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Modified Bethe-Peierls boundary condition for ultracold atoms with spin-orbit coupling
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We show that the Bethe-Peierls (BP) boundary condition should be modified for ultracold atoms with spin-orbit
(SO) coupling. Moreover, we derive a general form of the modified BP boundary condition, which is applicable
to a system with an arbitrary kind of SO coupling. In the modified BP condition, an anisotropic term appears
and the interatomic scattering length is normally SO-coupling dependent. For the special system in the current
experiments, however, it can be proved that the scattering length is SO-coupling independent, and it takes the
same value as in the case without SO coupling. Our result is helpful for the study of both few-body and many-body
physics in SO-coupled ultracold gases.
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I. INTRODUCTION

In the study of ultracold atomic gases [1–9], the Bethe-
Peierls (BP) boundary condition [10] is widely used as a
replacement for the realistic interaction between two atoms.
With this approach, one only needs to solve the Schrödinger
equation with the Hamiltonian for atomic free motion, and thus
the calculation is significantly simplified. As a result, the BP
boundary condition is very useful in the research of few-body
and many-body physics in ultracold gases, especially those
with large interatomic scattering lengths. Many achievements
have been obtained. For instance, for two-component Fermi
gases, Petrov and co-workers obtained the atom-dimer [4]
and the dimer-dimer [5] scattering lengths, and Werner and
Castin [6] rederived the well-known Tan’s relations [11–13]
using the BP boundary condition.

In recent years, a class of synthetic gauge fields and
spin-orbit (SO) coupling has been realized in ultracold Bose
gases [14–20] and degenerate Fermi gases [21,22]. A consid-
erable amount of theoretical interest has been stimulated to
understand the SO-coupling effect in both few-body [23–27]
and many-body physics [28–48], including for gases with large
interatomic scattering lengths [35–44]. It becomes now an
urgent task to carefully examine the BP boundary condition in
SO-coupled ultracold gases.

In this paper we show that, in SO-coupled systems, the
BP boundary condition should be modified and moreover we
derive a general form of the modified BP boundary condition
that is applicable to a system with any kind of SO coupling and
arbitrary atomic spin. The relevance to the current experiments
is discussed.

II. MODIFIED BP BOUNDARY CONDITION
FOR SPIN-1/2 FERMIONIC ATOMS

In this section we shall consider a system of two spin-
1/2 fermonic atoms with a short-ranged and spin-dependent
interaction potential U (�r), where �r = (x,y,z) is the relative
position of the two atoms. The interaction U (�r) has an effective
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range r∗ such that U (�r) � 0 for r ≡ |�r| � r∗. Furthermore, we
shall focus on the case of low-energy scattering for which the
difference ε between the energy of atomic relative motion and
the scattering threshold is much smaller than 1/r2

∗ .
Let |↑〉 and |↓〉 represent the spin eigenstates of a single

atom; the quantum state of the relative atomic motion can be
described by a spinor wave function

|ψ(�r)〉 = ψS(�r)|S〉 +
3∑

j=1

ψTj
(�r)|Tj 〉, (1)

where |S〉 = (|↑〉1|↓〉2 − |↓〉1|↑〉2)/
√

2 is the singlet spin state
and |Tj 〉 (j = 1,2,3) are the three triplet states. In dilute
ultracold gases, the interatomic distance is much larger than
the effective range r∗, and the physical property of the system
is determined by the behavior of the wave function |ψ(�r)〉 in
the region r � r∗.

Our task is to investigate the behavior of the wave function
|ψ(�r)〉 in the presence of SO coupling, and then establish the
correct BP boundary condition.

A. Without SO coupling

For completeness, we start with the case without SO
coupling, for which the relative motion of the two atoms is
governed by the Hamiltonian

H = �p 2 + B + U (�r), (2)

where �p = −i∇ is the relative momentum and the natural
units h̄ = m = 1 (where m is the single-atom mass) are used.
Operator B acts in the spin space and accounts for the possible
�r-independent contribution, e.g., from the Zeeman effect. We
assume the differences of the eigenenergies of B are much
smaller than 1/r2

∗ .
We first consider the property of |ψ(�r)〉 in the short-range

region r∗ � r 
 1/
√

ε. According to low-energy scattering
theory (Appendix A), when |ψ(�r)〉 is a low-energy eigenfunc-
tion of H , one has

|ψ(�r)〉 ∝
(

1

r
− 1

a

)
|S〉 for r∗ � r 
 1/

√
ε, (3)
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with the scattering length a being determined by the detail of
U (�r) . Note that Eq. (3) does not depend on the eigenvalue
of H for |ψ(�r)〉 and is thus applicable to all low-energy wave
functions.

With Eq. (3), one can obtain the behavior of a low-energy
wave function |ψ(�r)〉 in the whole region r � r∗. Let |φ(�r)〉
be the solution of the Schrödinger equation with Hamiltonian
�p 2 + B; together with the BP boundary condition

lim
r→0

|φ(�r)〉 ∝
(

1

r
− 1

a

)
|S〉 + O(r), (4)

the realistic wave function |ψ(�r)〉 and the pseudo one |φ(�r)〉
will have the same behavior for r � r∗. Therefore, in the
study of few-body and many-body physics in systems with
interaction U (�r), one can replace the realistic potential U (�r)
by the BP condition (4). Theoretical calculations can be greatly
simplified.

B. With one-dimensional SO coupling

We now consider a simple case with one-dimensional
SO coupling. Without loss of generality, the single-atom
Hamiltonian of the system can be written as

H1b =
�P 2

2
+ λσ̂zPx + Z, (5)

where �P is the atomic momentum, σ̂ is the Pauli operator,
λ indicates the intensity of the SO coupling, and Z accounts
for the residual spin-dependent part. In this paper we shall
consider the case of weak SO coupling, λ 
 1/r∗, as in the
current experiments. We assume the differences between the
eigenvalues of Z are much smaller than 1/r2

∗ .
The total Hamiltonian of the two atoms is given by

H
(1)
1b + H

(2)
1b + U (�r), where H

(i)
1b is for the ith atom. Because

the total momentum of the two atoms is conserved, the relative
motion can be separated from the mass-center motion. The
Hamiltonian for the relative motion is then

H = �p 2 + λ
(
σ̂ (1)

z − σ̂ (2)
z

)
px + B( �K) + U (�r) ≡ H0 + U (�r),

(6)

where B( �K) = Z(1) + Z(2) + λ(σ̂ (1)
z + σ̂ (2)

z )Kx/2 and the
vector �K = (Kx,Ky,Kz) is just the total momentum of the
two atoms.

For the aim of establishing a correct BP boundary condition,
one should also examine the behavior of the eigenfunction
|ψ(�r)〉 of H in Eq. (6) in the short-range region, now defined as
r∗ � r 
 rs with rs = min(1/

√
ε,1/λ). Comparing Eq. (6) to

Eq. (2), one finds that due to the SO coupling, the Hamiltonian
H is modified by a term λ(σ̂ (1)

z − σ̂ (2)
z )px . This term exists

in the whole range of the interatomic distance r , including
the short-range region and the region r � r∗. Therefore, the
short-range behavior of |ψ(�r)〉 can no longer be described by
Eq. (3), and the BP boundary condition in Eq. (4) cannot be
directly applied.

To overcome this difficulty, we introduce a unitary trans-
formation (rotation) R(�r) as

R(�r) = eiλ(σ̂ (1)
z −σ̂

(2)
z )x/2, (7)

with x the relative position in the x direction, and we define
the rotated wave function |ψ(�r)〉R as

|ψ(�r)〉R = R(�r)|ψ(�r)〉. (8)

An immediate observation is that since |ψ(�r)〉 is an eigenfunc-
tion of Hamiltonian H , the rotated wave function |ψ(�r)〉R is
an eigenfunction of the rotated Hamiltonian

HR = R(�r)HR†(�r). (9)

Straightforward calculations yield

HR = �p 2 + W (�r) + UR(�r) (10)

with

UR(�r) = R(�r)U (�r)R†(�r), (11)

W (�r) = R(�r)B( �K)R†(�r) − λ2

4

(
σ̂ (1)

z − σ̂ (2)
z

)2
. (12)

Equation (10) shows that the SO coupling disappears in the
rotated Hamiltonian HR. Furthermore, in the region r 
 1/λ,
we have W (�r) � W (0), and then

HR ≈ HSR ≡ �p 2 + W (0) + UR(�r). (13)

Thus, the eigenfunctions of HR and HSR have the same
behavior in the short-range region r∗ < r 
 rs . Further,
Eq. (13) has the same behavior as Eq. (2). Therefore, the
eigenfunction |ψ(�r)〉R behaves as

|ψ(�r)〉R ∝
(

1

r
− 1

aR

)
|S〉 for r∗ � r 
 rs, (14)

analogous to Eq. (3). It should be pointed out that aR is
the scattering length with respect to the rotated interaction
potential UR(�r). On the basis of Eq. (14), the behavior of the
wave function |ψ(�r)〉 in the unrotated frame can be obtained
by the inverse unitary transformation R†(�r). The result is

|ψ(�r)〉 ∝
(

1

r
− 1

aR

)
|S〉 − i

λ

2
(σ̂z1 − σ̂z2)

(x

r

)
|S〉,

for r∗ � r 
 rs . (15)

As in the above ssection, Eq. (15) does not depend on whether
or not |ψ(�r)〉 is an eigenfunction of H , and thus it is generally
applicable. Finally, we emphasize that the last term in Eq. (15)
is of the order of unity and cannot be neglected.

Let |φ(�r)〉 be the wave function given by the Schrödinger
equation with Hamiltonian H0 in Eq. (6) together with the
modified BP boundary condition

lim
r→0

|φ(�r)〉∝
(

1

r
− 1

aR

)
|S〉−i

λ

2

(
σ̂ (1)

z − σ̂ (2)
z

) (x

r

)
|S〉+O(r).

(16)

It is clear that in the whole region r � r∗, |φ(�r)〉 has the same
behavior with the solution of the Schrödinger equation with
Hamiltonian H in Eq. (6). Therefore, theoretical calculation
can be done by replacing U (�r) with condition (16).

So far we have obtained the modified BP boundary
condition (16) for the system with one-dimensional SO
coupling. Comparing Eq. (16) to Eq. (4), we find that the
SO coupling has two effects on the BP condition. First,
the modified BP condition includes an anisotropic term
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−iλ(σ̂ (1)
z − σ̂ (2)

z )x/(2r)|S〉. Second, the scattering length aR

is determined by the detail of the rotated interaction potential
UR(�r) defined in Eq. (11).

In general, to obtain the value of aR we need to explicitly
solve the Schrödinger equation with potential UR(�r) for a
given SO coupling. As shown below, however, in the special
case of the current experiments [21,22], the SO coupling does
not change the scattering length. Namely, aR equals to the
scattering length a0 for the case without SO coupling.

In Refs. [21,22], the spin states |↑〉 and |↓〉 are two hyperfine
states of the 6Li or 40K atom, and the single-atom Hamiltonian
in the Schrödinger picture is given by

H1bS =
�P 2

2
+ �

2
(σ̂+e2ikrX + σ̂−e−2ikrX) + δ

2
σ̂z, (17)

with X the single-atom coordinate in the x direction, σ̂+ =
|↑〉〈↓|, and σ̂− = σ̂

†
+. Here � and δ are the Rabi frequency

and the two-photon detuning, respectively. Then, in the
Schrödinger picture the two-atom Hamiltonian is H2bS =
H

(1)
1bS + H

(2)
1bS + U0(�r), where the bare interatomic interaction

potential U0(�r) has scattering length a0.
The SO coupling term emerges after the spin rotation

along the z axis or the unitary transformation T (X) =
exp[−ikrXσ̂z] is applied. In the transformed picture, the
single-atom Hamiltonian is given by H1b = T (X)H1bST †(X).
It can be shown that H1b takes the form in Eq. (5) with λ = 2kr

and Z = �σ̂x/2 + δσ̂z/2.
The two-atom Hamiltonian in the transformed picture

can be written as H
(1)
1b + H

(2)
1b + U (�r), and the transformed

interaction potential U (�r) is given by

U (�r) = T (X1)T (X2)U0(r)T †(X2)T †(X2)

= e−ikr [σ̂ (1)
z −σ̂

(2)
z ]xU0(�r)eikr [σ̂ (1)

z −σ̂
(2)
z ]x, (18)

where the relative coordinate x satisfies x = X1 − X2 and
we have used the fact that [U0(�r),σ̂ (1)

z + σ̂ (2)
z ] = 0, arising

from the conservation of the total z component of hyperfine
spin during the collision process. We emphasize that, in the
transformed picture where the SO-coupling term σ̂zPx appears,
the interatomic interaction is not the bare potential U0(�r), but
the transformed one U (�r).

The scattering length aR in the modified BP boundary con-
dition (16) is determined by UR(�r) in Eq. ( (11)). Substituting
Eq. (18) into Eq. (11), we find that the rotated potential UR(�r)
reduces to the bare potential, i.e., UR(�r) = U0(r). Therefore,
the scattering length remains unchanged with SO coupling,
i.e., aR = a0.

C. With arbitrary type of SO coupling

We shall now extend the above treatment to the spin-1/2
fermonic system with arbitrary type of SO coupling. In this
case, the single-atom Hamiltonian can be generally written as

H1b =
�P 2

2
+ λ �M · �P + Z, (19)

where �M and Z as operators in the spin space and the maximum
eigenvalue of �M is of the order of unity. After being separated
from the mass-center motion, the relative motion of the two

atoms is described by the Hamiltonian

H = �p 2 + λ�c· �p + B( �K) ≡ H0 + U (�r), (20)

with �c = �M (1) − �M (2) and B( �K) = Z(1) + Z(2) + λ( �M (1) +
�M (2)) · �K/2.

As in the above section, to investigate the short-range
behavior of the eigenfunction |ψ(�r)〉 of H , we introduce a
unitary transformation R(�r) as

R(�r) = eiλcxx/2eiλcyy/2eiλczz/2, (21)

with �c ≡ (cx,cy,cz). The rotated Hamiltonian HR =
R(�r)HR†(�r) can be calculated as

HR = �p 2 − 2λ �d(λ�r) · �p + W (�r) + UR(�r) (22)

with operators �d ≡ (dx,dy,dz) and W given by

dx(λ�r) = 0, (23)

dy(λ�r) = eiλczz/2 cy

2
e−iλczz/2 − R(�r)

cy

2
R†(�r), (24)

dz(λ�r) = cz

2
− R(�r)

cz

2
R†(�r), (25)

and

W (�r) = iλ[∇ · �d(λ�r)] + R(�r)B( �K)R†(�r) (26)

+ λ2

[
| �d(λ�r)|2 − R(�r)

|�c|2
4

R†(�r)

]
. (27)

Here we have UR(�r) = R(�r)U (�r)R†(�r) as before.
Unlike Eq. (10) in the above section, the SO coupling still

exists in the rotated Hamiltonian HR in Eq. (22). Nevertheless,
according to Eqs. (23)–(25), we have �d(λ�r) = O(λr). Namely,
its zeroth-order contribution in HR vanishes. This leads to the
following important property of the eigenfunction |ψ(�r)〉R of
HR:

|ψ(�r)〉R ∝
(

1

r
− 1

aR

)
|S〉 (for r∗ � r 
 rs). (28)

The result in Eq. (28) is proved as follows. In the region
r > r∗ where UR(�r) is negligible, the eigenequation of HR

reads

[ �p2 − 2λ �d(λ�r) · �p + W (�r)]|ψ(�r)〉R = E|ψ(�r)〉R. (29)

As shown in Appendix B, in this region the wave function
|ψ(�r)〉R can be expressed as

|ψ(�r)〉R = C−1

r
|S〉 +

∞∑
n=0

Cnr
n|S〉

+
∞∑
l=1

l∑
ml=−l

∞∑
n=0

rnYl,ml
(θ,φ)|Al,ml,n〉, (30)

in the spherical coordinate (r,θ,φ). Here Yl,ml
(θ,φ) are the

spherical harmonic functions, Cn (n = −1,0,1, . . .) is the
coefficient of term rn|S〉, and |Al,ml,n〉 (n = 0,1, . . .) is the
spin state with respect to rnYl,ml

(θ,φ). Substituting Eq. (30)
into Eq. (29) and comparing the coefficient of the term r−2

on both sides, we find that because d(λ�r) = O(λr), one has
|Al,ml,0〉 = 0. Therefore, in the short-range region |ψ(�r)〉R

behaves as in Eq. (28), with the scattering length aR determined
by both the potential UR(�r) and the operator �d(λ�r).

053608-3



PENG ZHANG, LONG ZHANG, AND YOUJIN DENG PHYSICAL REVIEW A 86, 053608 (2012)

With Eq. (28) and following the procedure in the above
section, we obtain the modified BP boundary condition for the
general type of SO coupling as

lim
r→0

|φ(�r)〉 ∝
(

1

r
− 1

aR

)
|S〉 − i

λ

2
�c ·

( �r
r

)
|S〉 + O(r). (31)

As in the previous section, the value of the scattering length
aR in general depends on the SO coupling. This dependence is
also shown in Fig. 3 of Ref. [23] with a simple model where
the potential U (�r) is modeled as a spin-independent spherical
square well.

III. MODIFIED BP BOUNDARY CONDITION
FOR ATOMS WITH ARBITRARY SPIN

Finally, we consider the general case: a system of two
fermonic or bosonic atoms with any kind of SO coupling and
arbitrary spin. The Hamiltonians for the single-atom motion
and the relative motion of the two atoms are still given by
Eqs. (19) and (20), respectively.

For simplicity, we first consider the case in which the
interatomic interaction U (�r) (with scattering length a) is
independent of the atomic spin. In this case, it can be shown
that, without SO coupling, the low-energy eigenstate |ψ(�r)〉 of
the relative-motion Hamiltonian (−∇2 + U (�r) + Z(1) + Z(2))
behaves as

|ψ(�r)〉 ∝
(

1

r
− 1

a

)
|χ〉, for r∗ � r 
 rs . (32)

This is very similar to Eq. (2), but now the �r-independent
spin state |χ〉 is not unique. Instead, |χ〉 can be different for
different eigenstates |ψ(�r)〉.

In the presence of SO coupling, the short-range behavior of
the eigenfunction |ψ(�r)〉 can be obtained via the same approach
using the unitary transformationR(�r) in Eq. (21). In particular,
in the region r 
 rs , it is sufficient to keep the lowest-order
terms of �d(λ�r) and W (�r) defined in Eqs. (23)–(26). Thus,
the rotated wave function |ψ(�r)〉R = R(�r)|ψ(�r)〉 satisfies the
equation

[ �p 2 − 2λ�g(λ�r) · �p + W (0) + U (�r)]|ψ(�r)〉R

= E|ψ(�r)〉R(r 
 rs), (33)

where E is the eigenenergy. Here we have used �d(0) = 0
and the fact that UR(�r) = U (�r), which is because U is
spin-independent. The operator �g = (gx,gy,gz) is defined as
gi(λ�r) = �r · [∇di(λ�r)|�r=0] with i = x,y,z. In Eq. (33) the
term −2λ�g · �p couples the s-wave and d-wave components
of |ψ(�r)〉R. In the Schrödinger equation, the coupling terms
are either independent of r or proportional to r(∂/∂r), and
thus they do not decrease the power of r in the wave function
|ψ(�r)〉R. The estimation with the semiclassical approximation
∂|ψ(�r)〉R/∂r �

√
−U (�r)|ψ(�r)〉R shows that, in the short-

range region r∗ � r 
 rs , the intensity of this coupling is much
smaller than the centrifugal potential 6/r2, which is the energy
gap between the s-wave and d-wave channels. In addition, for
many systems this intensity is also much smaller than 6/r2

even when r � r∗. An example is a system with Lennard-Jones
potential U (�r) = −c6/r6 + c12/r12. Therefore, for these sys-
tems we can neglect the SO coupling in the entire region

r 
 rs . Then one has

|ψ(�r)〉R ∝
(

1

r
− 1

a

)
|χ〉 (for r∗ � r 
 rs). (34)

Note that a is still the scattering length of the potential U (r).
Accordingly, we have the modified BP boundary condition

lim
r→0

|φ(�r)〉 ∝
(

1

r
− 1

a

)
|χ〉 − i

λ

2
�c ·

( �r
r

)
|χ〉 + O(r). (35)

The situation becomes more sophisticated if U (�r) is spin-
dependent or the SO coupling cannot be neglected in HR

when r � r∗. In these cases, 1/a in the modified BP boundary
condition (35) should be replaced by an operator AR in the
spin space, which is also determined by UR(�r) and �d(λ�r). The
details are given in Appendix C.

We conclude this section by pointing out that, as in Sec. II,
in the current experiments [14–20] for bosonic atoms with
one-dimensional SO coupling, the rotated potential UR is
equivalent to the bare potential U0 in the Schrödinger picture,
and the operator �d is zero. Then the operator AR in the modified
BP boundary condition is independent of the SO coupling.
For instance, for the ultracold gases with spin-1 87Rb atoms,
we have AR = 1/a0PF=0 + 1/a2PF=2, where a0 (a2) is the
scattering length with respect to the total atomic spin F = 0
(F = 2) and PF=0,2 are the relevant projection operators.

IV. DISCUSSION

In this paper we derive the modified BP boundary condition
for ultracold atomic gases with SO coupling. It is shown
that the SO coupling brings a new anisotropic term to the
BP boundary condition and may change the value of atomic
scattering length.

Our result can be used for the research of both few-body
and many-body problems in SO-coupled ultracold gases. For
instance, for N spin-1/2 fermonic atoms with the Hamiltonian

HT =
N∑

i=1

H1b(i) +
N∑

i=1

V
(i)

trap +
N∑

i<j

U (�rij )

≡ HF +
N∑

i<j

U (�rij ), (36)

one can replace the interaction potential U (�rij ) by the modified
BP boundary condition

lim
|�rij |→0

〈�rij |�〉 ∝
[(

1

|�rij | − 1

aR

)
|S〉ij − i

λ

2
�c ·

( �rij

|�rij |
)

|S〉ij
]

× |�′〉 + O(rij ). (37)

In Eq. (36) V
(i)

trap is the trap potential for the ith atom and
�rij is the relative position between the ith and j th atoms; in
Eq. (37) |�〉 is the N -atom state, |�rij 〉 is the eigenstate of the
relative motion of the (i,j ) pair, |S〉ij is the singlet spin state
for the two atoms, and |�′〉 is a quantum state for other atoms.
The limit in Eq. (37) is taken for fixing the positions of other
atoms as well as the mass center of the (i,j ) pair. In the region
|�rij | � r∗, the solution of the Schrödinger equation with the
free Hamiltonian HF under the boundary condition (37) has
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the same behavior as the solution of the Schrödinger equation
with the total Hamiltonian HT .

Our result is also useful in the current experiments of
ultracold gases with one-dimensional SO coupling and far
away from the Feshbach resonance point. As shown in Secs. II
and III, the scattering lengths in these systems are independent
of the SO coupling, and thus all the terms in the modified BP
boundary condition can be fully determined with the known
parameters.
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APPENDIX A: SHORT-RANGE BEHAVIOR
OF SCATTERING WAVE FUNCTION

In this Appendix we prove Eq. (3) for the short-range
behavior of the wave function |ψ(�r)〉 in the cases without
SO coupling. Without loss of generality, here we consider the
case in which |ψ(�r)〉 is the scattering wave function and then
satisfies the Lippmman-Schwinger equation [49]

|ψ(�r)〉 = |ψ (0)(�r)〉 +
∫

d�r ′g0(E,�r,�r ′)U (�r ′)|ψ(�r ′)〉, (A1)

where E is the eigenenergy of H in Eq. (2) with respect
to |ψ(�r)〉, and |ψ (0)(�r)〉 is the incident state and satisfies
( �p 2 + B)|ψ (0)(�r)〉 = E|ψ (0)(�r)〉. For our system with two
fermonic atoms, |ψ (0)(�r)〉 is antisymnetric with respect to the
permutation of the two atoms. In Eq. (A1) the Green’s operator
g0(E,�r,�r ′) is defined as

g0(η,�r,�r ′) = 1

η + i0+ − ( �p 2 + B)
δ(�r − �r ′)

= −
∑

n

ei
√

η−εn|�r−�r ′ |

π |�r − �r ′| |n〉〈n| (A2)

with εn and |n〉 the nth eigenvalue and eigenstate of the operator
B, respectively.

Since the potential U (�r) is negligible in the region r > r∗,
the integration in Eq. (A1) is only effective in the region r ′ �
r∗. In the low-energy cases, when r → ∞ and r ′ � r∗, the
function g0(E,�r,�r ′) becomes very steady with respect to �r ′
and we have g0(E,�r,�r ′) ≈ g0(E,�r,0). Therefore, in the limit
r → ∞, the solution of Eq. (A1) takes the form

|ψ(�r)〉 = |ψ (0)(�r)〉 + g0(E,�r,0)|χ〉, (A3)

where the spin state |χ〉 is related to |ψ(�r)〉 via the equation
|χ〉 = ∫

d�r ′U (�r ′)|ψ(�r ′)〉. Furthermore, because P12|ψ(�r)〉 =
−|ψ(�r)〉 and P12U (�r)P12 = U (�r) with P12 the permutation
operator of the two atoms, one finds that P12U (�r)|ψ(�r)〉 =
−U (�r)|ψ(�r)〉. This result yields

|χ〉 = |S〉
∫

d�r ′U(r ′)〈S|ψ(�r ′)〉. (A4)

On the other hand, since |ψ(�r)〉 is an eigenstate of H and
the potential U (�r) is negligible in the region r > r∗, in such a
region the wave function |ψ(�r)〉 satisfies the equation

( �p 2 + B)|ψ(�r)〉 = E|ψ(�r)〉. (A5)

Therefore, the behavior of the wave function |ψ(�r)〉 in the
region r � r∗ is determined by Eq. (A5) and the boundary
condition (A3) in the limit r → ∞. Considering Eq. (A4), one
can easily prove that the function

|ψ(�r)〉 = |ψ (0)(�r)〉 + �0g0(E,�r,0)|S〉 (A6)

with �0 a constant satisfies both of the two conditions.
Therefore, |ψ(�r)〉 satisfies Eq. (A6) in the whole region of
r � r∗.

To obtain the short-range behavior of |ψ(�r)〉, one can
expand Eq. (A6) as a series of r , and then neglect the high-
order terms. Using Eq. (A2) and the fact that P12|ψ (0)(�r)〉 =
−|ψ (0)(�r)〉, we immediately get the result in Eq. (3):

|ψ(�r)〉 ∝
(

1

r
− 1

a

)
|S〉 for r∗ � r 
 1/

√
ε. (A7)

APPENDIX B: PROOF OF EQ. (30)

Now we prove Eq. (30) for the behavior of |ψ(�r)〉R in the
region r � r∗. To this end, we first consider the behavior of
the unrotated eigenfunction |ψ(�r)〉 of Hamiltonian H defined
in Eq. (20). Without loss of generality, here we consider the
case in which |ψ(�r)〉 is the scattering wave function. Using the
approach in Appendix A, we can prove that when r � r∗ we
have

|ψ(�r)〉 = |ψ (0)(�r)〉 + �0g(E,�r,0)|S〉, (B1)

where E is the eigenenergy of H with respect to |ψ(�r)〉,
and |ψ (0)(�r)〉 is the incident state and satisfies H0|ψ (0)(�r)〉 =
E|ψ (0)(�r)〉 with H0 defined in Eq. (20). The Green’s operator
g(E,�r,�r ′) is defined as

g(η,�r,�r ′) = 1

η + i0+ − H0
δ(�r − �r ′). (B2)

Now we expand the right-hand side of Eq. (B1) as a power
series of r . To this end, we first consider the operator F (�k) ≡
λ�c · �k + B( �K), with �k a constant operator and λ, �c, and B( �K)
defined in Sec. II. For each given vector �k, F (�k) is an operator
in the four-dimensional spin space. We denote the αth (α =
1,2,3,4) eigenenergy and eigenstate F (�k) as E(α,�k) and |α(�k)〉,
respectively. Therefore, the incident wave function |ψ (0)(�r)〉,
which is an eigenfunction of H0 defined in Eq. (20), takes the
form

|ψ (0)(�r)〉 = 1

2(2π )3/2
(1 − P12)ei�k·�r |α(�k)〉, (B3)

with P12 the permutation operator for both the spin and the
spatial motion of the two atoms. Equation (B3) leads to the
result that

|ψ (0)(�r)〉 = O(r0). (B4)
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Now we consider the expansion of the Green’s function
g(E,�r,0). By using the fact that

δ(�r − �r ′) =
∫

d�k ei�k·(�r−�r ′)

(2π )3

(∑
α

|α(�k)〉〈α(�k)|
)

, (B5)

it is easy to show that

g(E,�r,0) =
∑

α

∫
d�k ei�k·�r

(2π )3

|α(�k)〉〈α(�k)|
E + i0+ − [�k2 + E(α,�k)]

. (B6)

Equation (B6) and the completeness relationship∑
α |α(�k)〉〈α(�k)| = 1 lead to the result

g(E,�r,0)

=
∫

d�k ei�k·�r

(2π )3

1

E + i0+ − �k2
+

∑
α

∫
d�k ei�k·�r

(2π )3
|α(�k)〉

× 〈α(�k)|
(

1

E+i0+−[�k2+E(α,�k)]
− 1

E+i0+−�k2

)
. (B7)

It is pointed out that, in the limit r → 0, the integration on the
right-hand side of Eq. (B7) converges to a constant operator in
the spin space. On the other hand, we also have∫

d�k ei�k·�r

(2π )3

1

E + i0+ − �k2
= −ei

√
Er

πr
. (B8)

Due to these facts, we have g(E,�r,0) ∝ 1/r + O(r0). Sub-
stituting this result and Eq. (B4) into Eq. (B1) and using the
relation |ψ(�r)〉R = R(�r)|ψ(�r)〉 with R(�r) defined in Eq. (21),
we can find that

|ψ(�r)〉R ∝ 1

r
|S〉 + O(r0). (B9)

Namely, |ψ(�r)〉R takes the form of Eq. (30).

APPENDIX C: THE MODIFIED BP BOUNDARY
CONDITION FOR ATOMS WITH

SPIN-DEPENDENT INTERACTION

In Sec. III of our main text, we derive the modified BP
boundary condition for atoms with arbitrary spin and SO
coupling. Our result in Eq. (35) is based on the following
two assumptions: (a) the interatomic interaction is spin-
independent; (b) in the rotated frame, the influence of the
SO coupling or the term −2�g · �p is negligible in the region
r � r∗. In this Appendix we go beyond these two assumptions
and derive the general type of modified BP boundary condition
for atoms with arbitrary spin and SO coupling.

We first go beyond assumption (a) and consider the case
of atoms with spin-dependent interaction U (�r). When there
is no SO coupling, the eigenfunction |ψ(�r)〉 of the two-atom
relative Hamiltonian satisfies

[−∇2 + U (�r) + Z(1) + Z(2)]|ψ(�r)〉 = E|ψ(�r)〉. (C1)

We assume the spin space of the two atoms is n dimensional,
and we denote the eigenstates of Z(1) + Z(2) as |j 〉 (j =
1, . . . ,n). We further define

|�(�r)〉 = r|ψ(�r)〉.
Then |�(�r)〉 satisfies the boundary condition |�(0)〉 = 0.

We first consider that U (�r) is spherical. Thus, |�(�r)〉 can
be written as

|�(�r)〉 =
n∑

j=1

�j (r)|j 〉. (C2)

Then, Eq. (C1) can be reexpressed as the equation for |�(�r)〉.
We define |�(α)(r)〉 as the s-wave solution of this equation,
with component �

(α)
j (r) satisfying the boundary conditions

�
(α)
j (0) = 0 and

d

dr
�

(α)
j (r)

∣∣∣∣
r=0

=
{

1, for α = j,

0, for α �= j.
(C3)

Therefore, the states |φ(α)(�r)〉 = |�(α)(�r)〉/r are n special
solutions of Eq. (C1). In the short-range region, the low-energy
wave function |φ(α)(�r)〉 behaves as

|φ(α)(�r)〉 = 1

r
|Mα〉 − |Tα〉 (C4)

with |Mα〉 and |Tα〉 as states of atomic spin.
Furthermore, any s-wave solution |ψ(�r)〉 of Eq. (C1) can

be written as the linear combination of |φ(α)(�r)〉 and then
expressed as

|ψ(�r)〉 =
n∑

α=1

bα

[
1

r
|Mα〉 − |Tα〉

]
for r∗ � r 
 rs .

(C5)

In addition, the low-energy solutions of Eq. (C1) with
high partial waves are negligible in the short-range region.
Therefore, Eq. (C5) is actually satisfied by all the low-energy
solutions of Eq. (C1).

When the states |Mα〉 with different α are linearly inde-
pendent of each other, we can define an operator A which
satisfies A|Mα〉 = |Tα〉. (In particular, when the interaction U

is independent of the atomic spin, we have A = 1/a.) With
this definition, the behavior (C5) of |ψ(�r)〉 can be rewritten as

|ψ(�r)〉 ∝
(

1

r
− A

)
|χ〉 for r∗ � r 
 rs . (C6)

As in Sec. III, the �r-independent state |χ〉 in the spin space is
not unique. Finally, it can be proved that in the low-energy limit
the above result is also correct when U (�r) becomes anisotropic.

In the presence of SO coupling, with Eq. (C6) and the
approach in our main text we can obtain the modified BP
boundary condition

lim
r→0

|φ(�r)〉 ∝
(

1

r
− AR

)
|χ〉 − i

λ

2
�c ·

( �r
r

)
|χ〉 + O(r)

(C7)

with the operator AR determined by both the potential UR(�r)
and the operator �d(λ�r).

Finally, if we go beyond assumption (b) and consider the
case in which the SO coupling cannot be neglected when r �
r∗, we can also follow the above approach, and we obtain
the modified BP boundary condition which has the form in
Eq. (C7).
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