%). In contrast, the value of σ 2 shows
much larger fluctuations from shot to shot as the experiment is
repeated under the same conditions. We thus take only the latter
fluctuations into consideration when calculating the error bars
of the phase variance. A linear fit to the three peaks in Fig. 2
yields a phase variance of σ 2 � 1.79. At the corresponding
depth level of the optical lattice, the atomic density profile
exhibits clear interference peaks along the lattice direction
(see the inset in Fig. 2). As the lattice depth is increased,
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FIG. 2. Open circles show the power spectral intensity obtained
from the density distribution of an expanded condensate released
from an optical lattice with a depth of 34.6Er . Four points at the top
of three peaks are marked by crosses and used to determine a phase
variance of σ 2 = 1.79 (8) by a linear fit (dashed line). The peak close
to k/k1 = 3 is caused by optical noises of the probe light. The inset
shows the atomic density distribution of this atomic cloud along the
direction of the lattice beam, showing clearly two side peaks due to
the interference of the subcondensates.

the phase variance is increased, and the higher-order peaks in
S(k) with n � 1 are expected to become weaker accordingly.
Figure 3 displays a typical result in such a case. At the depth
of 68Er , only the peaks of n = 0,1 are observed. Higher-order
peaks are too weak to be identified. As seen from Figs. 3(b)
and 3(c), the released condensate has lost the interference
structures completely, in contrast to the side peaks in Fig. 2.
In fact, despite the loss of interference peaks in atomic density

FIG. 3. (Color online) (a) Power spectrum S(k) of an expanded
condensate initially trapped at a depth of 68Er . (b) A false-color
absorption image of this released condensate, with a field of view of
0.55 mm × 1.63 mm. (c) Atomic density in the x direction, which is
obtained by integrating the pixels in height.

FIG. 4. (Color online) Measured phase variance σ versus the
lattice depth. For each data point, eleven independent runs were
averaged. Blue data points were obtained based on Eq. (10), whereas
the red data points were obtained by comparing the measured relative
intensity of the peaks of n = 1 with the numerical values of Y1. Black
data points were obtained by fitting the atomic density profile using
the method in Ref. [5].

distribution, the peaks in S(k) can still be observed for strong
optical lattice, up to the highest level (120Er ) we have reached.

The dependence of phase variance σ upon the lattice depth
is displayed in Fig. 4. The two sets of data (blue and red) were
obtained using the two methods described in Sec. II B. There
exists a clear trend, where the deeper the optical lattice, the
larger the phase variance. The value of σ grows from ∼0.4π

to ∼π , indicating that the relative phase between adjacent
lattice sites gains increased randomness, and it tends to be a
completely random phase. Below 50Er , the blue data points
are very close to the red ones. Beyond this level, however,
the discrepancy between the two sets of data becomes larger
with increased lattice depth. It can be simply understood by
the fact that the exponential form of Yn [Eq. (9)] is not a good
approximation for large ξ . Roughly speaking, the linear fit
method can only be applied when ξ is less than 0.6π , as is
evident in Fig. 4. It is worthy to point out that, although the
linear fit method is invalid in this case, the alternative method
is still simple to extract the phase variance from the Fourier
spectrum.

The accuracy of phase variance σ is limited by at least two
factors. First, as shown by the solid curve in Fig. 1, Yn is less
sensitive to ξ when ξ becomes large, particularly in a region
around π . Second, Yn itself is in fact a fluctuating parameter
in principle, although we have taken its averaged value as the
measured result. The fluctuation is evident from the fact that
the relative intensity of each peak in S(k) varies from shot to
shot. Therefore, in the deep lattice region, data points of σ are
always accompanied by large error bars.

As a comparison, we have also extracted the phase variance
by analyzing the visibility of the interference peaks of the
released atomic cloud. This method was first demonstrated in
Ref. [5], where the visibility is characterized by a quantity ζ

defined as the ratio of the width of a single peak to separation
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between the peaks. The phase variance is determined by
comparing the observed value of ζ with those obtained from
simulated data sets. First, we fit the interference profile with
three Gaussian peaks to get the value of ζ . Then, we calculate
the interference profile by using a simple one-dimension model
which is similar to that in our previous work [19]. Each
subcondensate in a single lattice well is assigned a random
phase. Those random phases are set in such a way that the
phase difference between two adjacent lattice sites obeys a
Gaussian distribution with a given variance σ 2. We convolve
the calculated interference profile with a resolution function
to account for the limited resolution of our imaging system.
To obtain the simulated ζ , we fit the convolved waveform
with the same fit function applied to the experimental data.
The simulation procedure is repeated many times to obtain an
averaged value of the simulated ζ .

The phase variances deduced from this fitting method
are displayed in Fig. 4. It is obvious that, below a depth
level of ∼60Er , the results of the fitting method agree well
with our method. This further confirms the validity of our
method. However, above 60Er , the fitting method does not
work due to the following reasons: To strictly follow the
method demonstrated in Ref. [5], both the peak width and
peak separation must be treated as fitting parameters. However,
at high-lattice-depth level, only one broad peak is left in the
interference profile, as shown in Fig. 3(c). The fitting procedure
cannot give reasonable peak positions. More specifically,
the side peaks obtained from the fitting program deviate
significantly from the positions where they should be located.
In addition, the fitted width of the side peaks is not reliable.

IV. SUMMARY AND DISCUSSION

We have developed a method to measure the phase fluctua-
tions of the subcondensates confined in a 1D optical lattice. In
our method, the Fourier spectra of the conventional absorption
images of the released atomic clouds have been investigated.
The phase variance between adjacent lattice wells is deduced
from the relative intensities of the peaks in a Fourier power
spectrum. Our experimental measurements have displayed an
increased phase variance as the lattice depth becomes larger
and also indicated that phase correlation of two lattice wells
decreases quickly with the increased distance between them.

Our method does not rely on the existence of interference
peaks of the released condensates, and it works even for very
large lattice depth. This method is a complementary to that
demonstrated in Ref. [5] and will be a useful tool in analyzing
phenomenons associated to phase fluctuations in optical lattice
systems, particularly for the case close to the quantum phase
transition.

Our theoretical model is established in the tight-binding
limit, where a condensate in the optical lattice can be regarded
as a chain of subcondensates. We found that, for a weak optical
lattice, there is no multipeak structure in S(k). The peaks start
to appear when the lattice depth reaches a level of ∼10Er . Well
resolved peaks can be observed if the depth level is further
increased to ∼20Er . It sets a coarse boundary beyond which
our model is applicable. Below the level of 20Er , one has to
switch to the method in Ref. [5] to measure the phase variance.

The optical lattice is not homogeneous due to the presence
of the magnetic trap which is used to support the atoms against
the gravity. The harmonic confinement of the magnetic trap
corresponds to a trapping frequency of 2π (7.6 Hz), and it
remains until the sudden release of the atomic cloud. For a
total atomic number of 105, the number of lattice sites that
are populated is M � 200. Most atoms are distributed in the
center region of the lattice where the tunneling rate J is nearly
uniform. This assures the assumption that σ is uniform over
the optical lattice. On the other hand, we did not see noticeable
changes of σ as the total atomic number is changed from 4
to 15 × 104. It is due to the fact that the tunneling rate is
independent of the atom numbers in single lattice wells.

In principle, our method can be extended to 2D and
three-dimensional (3D) optical lattices by treating the power
spectrum in each dimension separately. For a 2D optical lattice,
one probe beam perpendicular to the lattice plane is enough.
For a 3D lattice, however, an additional probe beam is required
to detect the atomic density profile in the third dimension.
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Nature (London) 415, 39 (2002).

[2] P. Pedri, L. Pitaevskii, S. Stringari, C. Fort, S. Burger, F. S.
Cataliotti, P. Maddaloni, F. Minardi, and M. Inguscio, Phys.
Rev. Lett. 87, 220401 (2001).

[3] X. Zhou, X. Xu, L. Yin, W. Liu, and X. Chen, Opt. Express 18,
15664 (2010).

[4] E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon,
Phys. Rev. A 55, 2989 (1997).

[5] C. Orzel, A. K. Tuchman, M. L. Fenselau,
M. Yasuda, and M. A. Kasevich, Science 291, 2386
(2001).

[6] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,
A. Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843
(2001).

[7] Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann,
A. Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. 94,
020403 (2005).

[8] B. Wang, P. Fu, J. Liu, and B. Wu, Phys. Rev. A 74, 063610
(2006).

[9] M. W. Jack, M. J. Collett, and D. F. Walls, Phys. Rev. A 54,
R4625 (1996).

[10] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys.
Rev. A 55, 4318 (1997).

053609-5

http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.87.220401
http://dx.doi.org/10.1103/PhysRevLett.87.220401
http://dx.doi.org/10.1364/OE.18.015664
http://dx.doi.org/10.1364/OE.18.015664
http://dx.doi.org/10.1103/PhysRevA.55.2989
http://dx.doi.org/10.1126/science.1058149
http://dx.doi.org/10.1126/science.1058149
http://dx.doi.org/10.1126/science.1062612
http://dx.doi.org/10.1126/science.1062612
http://dx.doi.org/10.1103/PhysRevLett.94.020403
http://dx.doi.org/10.1103/PhysRevLett.94.020403
http://dx.doi.org/10.1103/PhysRevA.74.063610
http://dx.doi.org/10.1103/PhysRevA.74.063610
http://dx.doi.org/10.1103/PhysRevA.54.R4625
http://dx.doi.org/10.1103/PhysRevA.54.R4625
http://dx.doi.org/10.1103/PhysRevA.55.4318
http://dx.doi.org/10.1103/PhysRevA.55.4318


WANG, ZHU, ZHOU, XIONG, XIONG, AND LÜ PHYSICAL REVIEW A 86, 053609 (2012)

[11] J. Javanainen and M. Wilkens, Phys. Rev. Lett. 78, 4675
(1997).

[12] K. Molmer, Phys. Rev. A 58, 566 (1998).
[13] J. Javanainen and M. Y. Ivanov, Phys. Rev. A 60, 2351

(1999).
[14] A. J. Leggett and F. Sols, Found. Phys. 21, 353 (1991).
[15] F. Sols, Phys. B 194–196, 1389 (1994).
[16] I. Zapata, F. Sols, and A. J. Leggett, Phys. Rev. A 57, R28 (1998).

[17] R. E. Sapiro, R. Zhang, and G. Raithel, New J. Phys. 11, 013013
(2009).

[18] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).
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