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Rapid ramps across the BEC-BCS crossover: A route to measuring the superfluid gap
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We investigate the response of superfluid Fermi gases to rapid changes of the three-dimensional s-wave
scattering length a by solving the time-dependent Bogoliubov–de Gennes equations. In general the magnitude of
the order parameter |�| performs oscillations, which are sometimes called the “Higgs” mode, with the angular
frequency 2�gap/h̄, where �gap is the gap in the spectrum of fermionic excitations. First, we excite the oscillations
with a linear ramp of 1/a and study the evolution of |�|. Second, we continously drive the system with a sinusoidal
modulation of 1/a. In the first case, the oscillations in |�| damp according to a power law. In the second case,
the continued driving causes revivals in the oscillations. In both cases, the excitation of the oscillations causes
a reduction in the time-averaged value of |�|. We propose two experimental protocols, based around the two
approaches, to measure the frequency and damping of the oscillations, and hence �gap.
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I. INTRODUCTION

Nearly forty years ago Volkov and Kogan investigated the
response of a Fermi superfluid to a small initial perturbation
of the order parameter � [1]. They predicted weakly damped
oscillations in |�| with the angular frequency 2�gap/h̄, where
�gap is the gap in the spectrum of fermionic excitations.
These oscillations originate from the threshold for the creation
of fermionic excitations by pair breaking following a time-
dependent perturbation. The threshold causes a branch-type
singularity in the related response functions at the frequency
2�gap/h̄, and consequently oscillations in |�| with the same
frequency. Hence a detection of the frequency would give a
direct measurement of �gap. There is no exponential damping
because the singularity lies on the real axis. However, since
the singularity is not a pole, but a branch point, the amplitude
of the oscillations decreases with time according to a power
law. Volkov and Kogan found that, in the Bardeen-Cooper-
Schrieffer (BCS) regime, where the fermionic excitations are
created with finite momenta p near the Fermi momentum, the
amplitude decays as t−1/2 [1]. More recently, Gurarie calcu-
lated that the amplitude decays as t−3/2 in the Bose-Einstein
condensate (BEC) regime, where the excitations are created
near the point p = 0 [2]. It is important to stress that these
qualitative properties follow from quite general considerations
about the threshold behavior of correlation functions and are
model independent. Persistent oscillations have been found for
very large initial perturbations and particular nonequilibrium
initial states [3–7]. Due to a formal analogy between the gap
phenomenon in superfluid Fermi liquids and mass creation by
the Higgs mechanism in the theory of elementary particles,
these oscillations are also known as the “Higgs mode”
[8–10]. Despite some investigation into the response of a
superfluid Fermi gas to a modulation of the scattering length
[11,12], the Higgs mode has never been observed in Fermi
gases. Analogous phenomena have been observed in super-
conductors [13,14] and for bosons near the Mott-insulator
transition [15].

It is the purpose of this paper to provide a stepping
stone between the past theory described above and future
experiments. By solving the time-dependent Bogoliubov–de

Gennes equations [16–20] we investigate the appearance of
the order-parameter oscillations in superfluid Fermi gases,
following rapid ramps across the BEC-BCS crossover. In
the spirit of Volkov and Kogan [1], we begin with relatively
slow ramps of the three-dimensional s-wave scattering length
a from a = a0 to a1 from t = 0 to t = t1 ≈ h̄/Ef . We
confirm that the angular frequency of the oscillations is given
by 2�gap/h̄, in which �gap = |�| is the BCS regime and
�gap =

√
μ2 + �2 in the BEC regime, where μ is the chemical

potential. The oscillations damp as predicted in Refs. [1,2].
For abrupt ramps such that t1 � h̄/Ef , we find that the order
parameter oscillates around a new value �∞, which is less
than the equilibrium value for a = a1. Note that our abrupt
ramps never take the order parameter near zero, as instead
studied in Refs. [5–7]. The frequency of the oscillations is set
by the final value of the gap, which in turn depends on �∞.
The value of �∞ decreases as we increase |1/a0 − 1/a1|;
see also Refs. [21,22]. Furthermore, �∞ depends only on the
instantaneous value of |�| just before the ramp, irrespective
of whether the system was in equilibrium or not. We also
study the response of |�| to a sinusoidal modulation of 1/a. In
this case, |�| performs oscillations about a mean value which
gradually decreases with t to a constant (see also Ref. [22]).
The oscillations do not damp, but show revivals due to the
continued driving of the system.

Building on these findings, we propose two experimental
protocols to detect the frequency and damping of the oscil-
lations in |�| across the BEC-BCS crossover. The first is
based on abrupt ramps of a, and the second on sinusoidal
modulation of 1/a. We confirm that the trapping potential in a
real experiment would not significantly spoil the effectiveness
of either protocol because the density of the gas does not
respond on the time scale of the oscillations in |�|.

The paper is organized as follows. In Sec. II we outline the
system and methodology. In Secs. III A and III B we investigate
the response of a uniform Fermi superfluid to slow and abrupt
ramps, such that t1 ≈ h̄/Ef and t1 � h̄/Ef , respectively. In
Sec. III C we investigate the response of a uniform Fermi
superfluid to a sinusoidal modulation of 1/a. In Sec. III D
(III D2) we propose experimental protocol A (B), which is
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based on abrupt ramps of a (sinusoidal modulation of 1/a). In
Sec. IV we conclude.

II. SYSTEM AND METHODOLOGY

We consider a three-dimensional superfluid Fermi gas with
equal populations of the two spin components. We model
its dynamics across the BEC-BCS crossover by solving the
time-dependent Bogoliubov–de Gennes equations [16–20].
Although this is an approximate theory, it is qualitatively
correct and able to capture the main physics of the problem
[23]. The equations are[

Ĥ �(r,t)
�∗(r,t) −Ĥ

] [
uη(r,t)
vη(r,t)

]
= ih̄

∂

∂t

[
uη(r,t)
vη(r,t)

]
, (1)

where Ĥ = −h̄2∇2/2m + U (x) − μ, in which m is the atomic
mass, U is the external potential, and μ is the chemical
potential. The order parameter is calculated as �(r,t) =
−g

∑
η uηv

∗
η , in which g is given by 1/kf a = 8πEf /(gk3

f ) +√
4Ec/(π2Ef ) [23]. Here Ef = h̄2k2

f /2m and kf = (3π2n)1/3

are the Fermi energy and momentum of an ideal Fermi gas of
density n, respectively. The cutoff energy Ec is introduced in
order to remove the ultraviolet divergences in the Bogoliubov–
de Gennes equations with contact potentials. The density of
the gas is n(r,t) = 2

∑
η |vη(r,t)|2.

For most of the results in this article, we consider a uniform
superfluid in a box with periodic boundary conditions and
dimensions Lx = 37.6k−1

f and L⊥ = 12.5k−1
f in the x and

other directions, respectively. The potential U = 0. Towards
the end of the article, in order to simulate a more realistic
system, we also consider the harmonic trapping potential
U = mω2

xx
2/2, where ωx is the angular trapping frequency

in the x direction. Since, throughout the article, the potential
U has no y or z dependence, we may write the functions
uη(r,t) and vη(r,t) as uη(x,t)ei(kyy+kzz) and vη(x,t)ei(kyy+kzz),
respectively, in which ky and kz are quantized according to
ky = 2παy/L⊥ and kz = 2παz/L⊥, where αy and αz are
integers. Throughout this article, Lx and L⊥ are sufficiently
large and ωx is sufficiently small such that we simulate a three-
dimensional bulk superfluid and hence quantum fluctuations,
which are not included in our model, do not play an important
role in the dynamics. We begin our simulations with stationary
solutions of Eq. (1) [18,24] for a = a0. Figure 1 shows the
equilibrium magnitude of the order parameter �eq

(
1/kf a

)
for a uniform Fermi gas.
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FIG. 1. The equilibrium magnitude of the order parameter
�eq

(
1/kf a

)
obtained by solving the stationary Bogoliubov–de

Gennes equations for a uniform Fermi gas.
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FIG. 2. (a) The response of |�(t)| following a ramp from
1/kf a0 = −0.2 to 1/kf a1 = 0 over the time t1 = 2.2h̄/Ef . Inset:
ln(A) (see text), evaluated at the positions of the crosses in the main
figure, against ln(tEf /h̄). The dotted line is a fit with a gradient of
−0.5. (b) As (a), but 1/kf a0 = 0.8, 1/kf a1 = 1, and t1 = 1.2h̄/Ef .
The gradient of the dotted line in the inset is −1.5. The two insets are
plotted with the same scale to aid comparison.

III. RESULTS AND DISCUSSION

A. Slow ramps of the scattering length

Our initial goal is to confirm the predictions of Volkov and
Kogan [1] and Gurarie [2] for the period and damping of the
oscillations in |�|. These predictions are in some sense model
independent, provided that the theory includes basic elements,
such as the existence of the order parameter, pair formation,
and pair breaking along the BEC-BCS crossover. In the spirit
of Volkov and Kogan, we study the response of the superfluid
to a small linear ramp of 1/kf a from 1/kf a0 to 1/kf a1 over
the time scale t1 ≈ h̄/Ef . Both the small change in 1/a and the
relatively large t1 minimize the reduction in |�|, specifically
�eq − �∞, caused by the excitation of the oscillation. In this
work, we refer to these ramps as “slow” because they are close
to being adiabatic. However, even these ramps are fast enough
to be a challenge to realize in experiment.

Figure 2(a) shows the evolution of the magnitude of the
order parameter |�(t)| in the uniform superfluid following
a ramp from 1/kf a0 = −0.2 to 1/kf a1 = 0 (unitarity) over
the time t1 = 2.2h̄/Ef . After the ramp |�| oscillates around
the average value �∞ = 0.664Ef [indicated by the horizontal
dashed line in Fig. 2(a)], which is very slightly lower (0.4%)
than the equilibrium value at unitarity (see Fig. 1): even
this slow ramp of 1/kf a causes some reduction in |�|. The
period of the oscillation is 4.7h̄/Ef . This agrees well with the
previous prediction of πh̄/�gap by Volkov and Kogan [1],
taking �gap = �∞. We also quantify the damping of the
oscillation by evaluating the function A(t) = |�(t)| − �∞ at
the extremes of the oscillation, which are indicated by the
crosses in Fig. 2(a). Assuming that A ∝ tγ , we plot ln(A)
against ln(tEf /h̄) in the Fig. 2(a) inset and measure the
gradient to determine γ . Our data are consistent with the
prediction of Volkov and Kogan [1], shown by the dotted line,
that γ and hence the gradient should be −0.5.

We may gain a microscopic insight into the oscillations
and their damping by studying the occupations of the energy
levels Oη = ∫ |vη(r,t)|2dr. The occupations of the energy
levels at the times indicated by the crosses in Fig. 2(a) are
plotted as a function of |k| with filled circles in Fig. 3,
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FIG. 3. (a)–(f) The filled circles indicate the occupation of the
energy levels Oη = ∫ |vη(r,t)|2dr at the points indicated by the
crosses in Fig. 2(a), in chronological order from the first maximum.
Hence the left-hand (right-hand) column corresponds to maximums
(minimums) in |�|. The dashed curve shows the equilibrium
distribution function for comparison.

in chronological order from (a) to (f). Hence the left-hand
(right-hand) column corresponds to maximums (minimums)
in |�|. [The occupations at the time indicated by the final cross
in Fig. 2(a) are not plotted.] For comparison the dashed curve
shows the equilibrium distribution function for 1/kf a = 0. We
see that the oscillations in |�| are due to a periodic flattening
and steepening of the quasiparticle distribution function. After
an increasing number of oscillations, the distribution function
becomes less smooth. This is the source of the damping of
the oscillations. At large times this effect resembles a thermal
excitation of the system, and hence �∞ < �eq(1/kf a).

To illustrate the corresponding behavior in the BEC regime,
Fig. 2(b) shows the response of |�(t)| to a ramp from
1/kf a0 = 0.8 to 1/kf a1 = 1.0 over the time t1 = 1.2h̄/Ef .
Following the ramp, |�| again oscillates around a new value
�∞ [indicated by the horizontal dashed line in Fig. 2(b)],
which is very close to but less than the equilibrium value
for 1/kf a = 1 (see Fig. 1). We measure the period to be
1.6h̄/Ef , which is slightly lower than the predicted πh̄/�gap =
1.7h̄/Ef , in which �gap is calculated as

√
μ2 + �2∞, taking

μ to be the equilibrium value for 1/kf a = 1. However, it is
difficult to measure the period accurately because the damping
is far more rapid than in Fig. 2(a). This is confirmed by the plot
of ln(A) against ln(tEf /h̄) in the Fig. 2(b) inset. Our data points
now follow the prediction of Gurarie [2], shown by the dotted
line, that γ and hence the gradient is −1.5 in the BEC regime.

B. Abrupt ramps of the scattering length

The slow ramps of the scattering length in the previous
section excite the oscillations in |�| with a minimal reduction
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FIG. 4. (a) Solid (dashed) curve: the response of |�(t)| to an
abrupt ramp at t = 0 from 1/kf a0 = 0.2 (1.0) to 1/kf a1 = 0.
(b) Solid (dashed/dashed-dotted) curve: as (a), but 1/kf a0 = −0.5
(0/0.5) and 1/kf a1 = 1.0. Dotted curve: response of |�(t)| to an
abrupt ramp at t = 0 from 1/kf a0 = 0 to 1/kf a1 = −0.5 and a
second at t = 0.90h̄/Ef to 1/kf a2 = 1.0.

in the time-averaged |�|. However, the amplitude of resulting
oscillations in |�| is quite small, and so it would be difficult
to base an experimental proposal around this scheme. In this
section we discuss the response of the superfluid to an abrupt
change in the scattering length. Here “abrupt” means short
compared to h̄/Ef . This can excite oscillations in |�| with
a large amplitude, and leads us to an experimental proposal
to detect them. We emphasize that throughout this work we
restrict ourselves to relatively small abrupt ramps of 1/a,
such that |�| subsequently performs damped oscillations as
predicted by Volkov, Kogan, and Gurarie in Refs. [1,2].
For very large abrupt ramps of 1/a, |�| may subsequently
either oscillate without damping or decrease to zero without
oscillations [4–7,25].

First, we consider abrupt ramps to 1/kf a1 = 0 (unitarity).
Figure 4(a) shows the response of |�(t)| following an abrupt
ramp from 1/kf a0 = 0.2 (solid curve) and 1.0 (dashed curve).
Both ramps excite oscillations in |�|, but the time-averaged
value of the order parameter, �∞, is smaller for 1/kf a0 = 1.0.
In general, we find that �∞ is always less than the equilibrium
value �eq(1/kf a1) (see Fig. 1), and that �∞ is smaller for large
ramps. Notice that the period of the oscillations in |�| is set by
�∞, not by �eq. Consequently, the period of the oscillation is
longer following the ramp from 1/kf a0 = 1.0. Also note that
the damping is more “noisy” following an abrupt ramp, so it
would be more difficult to measure γ by this method.

Now we consider abrupt ramps to 1/kf a1 = 1 (the BEC
regime). Figure 4(b) shows the response of |�(t)| following
an abrupt ramp from 1/kf a0 = −0.5 (solid curve), 0 (dashed
curve), and 0.5 (dash-dotted curve). Again we see that a large
ramp leads to a small �∞, and that as the ramp tends to
zero �∞ approaches �eq (1). As before, the value of �∞
sets the period of the oscillations. Since we are in the BEC
regime (1/kf a = 1) at the end of the simulation, variations in
�∞/�eq (1) cause variations in the condensate fraction, which
may be detected through analysis of the bimodal distribution
following a free expansion [26].

The dotted curve shows the response of |�(t)| to a sequence
of two ramps: the first from 1/kf a0 = 0 to 1/kf a1 = −0.5
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FIG. 5. The response of |�(t)| to a sinusoidal modulation of
1/kf a at the resonant angular frequency ωm = 2�gap(t = 0)/h̄ [see
Eq. (2)] with 1/kf a0 = 1.0 (top curve), 1/kf a0 = 0.5 (middle curve),
and 1/kf a0 = 0.0 (bottom curve).

at t = 0, and the second to 1/kf a2 = 1.0 at t = 0.90h̄/Ef .
We chose this time so that instantaneous value of |�| just
before the second ramp is equal to �eq (−0.5). We find that
�∞ is identical to that for the single abrupt ramp from the
equilibrium superfluid at 1/kf a0 = −0.5 to 1/kf a1 = 1.0
(solid curve). This illustrates that the superfluid has no memory
of its previous dynamics before the abrupt ramp, and that
�∞ is a true measure of the instantaneous value of |�| just
before the ramp. Although we show just one example here,
we have confirmed that this is true for other parameters. This
is an important requirement for the validity of experimental
protocol A, described in Sec. III D.

C. Periodic modulation of the scattering length

An alternative method to excite oscillations in |�| is to
modulate 1/kf a at the resonant angular frequency 2�gap/h̄.
This is potentially easier to realize experimentally because
1/kf a would change smoothly. In principle the gap �gap(t) is
a function of time, but we always modulate 1/a at a constant
angular frequency ωm, according to

1/kf a (t) = 1/kf a0 + (0.04/kf ) sin(ωmt). (2)

In this section we drive at the resonant frequency by set-
ting ωm = 2�gap(0)/h̄, where �gap (0) = �eq(1/kf a0) in the

BCS regime and �gap (0) =
√

�2
eq(1/kf a0) + μ2 in the BEC

regime. The amplitude of the modulation is 0.04/kf � 1/kf

so that we probe the response of the superfluid within a narrow
range of 1/kf a. Moreover, a small modulation of 1/a is
easier to realize experimentally. The driving continues until
t = tm = 130h̄/Ef .

Figure 5(a) shows the evolution of |�(t)| in response to
this driving for 1/kf a0 = 1.0, 0.5, and 0.0. For 1/kf a0 = 1.0
(top curve), the magnitude of the oscillations increases slightly
during the first two oscillations, then plateaus. Further driving
causes no further amplification of the oscillations. The time-
averaged value of |�| decreases only very slightly (on the
order of 1%). This occurs because a small variation of 1/a in
the BEC regime (large 1/kf a0), where the fermionic atoms
are tightly bound in molecules, is not sufficient to break the
pairs. The response of |�(t)| is very different for 1/kf a0 =
0.5 (middle curve) and 1/kf a0 = 0.0 (lower curve). Now we
see that the amplitude of the oscillations grows over about
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FIG. 6. Experimental protocol A to detect the oscillations in |�|.
(a) Dotted curve: response of |�(t)| in a uniform superfluid to an
abrupt ramp at t = 0 from 1/kf a0 = 0.5 to 1/kf a1 = 0 and a second
at t = t2 = 7.1h̄/Ef to 1/kf a2 = 1.0. Solid curve: as dotted curve,
but for a 40K superfluid in a trap with ωx = 2π50 rad s−1 and peak
density 1.8 × 1018 m−3. Inset: profile of |�(x,t = 16h̄/Ef )| in the
trapped superfluid. The field of view is 120k−1

f . (b) As (a), but with
t2 = 4.9h̄/Ef . (c) �∞/�eq in a uniform superfluid as a function of t2.

five oscillations (see also Ref. [22]), as the time-averaged value
of |�| slowly falls. However, on longer time scales we see a
beating of the oscillations, and the time-averaged value of |�|
saturates at a constant value. The beating occurs due to an
interference between the driving frequency and the frequency
of the oscillations in |�| set by �gap.

D. Experimental protocols

1. Protocol A

Building on the abrupt ramps studied in Sec. III B, we now
propose an experimental protocol, which we call protocol A,
to measure the frequency and damping of the oscillations in
|�|. We perform two abrupt ramps on a superfluid Fermi gas
with 1/kf a0 = 0.5. The first at t = 0 excites the oscillations
in |�| by ramping to 1/kf a1 = 0. The second at t = t2 ramps
to 1/kf a2 = 1 (the BEC regime). The dotted curve in Fig. 6(a)
shows the evolution of |�(t)| in a uniform superfluid for t2 =
7.1h̄/Ef . In this case, t2 coincides with a trough in |�|, and
hence �∞ is small. The dotted curve in Fig. 6(b) shows the cor-
responding simulation for t2 = 4.9h̄/Ef . In this case, the sec-
ond ramp coincides with a peak in |�|, and hence �∞ is large.

In Fig. 6(c) we plot �∞/�eq (1) as a function of t2.
The graph show damped oscillations that directly reflect the
behavior of |�| at unitarity following the initial ramp. As
explained in Sec. III B, in the BEC regime �∞/�eq is a
measure of the condensate fraction, which may be determined
by ballistic expansion [26,27]. Hence this protocol will enable
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an experimentalist to resolve the frequency of the oscillations
in |�| and their damping across the BEC-BCS crossover. Of
course, the experimentalist would actually measure oscilla-
tions of |�| around a mean value which was slightly less than
the equilibrium value. Hence the first ramp should be as small
as possible, while maintaining a large enough variation in �∞
to be measured in experiment.

The solid curves in Figs. 6(a) and 6(b) show the results of the
corresponding simulations for a 40K superfluid in a harmonic
trap, with ωx = 2π50 rad s−1 and peak density 1.8 × 1018

m−3. Although the oscillations in |�| are coupled to density
oscillations in an inhomogeneous system [28], |�(t)| for the
trapped superfluid is nearly identical to that for the uniform
superfluid because the density cannot change significantly on
a time scale of h̄/Ef . The insets show the profile of the
order parameter at t = 16h̄/Ef . The profile in the Fig. 6(a)
inset has the smaller peak because t2 coincides with a trough
in |�|. Either side of the central peak the profile has some
small shoulders, which occur because the frequency of the
oscillations in |�| decreases towards the edge of the cloud
where the density and hence �gap is locally smaller. However,
this is a minor effect which would only slightly reduce the
variation in condensate fraction observed after expansion.

2. Protocol B

In this section we propose a second experimental protocol,
which we call protocol B, based on the periodic modulation
of 1/a studied in Sec. III C. The advantage of this approach
is that 1/kf a would vary smoothly, and hence protocol B
would be easier to realize in experiment than protocol A. The
disadvantage is that excitation of the superfluid saturates for
large driving times tm, as explained in Sec. III C. Hence it could
be difficult to strongly excite the superfluid with this method
and produce a large experimental signal.

Protocol B is as follows. We excite a superfluid with an
initial 1/kf a = 1/kf a0 using a periodic modulation of 1/a, as
stated in Eq. (2). At time t = tm we cease driving the superfluid
and ramp to 1/kf a = 1 over the time tm < t < tm2. The time
scale tm2 − tm need not be short compared to h̄/Ef . The
purpose of this ramp is to convert the excited superfluid with
1/kf a = 1/kf a0 to an excited superfluid in the BEC regime,
where the excitation may be quantified from the bimodal
distribution. Hence, this final ramp may even be adiabatic.

Figure 7 shows an example of protocol B with 1/kf a0 =
0, tm = 10πh̄/�gap(0) = 47.1h̄/Ef , and tm2 − tm = 2.0h̄/Ef .
The dotted curve in Fig. 7(a) shows the evolution of |�(t)| in
a uniform superfluid for resonant driving [ωm = 2�gap(0)/h̄,
see Eq. (2)], while the dotted curve in Fig. 7(b) shows
the corresponding result for off-resonant driving [ωm =
1.25�gap(0)/h̄]. Following the ramp into the BEC regime, the
value of �∞ is much smaller for ωm = 2�gap(0)/h̄, indicating
that the resonant driving more strongly excites the superfluid.
As explained previously, variations in �∞/�eq in the BEC
regime may be detected by measuring the condensate fraction
from the bimodal distribution following a free expansion.
In Fig. 7(c) we plot �∞/�eq (1) for a uniform superfluid
as a function of ωm. The minimum about ωm = 2�gap(0)/h̄
indicates the greater excitation of the gas at the resonant
frequency of modulation.
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FIG. 7. Experimental protocol B to detect the oscillations in |�|.
(a) Dotted curve: response of |�(t)| in a uniform superfluid to a
resonant periodic modulation of 1/a [ωm = 2�gap(0)/h̄, see Eq. (2)]
followed by a ramp to 1/kf a = 1 from t = tm = 47.1h̄/Ef to t =
tm2 = 49.1h̄/Ef . Solid curve: as dotted curve, but for a 40K superfluid
in a trap with ωx = 2π50 rad s−1 and peak density 1.8 × 1018 m−3.
Inset: profile of |�(x,t = 60h̄/Ef )| in the trapped superfluid. The
field of view is 120k−1

f . (b) As (a), but for an off-resonant modulation
of 1/a [ωm = 1.25�gap(0)/h̄]. (c) �∞/�eq in a uniform superfluid as
a function of ωm.

The solid curves in Figs. 7(a) and 7(b) show the results
of the corresponding simulations for a 40K superfluid in a
trap, with ωx = 2π50 rad s−1 and peak density 1.8 × 1018

m−3. The solid and dotted curves in Fig. 7(a) diverge slightly
for t > 40h̄/Ef because the density profile of the trapped
superfluid begins to respond to the excitation of |�|. This is
illustrated by the insets of Figs. 7(a) and 7(b), which show the
profiles of |�(x,t = 60h̄/Ef )|. The profile in the Fig. 7(a) inset
has a central dip. This occurs because the gas is most strongly
excited in the center where the frequency of the modulation is
resonant. Towards the edges of the cloud the density is lower,
and hence the local �gap is lower, meaning that the frequency
of the modulation is larger than the local resonant frequency.

IV. CONCLUSIONS

Using Bogoliubov–de Gennes theory we have explored how
the order parameter � in a superfluid Fermi gas responds
to rapid ramps across the BEC-BCS crossover. We have
studied both linear ramps and sinusoidal modulations of 1/a,
where a is the three-dimensional s-wave scattering length. In
general |�| performs oscillations with the angular frequency
2�gap/h̄ about a mean value �∞, which is less than the
equilibrium value of |�|. These oscillations are sometimes
called the “Higgs mode” due to a formal analogy between
the gap phenomenon in superfluid Fermi liquids and mass
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creation by the Higgs mechanism in the theory of elementary
particles [8–10]. The oscillations damp according to a power
law following a linear ramp of 1/a. Continuous modulation of
1/a causes revivals of the oscillations.

The main purpose of this work is to propose experimental
protocols to detect the oscillations in |�| in Fermi superfluids,
and hence measure �gap. We have proposed two protocols,
referred to as protocol A and protocol B, which are based on
abrupt ramps of a and modulation of 1/a, respectively. Pro-
tocol A requires the experimentalist to change the scattering
length on a time scale faster than h̄/Ef . This is challenging,
but may be achieved by using coils with low inductance, or
by minimizing Ef with dilute clouds or heavy atoms such

as Yb [29]. Protocol B is potentially easier to realize in
experiment, because 1/kf a would vary smoothly. Protocol
A has the advantage that it could quantify the damping of the
oscillations. Furthermore, it could be extended to probe other
regimes, not studied in this work, in which |�| either oscillates
without damping or decreases to zero without oscillations
[4–7]. However, it has the disadvantage that it would measure
the �gap following an abrupt ramp, and consequently the
measured �gap may be significantly lower than the equilib-
rium value. In contrast, Protocol B excites the equilibrium
superfluid with a small-amplitude modulation of 1/kf a, and
hence may accurately measure the �gap of the equilibrium
gas.
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