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Ultracold Fermi gas in a single-mode cavity: Cavity-mediated interaction and BCS-BEC evolution
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We propose that the evolution of superfluidity from the Bardeen-Cooper-Schrieffer (BCS) regime to the Bose-
Einstein condensation (BEC) regime can be realized using ultracold Fermi gas coupled to a single-mode cavity.
By the functional integral formalism, we derive an effective atom-only action, which mimics the two-component
Fermi gas with tunable two-body interaction. First, we address the features of the cavity-mediated interaction. We
find that the matter-light coupling creates an effective s-wave scattering whose sign and amplitude are controlled
by parameters of the cavity. Second, we discuss the fermionic superfluidity on the mean-field level, including the
order parameter, chemical potential, quasiparticle excitation spectrum, momentum distribution, and dissociation
temperature. It is shown that by varying the atom-cavity detuning, a BCS to BEC crossover occurs. In addition,
the influences of the atomic collaborative effect and external pumping field on the pairing correlation are also
studied.
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I. INTRODUCTION

Ultracold quantum gases are dilute atomic systems trapped
by magnetic or optic fields and cooled to temperatures
of a few tens of nano-Kelvins [1,2]. Due to their superb
tunability and purity, atomic gases become ideal platforms
when we put our fundamental models to the test. A particularly
interesting system of such kind is the superfluid Fermi gas
with a Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein
condensation (BEC) evolution. The possibility to control the
scattering length and thereby tune the effective attraction
through the technique of Feshbach resonance [3] paves the
way to investigate fermionic superfluidity as a function of
interaction parameter. With the increase of the inverse s-wave
scattering length from negative to positive, the fermionic
superfluidity evolves from a weak-coupling BCS type to a
molecular BEC type. Although the scattering length is diver-
gent at the resonance, the evolution is not a phase transition but
a smooth crossover. The original Hamiltonian with a tunable
attractive interaction was first considered by Leggett [4] and
more quantitative studies were then performed by Nozières and
Schmitt-Rink (NSR) [5], and also by Sá de Melo [6]. Recent
theoretical works that deal with more complicated cases have
addressed the BCS-BEC evolution in systems as diverse as
the anisotropic Fermi superfluid [7–9], relativistic Fermi and
Bose-Fermi mixtures [10,11], Fermi gases with population and
mass imbalance [12–14], disordered Fermi gases [15,16], and
spin-orbit coupled Fermi gases [17,18]. The new findings are
interesting and exciting. For instance, in the p-wave scattering
case the BCS-BEC evolution turns into a quantum phase
transition [7], and a topological phase transition arises when
the spin-orbit coupling is taken into account [17]. Following
state-of-the-art experimental techniques, some of these works
have been verified in laboratories [19–21].

Besides the Feshbach resonance, there are quite different
ways to introduce a tunable interaction between atoms, say
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by the cavity quantum electrodynamics (CQED). As an
intersection of quantum optics and atomic physics, quantum
gases coupled with an optical cavity have recently attracted a
great deal of attention [22–24]. In this paper, we consider
a system of two-level Fermi atoms strongly coupled with
an optical cavity. Here the internal states of fermions are
labeled as pseudospins, by analogy with the situation in
superconductors. We omit the direct collision of fermions
and treat them as noninteracting particles. The system also
couples with the environmental degrees of freedom, which
produce the pumping and dissipation channels. In recent
works [25–27], a Bosonic version of this model has been
investigated. It is shown that if the pump laser has sufficient
intensity (typically much greater than the cavity decay rate),
one instability arises: the atoms crystallize at either the even
or odd antinodes of the cavity mode. In our study, we do
not intend to address the self-organization of atoms. Instead,
the pumping laser intensity is assumed to be sufficiently
low to avoid the self-organization threshold. We demonstrate
that the cavity field induces a pairwise interaction between
fermions with opposite pseudospins. When the cavity mode is
red-detuned from the atomic resonance, the cavity-mediated
interaction (CMI) becomes attractive rather than repulsive,
and thus triggers a pairing instability. We treat the atom-cavity
coupling strength and the cavity decay rate as free parameters.
Then, varying the atom-cavity detuning drives the superfluidity
of the pairing field from the BEC type to the BCS type. In
experiments, such a tunable detuning can be realized by using
a two-mirror optomechanical cavity with one fixed and one
movable end mirror. The position of the movable end mirror
determines the photon frequencies, which directly affect the
atom-cavity detuning [28–30]. In the subsequent section, we
introduce the model Hamiltonian and implement the path
integral approach to derive an effective action for atoms. In Sec.
III, a mean-field description is developed. We solve the model
at zero temperature discussing the ground-state properties.
The chemical potential, order parameter, excitation spectrum,
and momentum distribution are presented at this stage. Then
the model is solved for the pair-breaking energy scales. We

053605-11050-2947/2012/86(5)/053605(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.053605


GUO, REN, GUO, AND PENG PHYSICAL REVIEW A 86, 053605 (2012)

also compare our results with that obtained from microcavity
polaritons. Finally, a summary is given in Sec. IV.

II. MODEL

Let us consider an ensemble of two-level fermions coupled
to a single-mode optical cavity. The cavity is transversely
pumped by two counterpropagating laser fields of intensity
� (Rabi frequency). These lasers create a one-dimensional
optical lattice, and confine the atoms in a single antinode of this
lattice to form a pancakelike cloud. For a very narrow pancake
thickness, atoms would feel a constant pumping intensity. The
cavity also couples to an environmental reservoir with a rate
of γ , which provides a dissipation channel for the intracavity
photons. The physical realization of our model is schematically
depicted in Fig. 1. In the absence of the Feshbach resonance,
the fermions are not allowed to have s-wave scattering by the
Pauli principle. Hence, we omit the contact collision between
atoms. In a frame rotating at the pumping laser frequency
ωL, the physics of the system is governed by the Hamiltonian
(h̄ = kB = 1)

H =
∫

dr
[
ψ

†
↓(r)

(
− ∇2

2m
− μ

)
ψ↓(r) + ψ

†
↑(r)

×
(

− ∇2

2m
− μ + �A

)
ψ↑(r)

]

+�ca
†a + i

∫
dr[ψ†

↑(r)ψ↓(r)(g(r)a + �) − H.c.]

+
∑

ε

�εA
†
εAε + γ

∑
ε

(a†Aε + A†
εa). (1)

Here, ψ↑,↓(r) is the annihilation operator of fermions with
pseudospins ↑ or ↓ which denote the internal energy levels
separated by transition frequency �A = ωA − ωL; μ is the
chemical potential of fermions; a is the annihilation operator
of cavity photons with resonant frequency �c = ωc − ωL;
g(r) = g�(r), where g is the atom-photon coupling constant
and �(r) is the mode function of the cavity field; and Aε is the
annihilation operator of ε mode of the environmental reservoir.
In Eq. (1), we have made the rotating wave approximation
(RWA) to drop the energy and momentum nonconserving
terms, which correspond to the virtual particle excitations.

FIG. 1. Schematic diagram of the experimental realization of our
model. The optomechanical cavity with one fixed and one movable
end mirror is transversely pumped by two counterpropagating lasers,
which create a one-dimensional optical lattice. Atoms are confined at
the antinode of this lattice, and form a pancakelike cloud.

In the weak coupling regime and for a large detuning �c,
a cancellation effect emerges from rapid oscillation of the
counterrotating terms with frequency �A + �c. Therefore,
the RWA is implemented to disregard these terms. Physically,
the RWA implies that the virtually excited particle is formed
locally and decays almost instantaneously [31]. If the atoms are
localized in particular sites, the Hamiltonian (1) will become
the well known Dicke model, a basic model in quantum optics
[32]. Then we assume that the atomic levels are sufficiently
long lived. In this scenario, the pumping field can balance the
cavity loss as well as the population between the two levels so
as to realizing a pseudospin half system. Certainly, there are
also other ways to make such an assumption valid (e.g., by
coupling the two hyperfine states via the Raman transition).
As a result, one could adopt a quasiequilibrium description to
the thermodynamics of the system. Expressed in the coherent
state path integral, the quantum partition function takes the
form

Z =
∫

D(ψ↑↓,ψ↑↓)D(a∗,a)D(A∗
ε ,Aε)e−Sat−Sem−Sint−Sdis ,

(2)

with actions

Sat =
∫

drdτ

[
ψ↓(r,τ )

(
∂τ − ∇2

2m
− μ

)
ψ↓(r,τ )

+ψ↑(r,τ )

(
∂τ − ∇2

2m
− μ + �a

)
ψ↑(r,τ )

]
, (3)

Sem =
∫

dτa∗(τ )(∂τ + �c)a(τ ), (4)

Sint = i

∫
drdτ [ψ↑(r,τ )ψ↓(r,τ )(g(r)a(τ ) + �) − H.c.],

(5)

Sdis =
∫

dτ

{ ∑
ε

A∗
ε (τ )(∂τ + �ε)Aε(τ )

+ γ
∑

ε

[a∗(τ )Aε(τ ) + A∗
ε (τ )a(τ )]

}
, (6)

where τ = it is the imaginary time.
To proceed, we develop an effective atom-only action by

integrating out the photon fields. These integrations are exactly
performed since the action is entirely linear or quadratic in a

as well as in Aε [33]. We first carry out the Gaussian path
integral over environmental degrees of freedom. Each such
integration adds a term to the effective action, and their overall
contribution is as follows [31,34]:∫

D(A∗
ε ,Aε)e−Sdis = e−Scl , (7)

with

Scl = −γ 2
∫

dτdτ ′ ∑
ε

nB(�ε)e−�ε (τ−τ ′)a∗(τ )a(τ ′), (8)

where nB(�ε) is the Bose number. In the regime where the
dissipative dynamics dominates the dispersive one, Eq. (8)
might modify the physics in interesting ways. However, in the
present case, the dissipation is dominated by the energy of the
photons (∼ �c) and thereby Eq. (8) can be cast into a more
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simpler form via the notion of the Markovian approximation
[35]. In Eq. (8), the system-environment correlation function
is read as G(τ − τ ′) = γ 2 ∑

ε nB(�ε)e−�ε (τ−τ ′). Because the
spectrum of environment is flat as in usual CQED architec-
tures, the memory effect of the reservoir should be neglected
by assuming that G(τ − τ ′) � iκδ(τ − τ ′), where κ is a
phenomenological cavity decay rate and is a basic parameter
of the cavity. With the virtue of this assumption, Eq. (8) yields

Scl = −iκ

∫
dτa∗(τ )a(τ ). (9)

Combining Eqs. (4) and (9), the action that depends on (a,a∗)
can be written as

S ′
em =

∫
dτa∗(τ )(∂τ + �c − iκ)a(τ ) + Sint. (10)

Next, we carry out the functional integral (also Gaussian)
over (a,a∗), thus arriving at an action entirely in terms of the
atomic degrees of freedom. Such an atom-only action has the
form

S ′
at =

∫
drdτ

[
ψ↓(r,τ )

(
∂τ − ∇2

2m
− μ

)
ψ↓(r,τ ) + ψ↑(r,τ )

(
∂τ − ∇2

2m
− μ + �a

)
ψ↑(r,τ )

]

− 1

β

∫
drdτdr′dτ ′ ∑

n

eiωn(τ−τ ′)

−iωn + �c − iκ
�∗(r)�(r′)ψ↓(r,τ )ψ↑(r,τ )ψ↑(r′,τ ′)ψ↓(r′,τ ′)

+ i

∫
drdτ [ψ↑(r,τ )ψ↓(r,τ )� − �∗ψ↓(r,τ )ψ↑(r,τ )]. (11)

Within the RWA, terms that conserve the total momenta have the major contribution to the partition function. To take only these
terms into account, it is convenient to transform the quartic interaction in Eq. (11) from the coordinate space to the momentum
space. A straightforward Fourier transformation gives

1

V

∑
{	ki }

∫
dτdτ ′ ∑

n

eiωn(τ−τ ′)

−iωn + �c − iκ
|�	l|2ψ̄↓,	k1

(τ )ψ↑,	k2
(τ )ψ̄↑,	k3

(τ ′)ψ↓,	k4
(τ ′)δ(	l + 	k1 − 	k2)δ(	l − 	k3 − 	k4), (12)

where vectors {	ki}(i = 1, . . . ,4) represent momenta of fermions, and 	l is the wave vector of the single-mode cavity field. With the
condition of the momentum conservation (i.e., 	k2 + 	k4 = 	k1 + 	k3), we can denote 	k1 = 	p − 	l, 	k2 = 	p, 	k3 = 	p′ + 	l, and 	k4 = 	p′,
then perform the summation over { 	k3, 	k4} yielding

1

V

∑
	p, 	p′

∫
dτdτ ′ ∑

n

eiωn(τ−τ ′)

−iωn + �c − iκ
|�l|2ψ̄↓, 	p−	l(τ )ψ↑, 	p(τ )ψ̄↑, 	p′+	l(τ

′)ψ↓, 	p′ (τ ′). (13)

Notice that the effective atom-atom interaction now becomes local in space. Moreover, for the detuning |�c| larger than the other
relevant energy scales, the summation over ωn is approximated as �cβ

�2
c+κ2 δ(τ − τ ′). Gathering these results and backing to the

coordinate space, Eq. (11) reduces to the following simpler form:

S ′
at =

∫
drdτ

[
ψ↓(r,τ )

(
∂τ − ∇2

2m
− μ

)
ψ↓(r,τ ) + ψ↑(r,τ )

(
∂τ − ∇2

2m
− μ + �a

)
ψ↑(r,τ )

]

+ g2�c

�2
c + κ2

∫
drdτ |�|2ψ↓(r,τ )ψ↑(r,τ )ψ↑(r,τ )ψ↓(r,τ )

+ i

∫
drdτ [ψ↑(r,τ )ψ↓(r,τ )� − �∗ψ↓(r,τ )ψ↑(r,τ )]. (14)

In the above equation, the CMI has a form of the s-wave
scattering, whose magnitude and sign can be manipulated
by the physical parameters of cavity. We also note that for
�c > 0 the interaction is repulsive. In this case, the system is
trivial since the effect of CMI is nothing but collision. With
such repulsion the atoms cannot bond with each other into
pairs. However, if the cavity resonant frequency is red-detuned
from the pumping laser (i.e., �c < 0) the pairwise interaction
becomes attractive rather than repulsive. In this circumstances,

the action (14) mimics the action of two-component Fermi
gas with the Feshbach resonance. Therefore it is quite natural
to surmise that a pairing instability will show up and the
superfluidity of these pairs will evolve with the intensity of
the attraction. We leave this important issue momentarily
and discuss it later with the solutions of the mean-field
equation.

Introducing the usual Hubbard-Stratonovich field φ(r,τ ),
which couples to ψ̄↑ψ̄↓, and under the Nambu spinor basis
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� = (ψ↑,ψ↓,ψ̄↓,ψ̄↑)T , Eq. (14) yields

Seff =
∫

drdτ
�2

c + κ2

g2�c

|φ|2 −
∫

drdτ�̄Ĝ−1�, (15)

where

Ĝ−1 =

⎛
⎜⎝−∂τ + ∇2

2m
+ μ + �σy −φ�σz

φ̄�∗σz −∂τ − ∇2

2m
− μ − �σy

⎞
⎟⎠
(16)

is the inverse Nambu propagator. Here, σy and σz are the Pauli
matrices. After integrating out the fermions (�,�̄), we obtain
an action for pairing field alone, that is,

S ′
eff =

∫
drdτ

�2 + κ2

g2�
|φ|2 − tr ln Ĝ−1. (17)

In Eqs. (16) and (17), the external laser field has been
tuned on resonance with the atomic transition, ωA = ωL, and
� = ωc − ωA represents the atom-cavity detuning. So far,
Eqs. (14) and (17) are the main results of our functional integral
treatment. In the following section, we subject the action (17)
to a saddle-point analysis. This will address the possibility
of observing the superfluidity of the fermion pairs and the
BCS-BEC evolution when the parameters of cavity are varied.

III. MEAN-FIELD DESCRIPTION

In this section, we develop a mean-field description to
investigate the superfluidity of pairs forged by the CMI. When
we replace the field φ(r,τ ) by its static and homogeneous
counterpart φ0, a saddle-point action, S ′

eff(φ0), is attained.
We then proceed by minimizing the saddle-point action to
obtain the order parameter equation. For the action (17), the
saddle-point equation assumes the form

δS ′
eff

δφ̄0
= �2 + κ2

g2|�| φ0 − trĜ
δĜ−1

δφ̄0
= 0. (18)

A straightforward calculation of the trace term in Eq. (18)
provides that

trĜ
δĜ−1

δφ̄0
= −T

∑
n,p

4φ0|�|2(ω2
n + ξ 2

p + |φ0�|2 − |�|2)
det Ĝ−1

n,p

,

(19)

with

det Ĝ−1
n,p = (iωn)4 − 2

(
ξ 2
p + |�|2 + |φ0�|2)(iωn)2

+ (
ξ 4
p − 2|�|2ξ 2

p + 2|φ0�|2ξ 2
p

+ |�|4 − 2|φ0�|2|�|2 + |φ0�|4). (20)

In Eqs. (19) and (20), we have transformed to a frequency-
momentum space where ωn = (2n + 1)πT stands for the
fermionic Matsubara frequency and ξp = p2/2m − μ is the
kinetic energy minus the chemical potential. The singular-
ities of Ĝn,p can be worked out explicitly. These singu-
larities represent the quasiparticle excitation energy, Ep =
±(

√
ξ 2
p + |φ0�|2 ± |�|), where the factors ± in front of the

bracket correspond to the particle and hole branches. After

straightforwardly calculating the Matsubara summation, we
arrive at an order parameter equation of familiar form

�2 + κ2

g2|�| = |�|2
∑

p

1

2E0
p

[1 − f (E+
p ) + f (E−

p )], (21)

where E0
p =

√
ξ 2
p + |φ0�|2, f (z) = 1/(exp(βz) + 1) is the

Fermi function, and E±
p =

√
ξ 2
p + |φ0�|2 ± |�| are the par-

ticle branches of Ep. For a single-mode cavity, the intensity
distribution in frequency space can be written as |�|2 =
κ2/(κ2 + �2), which is broadened by κ2 and peaked at around
� = 0. Save for Eq. (21), an additional equation relating the
fermion number to the temperature and chemical potential
is required. Taking the derivative of the saddle-point action
S ′

eff(φ0) with respect to μ, and using n = −T ∂S ′
eff(φ0)/∂μ,

we have

n =
∑

p

{
1 − ξp

E0
p

[1 − f (E+
p ) + f (E−

p )]

}
. (22)

In the following two subsections, we explore the impact
of the CMI on the unitary Fermi gas by solving Eqs. (21)
and (22).

A. Zero-temperature solution

At zero temperature there are four parameters remaining:
the dimensionless atom-cavity detuning |�|/κ , the collabo-
rative factor ζ = ng2/κ2, the pumping field Rabi frequency
|�|/κ , and the relative energy scale � = εF /κ . Here, εF =
p2

F /2m is the Fermi energy with the Fermi momentum
pF . We also note that for β → ∞, the terms dependent
on the pumping field intensity |�| disappear in both the
order parameter and number equations. As a result, the
pair-breaking effect of the pumping laser has no influence on
the zero-temperature properties of the condensate. The scales
of parameters used for the numerical solutions of Eqs. (21)
and (22) can be obtained from the following considerations.
For an experimentally realizable optomechanical cavity with
one movable end mirror, the cavity decay rate is comparable
with coupling constant, κ � g, and both may have the order
of 106 s−1 [36]. For an ensemble of 6Li atoms, a typical
value of the Fermi energy may be εF = 4.9 × 10−29 J that
is quoted directly from Zwierlein et al. [37]. Thereby, for the
Planck constant h = 6.626 × 10−34 J × s, the relative energy
scale will have the order of � ∼ 10−1. In the following we
will show that to obtain the superfluidity, values of detuning
|�|/κ should belong to the interval (10,100), and in which the
condition |�|  κ is well satisfied. We plot the reduced order
parameter |φ0|/εF and the dimensionless chemical potential
μ/εF (inset) as a function of the detuning |�|/κ , for ζ = 103

in Fig. 2(a) and ζ = 104 in Fig.2(b). The relative energy
scale is fixed to be � = 0.1 throughout the paper. In the
studies of ultracold Fermi gases with the Feshbach resonance,
a scattering parameter (scattering length) is introduced to
regulate the ultraviolet divergence in the saddle-point equation.
However for the present case where the coupling strength
does not play the role of control parameter, one needs to
truncate the momentum integral at a finite value to avoid the
ultraviolet divergence [10]. To fully taken into account the
low temperature and long wave length properties, the cutoff
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momentum pc is chosen to be of the order of 100pF in Eqs. (21)
and (22).

In Fig. 2(a) it is shown that |φ0| first increases and then
decreases to zero with increasing |�|. The maximum value
of |φ0| is reached at around |�|/κ = 20 (solid line). This
nonmonotonous behavior reflects a complicated dependence
of order parameter on the atom-cavity detuning. The existence
of nonvanishing order parameter means that the fermion pairs
created by CMI are condensed into a coherent state (i.e.,
fermionic superfluid). We also note that as |�| increases,
the chemical potential grows and smoothly evolves from
negative to positive. This is the signature of the evolution
between BEC- and BCS-type superfluid. Moreover, when
|�|/κ > 40 (solid line), the order parameter vanishes and
the chemical potential tends to εF . Therefore, we identify the
small detuning regime (|�|/κ < 30) as the strong-coupling
BEC limit and the large detuning regime (|�|/κ > 40) as the
opposite weak-coupling BCS limit. The dependence of our
numerical results on cutoff momentum pc is also demonstrated
in Fig. 2. We note that values of pc do not affect the system
in any qualitative way. Therefore we shall use pc = 100pF in
the following discussions. Before going on, the two limiting
cases can be addressed analytically. As anticipated, the number
equation fixes the chemical potential, μ = εF , at the weak
coupling limit. Then the solution of saddle-point equation
is φ0/εF ∼ (�/κ) exp(− κ

g2ν
(�

κ
)3), where ε = p2/2m is the

kinetic energy and we have assumed that the density of
states ν(ε) is roughly constant ν = ν(εF ). In the strong
coupling limit, we use μ < 0 to solve Eq. (22) yielding
the result |φ0�| ∼

√
(εc + 2|μ|)2 − (εc − n/νεF )2, where εc

is the cutoff energy for the integral in Eq. (22). Limiting
analytical expressions tell us that in the BCS limit, the order
parameter vanishes nearly exponentially with the increase of
detuning, while it remains a finite value proportional to |μ| in
the opposite BEC limit. As a matter of fact, these features are
just what we read from Fig. 2.

To understand the underlying physics of these results,
one needs to recall that the cavity photon plays the role of
medium to generate and propagate the effective interaction for
atoms. The picture is similar to the usual BCS superconductors
where the electron-phonon scattering creates the attractive
interaction. A large atom-cavity detuning has a detrimental
effect on the process of atoms emitting photons into the
cavity mode, same as in CMI. For the cavity mode nearly
resonant with the atomic transition, CMI is strong enough to
forge diatomic molecular. When the opposite is true, the weak
attraction will bound atoms into Cooper pairs. With the further
increasing of detuning, the pairs disassociate into atoms.
Beyond a certain detuning (say, 40κ), the superfluid ordering
is likely to be lost and we have a free Fermi gas which is
characterized by μ = εF . The amplitude of the order parameter
and the domain of superfluidity are all enlarged by a greater
collaborative factor, ζ = 104, as shown in Fig. 2(b). Notice that
the BEC region is also bigger than the previous case, and the
BCS to BEC evolution takes place at around |�|/κ ≈ 70 (solid
line). These consequences are somewhat expected because
CMI has been enhanced by a large matter-light coupling along
with a small cavity decay rate. Therefore, the pair-breaking
effect of detuning can be suppressed by the collaborative effect.

At zero temperature, the pumping field intensity |�| is
irrelevant. The particle branch of the excitation spectrum,
E0

p, and the momentum distribution, np = [1 − ξp

E0
p
]/2, have

important roles in the thermodynamic properties of the BCS-
BEC evolution. In Fig. 3, we demonstrate E0

p/εF and np

as a function of |p| =
√

p2
x + p2

y (in units of pF ) for both
ζ = 103 and ζ = 104 cases. Here, the cutoff momentum is
pc = 100pF and the BEC side is shown as dashed line
for |�|/κ = 10, whereas the solid line represents the BCS
side for |�|/κ = 102. We find a nonanalytic behavior of E0

p

when μ = 0. There is a gapless spectrum in the BCS region
and a fully gapped spectrum in the opposite BEC region
(see the upper left in Fig. 3). The quasiparticle excitation

|φ
0|/ε

Δ κ

κ

Δ κ

μ
ε

(a)

κ

|φ
0|/ε

|Δ| κ

|Δ| κ

μ/
ε

(b)

FIG. 2. The reduced order parameter |φ0|/εF and dimensionless chemical potential μ/εF (inset) as a function of the detuning |�|/κ at zero
temperature, for (a) ζ = 103 and (b) ζ = 104. Here, the relative energy scale is given to be � = 0.1, and the cutoff momentum pc is taken as
pc = 100pF (solid line), pc = 150pF (dashed line), and pc = 200pF (dotted line).
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ε

κ

κ

ε

κ

κ

FIG. 3. Plots for E0
p/εF and np as a function of |p| =

√
p2

x + p2
y

(in units of pF ) at zero temperature, for ζ = 103 in the top row and
ζ = 104 in the bottom row. Here, the BEC case is shown as a dashed
line for |�|/κ = 10, while the solid line represents the BCS case for
|�|/κ = 102. The relative energy scale is given to be � = 0.1, and
the cutoff momentum is pc = 100pF .

spectrum is gapless unless the conditions φ0 = 0 and μ = εF

are both satisfied [38]. To fulfill the second condition, the
system has to reside in the BCS regime where μ > 0, and
therefore the spectrum is always gapped in the BEC side.
For the nonzero angular momentum superfluid (say, p-wave
superfluid), the quasiparticle excitation spectrum may be
gapless in the BCS side since the order parameter is angular
dependent, which possesses zero points in momentum space
[8]. However, the order parameter is isotropic in our model,
thus a gapless spectrum in the BCS side means the vanishing
of pairing field rather than encountering a zero point. Hence,
the BCS-BEC evolution in our model is not a phase transition
but a crossover. This statement shall be seen clearly in the
momentum distribution. A comparison between the BEC and
BCS cases in the second column of Fig. 3 shows that as the
detuning decreases the Fermi distribution with locus ξp = 0
is deformed, and np broadens in the BEC side. We can infer
that since the CMI is enhanced by the small detuning, two
atoms with opposite momenta become more tightly bound.
As a result, the fermions with larger momentum will likely
participate in the formation of bound states. Without any
qualitative changes in momentum distribution, we conclude
that the evolution is a crossover. From the bottom row of Fig. 3,
it turns out that a stronger collaborative effect has no influence
on the BEC side. Nevertheless, as we already mentioned, it
is helpful in the formation of bound pairs. Consequently, the
departure of np from the Fermi distribution becomes more
obvious and fully gapped quasiparticle spectrums in both sides
are obtained. The conclusions we read from Fig. 3 are in
agreement with those in Fig. 2.

B. Disassociation temperature

We are now in a position to explore the pair-breaking
temperature scale, Tdis, defined as the temperature at which
some fixed fraction of the bound pairs are dissociated. To

this end, Eqs. (21) and (22) are solved with vanishing order
parameter |φ0| = 0. Different from the previous case, the
pumping field intensity |�| is involved in the calculations.
Similar with the usual BCS theory, we get that Tdis/εF ∼
exp(− κ

g2ν
(�

κ
)3) (i.e., Tdis decreases exponentially in the BCS

limit). Nevertheless, in the BEC regime with a negative
chemical potential μ < 0, the number equation yields that
cosh( |μ|

2Tdis
) exp( n

2νTdis
) = cosh( εc+|μ|

2Tdis
). Because |μ|

2Tdis
 εc

2Tdis
in

the BEC limit, the hyperbolic functions can be divided
out from both sides of the above equation. This provides
that exp( n

2νTdis
) � 1. To satisfy such a limiting condition, a

temperature scale of Tdis without upper boundary is required.
In fact, the apparent divergence of Tdis in the strong coupling
limit is an artifact of the mean-field analysis. Physically, Tdis

represents the dissociation energy of the pair rather than the
temperature at which the coherence is established. There is a
regime of temperature above the condensation temperature
where the gas still remains as a strongly interacting soup
with pairing correlations (often called preformed pairs in the
literature [39]).

In Fig. 4, we show the direct numerical solution of Tdis/εF

and μc/εF (inset) as a function of |�|/κ for ζ = 103 in
Fig. 4(a) and ζ = 104 in Fig. 4(b). Here, the cutoff momentum
is pc = 100pF . The pumping field intensities are set to be
|�|2/κ2 = 0.1 (solid line) and |�|2/κ2 = 0 (dashed line). The
aim is to see how the symmetry-breaking effect of the pumping
field affects the results. In Fig. 4, a monotonic dependence of
Tdis on |�|/κ is revealed: with the increase of |�|/κ , Tdis

decreases to zero for the case of |�|2/κ2 = 0.1 while staying
at a nonvanishing value for the case of |�|2/κ2 = 0. The
disassociation temperature tends to zero meaning that all pairs
disassemble to constituent fermions at the finite temperature.
Tdis goes to a very high value at BEC limit owing to paring
correlations above the condensation temperature. We also note
that the symmetry breaking effect of the pumping field indeed
suppresses the pairing correlation, but the preformed pairs
are not fully destroyed since only weak pumping intensity is
involved. In the inset of Fig. 4, the dependence of μc on � is
qualitatively coincident with the zero-temperature solutions,
and the emergence of BCS-BEC crossover is accompanied by
the sharp decrease of Tdis. For ζ = 104, fermions are in favor
of being associated into a bound state. Therefore, the value of
Tdis is higher than the previous case, and the crossover takes
place at a larger value of |�|/κ .

It is clearly demonstrated that the atom-cavity detuning
and the collaborative factor influence the system in different
ways, and that the former plays a major role in shaping
and determining the superfluidity of fermions. Our numer-
ical calculations are supported well by the corresponding
analytical considerations. In experiments, the phenomena
presented above can be observed by measuring the momentum
distribution [40].

C. Comparison with polariton systems

In the past, the investigations of the polariton condensation
in solid as well as in microcavity systems have attracted
enormous attention [41]. As a coupled matter-light system,
polaritons are quasiparticles resulting from strong cou-
pling between localized excitons (electronic excitations) and
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FIG. 4. The disassociation temperature Tdis/εF and critical chemical potential μc/εF (inset) with increasing detuning |�|/κ for (a) ζ = 103

and (b) ζ = 104. Here, the relative energy scale is given to be � = 0.1, the cutoff momentum is pc = 100pF , and the pumping field intensities
are |�|2/κ2 = 0.1 (solid line) and |�|2/κ2 = 0 (dashed line).

photons [42]. In a recent work [43], a BCS-BEC crossover
of the polariton condensate is predicted. At low excitation
densities the condensation temperature Tc behaves like point
bosons, while Tc approaches the BCS-like mean-field result
at higher excitation densities. Notice that the mean-field
equations (21) and (22), derived for an atomic system, have a
common form for those two distinguishable coupled matter-
light systems. Therefore, it is of interest to compare our system
to the polariton one studied in [43]. The absence of a direct
pairwise scattering indicates that the strength of the effective
interaction is entirely due to CMI. In our model, the intensity
of CMI depends on the atom-cavity detuning, and the fermion
pairs are the object that undergoes the condensation and BEC-
BCS crossover. The sign of chemical potential changes when
the crossover takes place. For polariton condensate, however,
the behavior of Tc determines which type of the superfluidity
belongs. The density dependence of Tc is due to the changing
coupling strength and occupation of two-level excitons with
changing chemical potential. Moreover for localized excitons,
the density of states is a δ function, whereas for interacting
atomic gas it is nonzero for all energies greater than zero.
An immediate consequence is the different interpretation of
the mean-field equations. In our model, the number equation
(22) alone fixes the chemical potential in the BCS side,
and in the opposite BEC limit the roles of Eqs. (21) and
(22) are reversed. This means that in the Fermi gases the
temperature and the chemical potential are neatly separated.
For localized fermions, the chemical potential lies below the
band of fermions, and so the density is controlled by the
tail of the Fermi distribution. As a result, the temperature
and the chemical potential are not so clearly separated. In
addition, for polaritons formed in zero-dimensional cavity,
the mean-field theory gives the condensation temperature
at both the BCS and BEC sides. For atomic systems, the
mean-field approximation on the BEC side gives just the dis-
association energy of molecules rather than the condensation
temperature.

IV. CONCLUSION

In summary, we have investigated the system consisting of
a two-component free Fermi gas coupled with a single-mode
cavity. We also consider the environmental degrees of freedom,
which provide the dissipation and pumping channels. We
have found that when the dispersive dynamics dominates
(|�c|/κ  1), the matter-light coupling generates a single in-
stability to s-wave pairing between atoms of different internal
states (i.e., opposite pseudospins). The value and sign of such
interaction can be controlled by the cavity geometry. Using
coherent state path integral formalism, we develop a mean-
field theory to describe our model, and explore the properties
and impacts of the CMI. We have shown that when the cavity
mode is red-detuned from the atomic resonance, the CMI
becomes attractive, and thus it triggers a pairing mechanism
of fermions with opposite momenta and pseudospins. In this
case, intracavity photons play the role of phonons to induce
the attraction as in the usual superconductors. Ground-state
(T = 0) solution indicates that for a certain collaborative
factor, the superfluidity of bounded pairs can occur. By varying
the atom-cavity detuning, the superfluidity evolves between
the BCS and BEC limits. The strong coupling BEC regime
is found when the detuning is small. However, in the large
detuning case, we obtain the weak coupling BCS regime.
Although the quasiparticle excitation energy may be gapless
in the BCS side while fully gapped in the BEC side, the
evolution is still a smooth crossover. For the vanishing order
parameter, we compute the temperature scale of pair breaking
(i.e., the disassociation temperature Tdis). The disassociation
temperature shows a monotonically decreasing behavior with
the increasing detuning, and no upper boundary found in the
BEC limit means that only at very high temperatures do the
molecules dissociate into atoms. The pairing correlation is
suppressed by the symmetry-breaking effect of the pumping
laser, but it survives in certain regimes because we only
consider the weak pumping intensity |�|2/κ2 � 1. Moreover,
we also find that the atom-cavity detuning and the collaborative
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effect play contrary roles. The former tends to break the pairs
and the latter favors of tightly bounded states.

The present paper is an extension of the concept of
quantum simulators by using cavity to create controllable
interaction. The CMI captures the essential physics of the
Feshbach resonance, making this system a promising alterative
candidate for observing BEC-BCS crossover. Theoretically
the physical realization of our model may work, but with
state-of-the-art experimental techniques there could be some
difficulties. We expect that such a proposal will be realized
with the development of modern experimental techniques. The
mean-field calculation in the present paper can be improved by
incorporating Gaussian pair fluctuations. Moreover, it would
be of considerable interest to extend our model, for example,
by including the nonequilibrium pumping and dissipation.
This could be done using the real time Schwinger-Keldysh

functional integral formalism [44], and it is worthy to explore
in the future.
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