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Ground-state Hanle effect based on atomic alignment
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We have studied the ground-state Hanle effect (GSHE) excited by linearly polarized laser light on the D1 line
of cesium atoms. We have solved algebraically the Liouville equation using the irreducible tensor formalism,
and derive an analytical expression for the resonance line shapes in a magnetic field of arbitrary direction. The
model predictions are in excellent agreement with experimental observations in various field geometries. Our
model is valid for arbitrary F → F ′ transitions in the low-power limit. We discuss the relation between the
GSHE and electromagnetically induced transparency or absorption. Our approach allows a full understanding of
the mechanism of the GSHE and provides tools for quantifying the resonance contrast, a crucial parameter for
metrological applications of level crossing resonances.
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I. INTRODUCTION

The macroscopic spin polarization produced by optical
pumping in an ensemble of paramagnetic atoms changes
the optical absorption and dispersion characteristics of the
medium. This property forms the basis for the optical detection
of perturbations that alter the medium’s (steady-state or
dynamically evolving) magnetization that is proportional to
its spin polarization. The principle of optical creation and
detection of spin polarization is widely applied in atomic
magnetometers [1], atomic clocks [2], atom interferometry [3],
detection of slow light [4], optical information storage [5], or
the search for violations of discrete symmetries in atoms and
molecules [6], to name just a few.

The simplest of all polarization-perturbing interactions that
can be detected by optical means is the effect of a suitably
oriented external dc magnetic field on the atomic sample. In
practice, one records the power P of the light beam traversing
the atomic medium as a function of the magnitude B of a
magnetic field that is scanned from negative to positive values.
The depolarizing effect of the magnetic field then manifests
itself as a resonance, centered at B = 0; this effect is called the
ground-state Hanle effect (GSHE). The width of the resonance
is proportional to the relaxation rate of the spin coherence
produced by optical pumping.

Hanle had first observed the effect named after him in
1924 as a magnetic field induced depolarization of resonance
fluorescence [7]. The origin of this linear Hanle effect (LHE)
is the Larmor precession and relaxation of spin polarization
in the excited state of the atoms. Since the excited state
spin coherence relaxes on time scales in the ns range, while
ground-state spin polarization may live as long as seconds,
the linewidths of the ground-state Hanle resonances are many
orders of magnitude narrower than the corresponding linear
Hanle resonance, hence their use in precision high resolution
applications.

The observation of the GSHE using circularly polarized
resonance light was first reported by Lehmann and Cohen-
Tannoudji in 1964 [8]. Recently, a detailed study of the
characteristics of the GSHE was used to determine the
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longitudinal and transverse relaxation times of spin-oriented
atoms [9]. The GSHE with linearly polarized light was
reported in the late sixties and a review of the early work can
be found in Ref. [6]. In recent years it has attracted a renewed
interest in the context of coherent population trapping (CPT)
spectroscopy [10–12].

In the present paper we use a simple formalism to derive an
algebraic expression for the line shape of ground-state Hanle
resonances observed with linearly polarized light in arbitrarily
oriented magnetic fields. The model predictions are compared
to experimental spectra recorded in various field geometries.

A. Scope of the present work

Our study is complementary to related work described in
the literature. Some authors model the complex spin structures
occurring in alkalis in terms of three- or four-level systems
[13,14], yielding analytical results that provide a qualitative
description of the main resonance features. Another approach
uses time consuming numerical calculations that take the
complete spin structure and arbitrary light intensities into
account [15,16]. However, the latter approach is not well suited
to extract characteristic system parameters, such as relaxation
rate(s), by data fitting procedures. A third approach just uses
empirical line shape functions to analyze the resonances [17],
but gives little insight into the underlying mechanisms of the
GSHE.

We have studied the GSHE excited with linearly polarized
laser light in geometries illustrated in Fig. 1(a). A linearly
polarized resonant laser beam propagates through Cs vapor in
an evacuated cell. We record the variation of the transmitted
power P (B) when the magnitude of a magnetic field �B,
oriented at an angle θ with respect to the light polarization,
is scanned around B = 0. The symmetry of the laser beam
interacting with the atoms is determined by the orientation of
the light polarization, defining the z axis. As a consequence,
all possible field geometries are fully described by a single
parameter, viz., the angle θ between the laser polarization and
the magnetic field.

The paper is organized as follows: In Sec. II we describe in
detail our theoretical approach for modeling the shape of the
resonances. Section III addresses details of the experimental
apparatus and the methods deployed, and in Secs. IV to VI
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FIG. 1. (Color online) General geometry for observing GSHE
with linearly polarized light and an arbitrarily oriented magnetic field.

we compare experimental results obtained with different
magnetic field configurations to the model predictions. We
conclude by discussing in Sec. VII the connection between
the observations and interpretations put forward here with
alternative interpretations of the GSHE.

II. THEORETICAL MODEL

We derive general algebraic expressions that describe the
line shape of ground-state Hanle resonances with linearly
polarized light in arbitrary magnetic field geometries. The
derived equations are valid in the low light power limit
(defined below), and, more importantly, they apply for F →
F ′ transitions between states with arbitrary angular momenta
F and F ′.

We follow a three-step approach [6] that has been applied
successfully in the past to model the magneto-optical reso-
nances observed with the nonlinear Faraday effect [18,19],
with magnetometers based on atomic alignment [20], and in
the GSHE with circularly polarized light [9]. The three steps
consist in considering (1) the preparation of spin polarization
by optical pumping, (2) the evolution of the polarization in
the magnetic field, and finally (3) the detection of the evolved
polarization.

(1) Alignment creation (step 1). As a first step we consider
the creation of spin alignment by optical pumping with
linearly polarized light tuned to an F → F ′ transition. It is
known [21] that light driving an electric dipole transition
couples only the spin multipole moments m0,0 (total level
population), m1,q (spin orientation vector, also known as
Bloch vector), and m2,q (the five components of the spin
alignment tensor) of the atomic ground state. Optical pumping
with linearly polarized light creates only k-even longitudinal
(q = 0) multipole moments mk=even,0 [22,23], when the
quantization axis z is chosen along the light polarization. As
a consequence, the medium absorption is fully characterized
by m0,0 (which may be affected by hyperfine pumping) and
the longitudinal alignment component m2,0. With the choice
of quantization axis along ε̂, m2,0 is proportional to the ex-
pectation value m2,0 ∝ 〈 �F 2 − 3F 2

z 〉 where the proportionality
constant is not relevant in the present context. Below, we will
call m

eq
2,0 the equilibrium longitudinal alignment created in

step (1).
(2) Alignment evolution (step 2). In a second step we con-

sider the evolution of the alignment produced in step (1) under
the combined action of Larmor precession and relaxation.
Since the laser frequency is actively kept resonant with the
hyperfine transition under investigation, and since we consider

only the low-power limit, we can neglect multipole mixing
effects, such as orientation-alignment conversion induced by
the optical field [24].

We start from the Liouville equation describing the dynam-
ics of the density matrix ρ of the ground state

h̄i
dρ(t)

dt
= [H (t),ρ(t)] + �[ρ(t) − ρeq] , (1)

where H (t) = −�μ · �B is the Zeeman Hamiltonian, � the
relaxation matrix, and ρeq the equilibrium value of ρ(t) for
�B = 0, i.e., the value of ρ prepared by optical pumping in the
first step.

The density matrix can be decomposed into irreducible
spherical multipole moments [22] according to

ρ =
2F∑
k=0

k∑
q=−k

mk,qT
(k)
q (F ) , (2)

where T (k)
q are irreducible tensor operators [20] acting in the

spin space (F ) of the ground state, and mk,q the atomic multi-
poles moments that describe the medium’s spin polarization.
Inserting (2) into Eq. (1), and making use of the commutator
properties of the T (k)

q with the angular momentum operators
Fq yields a set of five equivalent algebraic equations of motion
for the multipole moments m2,q , that can be expressed as

dm2,q

dt
=

2∑
q ′=−2

(
O(2)

q,q ′ − δq,q ′ �|q ′|
)
m2,q ′ (3)

+
2∑

q ′=−2

δ0,q ′�|q ′|m
eq
2,q ′ , (4)

where the δi,j are Kronecker symbols, and where the evolution
matrix is given by

O(2)
q,q ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2 i ωz iω− 0 0 0

−iω+ −iωz

√
3
2 i ω− 0 0

0 −
√

3
2 iω+ 0

√
3
2 i ω− 0

0 0 −
√

3
2 i ω+ iωz iω−

0 0 0 −iω+ 2iωz

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5)

in which ω± = ωx ± iωy with ωi = γF Bi are the Larmor
frequencies associated with each Cartesian component of the
magnetic field �B, γF being the gyromagnetic factor. The
second term in Eq. (4) describes the relaxation at rates �|q|
of the alignment components m2,q . The last term in Eq. (4) is
a source term that describes the creation of the longitudinal
alignment m

eq
2,0 in step (1). It ensures that in the absence of a

magnetic field ( �ω = 0), the equilibrium alignment is given by
(0,0,m

eq
2,0,0,0).

The steady-state solutions of Eq. (5) yield the steady-state
values of the transverse alignment components (coherences)
m2,q �=0, as well as the longitudinal alignment m2,0, which is
the only relevant quantity for the next step.

(3) Alignment detection (step 3). The final step consists
in expressing the power transmitted by the medium in terms
of the medium’s steady-state alignment. For this we consider
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the Lambert-Beer law, which states that the power P of a
near-resonant laser beam transmitted by an atomic vapor obeys

P = P0e
−κ0(m2,0)D(δω) L , (6)

where P0 is the light power entering the cell, L the thickness
of the atomic vapor, D(δω) the Doppler line shape function
with D(0) = 1, and δω the laser detuning, i.e., the differ-
ence between the laser frequency, and the atomic resonance
frequency of the hyperfine transition. κ0(m2,0) is the peak
absorption coefficient that depends on the degree of alignment
of the medium. One can show that is related to the absorption

coefficient κ
unpol
0 of the unpolarized medium by

κ0(m2,0) = κ
unpol
0 (1 − αF,F ′ m2,0) , (7)

where the specific alignment analyzing power αF,F ′ of the
F → F ′ transition is considered to be a constant with an
irrelevant numerical value for the present study.

The ground-state Hanle resonances

The steady-state solutions dmk,q/dt = 0 of Eq. (5) yield
for the relevant alignment component m20

m20

m
eq
2,0

= �0
[
ω2

‖
(
4�2

1 + �2
2 − 4ω2

⊥
) + 4ω4

‖ + (
�1�2 + ω2

⊥
)

2
]

3ω2
⊥[4�1ω

2
‖ + �2(�1�2 + ω2

⊥)] + �0
[
4ω4

‖ + ω2
‖
(
4�2

1 + �2
2 − 4ω2

⊥
) + (�1�2 + ω2

⊥)2
] , (8)

where we have introduced the longitudinal and transverse
Larmor frequencies ω‖ = ωz and ω⊥ = |ω±| =

√
ω2

x + ω2
y ,

respectively.
Under the assumption of equal relaxation rates �0 = �1 =

�2 ≡ �, Eq. (8) can be simplified considerably, yielding

m2,0

m
eq
2,0

= 1 − 3ω2
⊥(�2 + ω2

⊥ + 4ω2
‖)

(�2 + ω2
⊥ + ω2

‖)(�2 + 4ω2
⊥ + 4ω2

‖)
. (9)

Introducing further the dimensionless longitudinal and
transverse Cartesian field variables β‖ ≡ ω‖/� and β⊥ ≡
ω⊥/�, respectively, Eq. (9) can be expressed, after rearranging
the terms, as

μ2,0(β‖,β⊥) = 1

4
+ 3

4

16β4
‖ + 8β2

‖ + 1

4β2
‖ + 4β2

⊥ + 1
− 3

β4
‖ + β2

‖
β2

‖ + β2
⊥ + 1

,

(10)

where we have defined μ2,0(β‖,β⊥) ≡ m2,0(β‖,β⊥)/m
eq
2,0,

which measures the detected alignment in units of the maximal
(equilibrium) alignment obtained by optical pumping. From
Eq. (10) one sees that the general resonance line shape consists
of two resonances with different widths and of opposite sign
that are superposed on a field independent background. In
Secs. IV to VI below we will analyze the structure of Eq. (10)
in more detail for specific experimental geometries.

III. EXPERIMENTAL PROCEDURES

A. Experimental apparatus

We have studied the GSHE in Cs vapor using radiation
from a laser beam whose frequency was actively stabilized to
the F = 4 → 3 transition of the D1 line, which is the most
efficient for producing (and probing) atomic alignment.

The atomic vapor is contained in an evacuated uncoated
(20 mm long, 20 mm diameter) Pyrex cell kept at room
temperature. This choice of cell was dictated by our wish
to ensure the equality of the three relaxation rates �0,1,2

of the atomic alignment, since a single atom-wall collision
in a vacuum cell completely randomizes all atomic spin

polarization components. The price we pay with this choice
is the fact that relaxation is no longer exponential, since it
is determined by the distribution of the atom-field interaction
times that occur between steps (1) and (3) in the three-step
model. The ensuing line shapes are given by the Fourier
transform of the interaction time distribution, and depend
on the transverse laser intensity profile and the radial atomic
velocity distribution [25]. As a consequence, the resonances
do not have Lorentzian shapes. This effect leads to a minor
correction that is not particularly relevant in our context;
however, for the sake of completeness we will address this
effect in Appendix B.

The cell is mounted in a 992-mm-long double-layer μ-metal
shield with an inner diameter of 209 mm. The laser light is
carried by a monomode polarization maintaining fiber. The
output beam is collimated and expanded to about 10 mm by
a telescope. The central part of the expanded beam is passed
through a diaphragm producing a 6-mm-diameter beam. A λ/2
plate and a linear polarizer are used to control the power P0 of
the beam and its polarization orientation. The light transmitted
through the cell is detected by a biased photodiode followed
by a current-voltage converter.

A magnetic field in an arbitrary direction can be applied to
the cell by means of two pairs of rectangular coils mounted
in Helmholtz configuration and a solenoid. In Appendix A
we discuss the magnetic field calibration procedures. GSHE
spectra are recorded by measuring the dependence of the
transmitted light power P on the magnitude of the magnetic
field. The current through the (Helmholtz or solenoid) coil
producing the scanned field is ramped symmetrically from
negative to positive values, and the photodiode signal P (B),
as well as the current-controlling voltage ramp, is recorded
(and averaged) on a digital storage oscilloscope for offline
analysis.

B. Choosing the optimum laser power

Optical pumping with linearly polarized light produces
subsequently all even multipole moments m2,0, m4,0, . . . , up
to m2F,0 (=m8,0, for the 4 → 3 transition), when the incident
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FIG. 2. (Color online) Linearized transmission spectra of the 4 →
3 transition with polarized (dashed line) and unpolarized (solid line)
atoms (P0 ≈ 10 μW). ln Punpol and ln Ppol are the on-resonance signals
from unpolarized and polarized atoms, respectively.

laser power P0 is gradually increased. We recall that we chose
the quantization axis for the m(k,q) representation along the
light polarization.

The alignment m2,0 is produced first, and we assume that
the medium has no higher multipole moments as long as
the dependence of m2,0 on P0 is linear. Since our model
calculations are based on alignment contributions only, we
have thus to make sure that the experiments are performed
under conditions for which mk>2,0 ≈ 0.

We determine the optimal power by using the fact that—
according to Eq. (10)—a strong longitudinal (i.e., parallel to
the laser polarization vector) magnetic field β‖ � β⊥ stabilizes
the alignment to the value m2,0 = m

eq
2,0 produced by optical

pumping. On the other hand, a strong transverse field β⊥ � β‖
will completely destroy the alignment (meq

2,0 = 0). We record
transmission spectra P (δω) by scanning the laser frequency
over the 4 → 3 transition under alignment-stabilizing (β‖ =
10) and alignment-destroying (β⊥ = 10) conditions. A typical
example of such spectra is shown in Fig. 2, where we have
linearized the transmission signals by taking the (natural)
logarithm of the photodiode signals. On the 4 → 3 transition
studied here, the absorption coefficient in the aligned vapor
is reduced compared to the unpolarized vapor, thus exhibiting
electromagnetically induced transparency (EIT).

According to Eqs. (6) and (7), ln P is given by

ln P (δω) = ln P0 − κ0LD(δω) , (11)

where δω is the laser detuning from the 4 → 3 transition.
For each spectrum, we fit the function (11) to the data,
the on-resonance (δω = 0) optical density κ0L being
one of the fit parameters.1 With a transverse magnetic
field applied (unpolarized medium), the optical density
is given by (κ0L)⊥ = κ

unpol
0 L, while in presence of

a polarization stabilizing longitudinal field, one has

1In the context of the present paper we refer to κ0L as the optical
density. It is related to the standard definition of the optical density
OD used in optics via 10−OD ≡ e−κ0L.
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FIG. 3. Atomic alignment as a function of the laser power: the
dots are the experimental points; the solid line is a polynomial fit,
while the dashed line is the linear part of the polynomial fit.

(κ0L)‖ = (κunpol
0 L)(1 − α4,3 m

eq
2,0). The quantity

(κ0L)⊥ − (κ0L)‖
(κ0L)⊥

≡ α4,3 m
eq
2,0 (12)

thus represents a measure that is proportional to the atomic
alignment produced by optical pumping. In Fig. 2, the
horizontal dashed lines indicate the (on-resonance) signals
ln Punpol (solid) and ln Ppol (dashed) produced by unpolarized
and polarized atoms, respectively.

Figure 3 shows how α4,3 m
eq
2,0 extracted from the experi-

mental data using (12) depends on the incident laser power
P0. The solid line is a polynomial function, which allows us to
infer the region in which m

eq
2,0 grows linearly with P0. Based

on this result we have chosen to carry out the experiments with
a laser power of ≈ 10 μW, which corresponds to an intensity
of ≈35 μW/cm2.

We note that a corresponding method has been described in
Ref. [9] to infer the optimal power in atomic orientation-based
GSHE experiments.

C. Extracting μ2,0 from the transmission spectra

The ground-state Hanle resonances are recorded by mea-
suring the magnetic field dependence P (β) of the transmitted
laser power, when the laser frequency is actively stabilized
to the center of the 4 → 3 transition (δω = 0). Following the
previous discussion, one sees that P (β) is bound to lie in the
range [Punpol,Ppol]. This range is determined by the range of
possible alignments 0 � m2,0 � m

eq
2,0, which is equivalent to

0 � μ2,0 � 1.
A straightforward consequence is that one can infer from

the simple measurement in Fig. 2 the fundamental limit
of the signal-to-(shot)noise ratio for a given experimental
configuration. This result is important in view of applications
of the ground-state Hanle resonances as reference signals in
quantum sensors. The method is not restricted to the GSHE,
but can be applied to a larger set of related resonance effects
in spin polarized atoms.
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The magnetic field dependent relative alignment μ2,0(β)
can be extracted from the measured P (β) dependence via

μ2,0(β) = ln P (β) − ln Punpol

ln Ppol − ln Punpol
, (13)

where Ppol and Punpol are the values determined in the auxiliary
absorption measurement described in Sec. III B.

We note that the use of the relative alignment μ2,0, both in
the theoretical model and in the analysis of the experimental
spectra, does not require the knowledge of the alignment
analyzing power αF,F ′ .

In the following three sections we will describe GSHE
experiments performed in different field geometries and
compare the results to the model predictions derived in
Sec. II.

IV. ORIENTATIONAL DEPENDENCE OF THE GSHE

We will first address the dependence of the Hanle resonance
line shapes on the angle θ between the magnetic field orienta-
tion B̂ and the light polarization vector ε̂. The theoretical line
shapes are obtained by rewriting (10) in terms of the spherical
field variables β and θ , where β‖ ≡ β cos θ , β⊥ ≡ β sin θ , and
β2 ≡ β2

‖ + β2
⊥, as

μ2,0(β,θ ) =
(

3 cos2 θ − 1

2

)2

+ 3

4

sin2(2θ )

1 + β2
+ 3

4

sin4 θ

1 + 4β2
,

(14)

which can be put in the very compact form

μ2,0(β,θ ) =
2∑

q=−2

|C2,q(θ,0)|2
1 + q2β2

, (15)

where the C2,q are the components of the rank 2 unit
tensor which are related to the spherical harmonics Y2,q by
C2,q(θ,ϕ) = √

4π/5 Y2,q(θ,ϕ).
It is interesting to note that the GSHE line shapes induced

by circularly polarized laser light are fully described [9] by the
corresponding expression

μ1,0(β,θ ) =
1∑

q=−1

|C1,q(θ,0)|2
1 + q2β2

, (16)

for the normalized vector polarization μ1,0 = m1,0/m
eq
1,0, in

which case θ refers to the angle between the scanned field and
the laser propagation direction k̂.

Equation (14) reflects again that the ground-state Hanle
resonances with linearly polarized light are fully characterized
by a single orientational parameter, viz., the angle θ between
the magnetic field �B and the light polarization vector ε̂.

Figure 4 represents a series of ground-state Hanle reso-
nances recorded by scanning By (Fig. 1) for various orien-
tations of ε̂. Since the signals depend only on the relative
orientation of B̂ and ε̂, we have opted to vary the direction
of ε̂ (by means of a λ/2 plate) rather than changing the
(experimentally more demanding) direction of B̂.

The relative alignment μ2,0 was determined from the
experimental spectra by applying (13). Together with the
magnetic field abscissa given in terms of the dimensionless

magnetic field parameter β = βy , each Hanle spectrum μ2,0(β)
can be fitted by the function (14) on an absolute scale, with
θ being the only fit parameter. The fitted values of θ are
given, together with their statistical uncertainties as inserts
in each spectrum. The errors �θ ≈ 0.5◦ are compatible with
the experimental angular adjustment of θ .

One sees that the line shapes are not perfectly described
by the theoretical line shape (14). As mentioned earlier (and
addressed in Appendix B), this is a consequence of the use of
an uncoated cell without buffer gas (chosen to have �0 = �1 =
�2), in which the relaxation is known to be nonexponential,
and hence the line shapes to be non-Lorentzian [26]. We note
nevertheless that the peak value (polarized level) and the far
wing background are well reproduced by the fit function, which
allows us to determine the signal amplitude A and the signal
background bg. According to Eq. (14), the θ dependence of
the amplitude and background are given by

A(θ ) ≡ μ2,0(0,θ ) − μ2,0(∞,θ ) = 1 −
(

3 cos2 θ − 1

2

)2

,

(17)
and

bg(θ ) ≡ μ2,0(∞,θ ) =
(

3 cos2 θ − 1

2

)2

, (18)

respectively.
Figure 5 shows the angular dependencies of the com-

plementary quantities A(θ ) and bg(θ ) inferred from the
experimental data, together with the model functions (17) and
(18). We note that the model functions are not fitted to the data
here, but are defined on an absolute scale. A maximal contrast
of 100% (A = 1) is obtained at the magic angle θ∗ = 54.74◦,
which obeys cos2 θ∗ = 1/3.

The dependence of the full width at half maximum
(FWHM) linewidths �β on the field orientation θ can be
inferred from Eq. (14) and is given by

�β =
√

15 cos2 θ − 3 + √
369 cos4 θ + 6 cos2 θ + 25

6 cos2 θ + 2
,

(19)

a function that varies smoothly from �β = 2, i.e., �ω = 2 �

at θ = 0, to �β = 1, i.e., �ω = � at θ = π/2 (top curve of
Fig. 6).

When optimizing the sensitivity of the GSHE for metrolog-
ical applications, such as atomic magnetometry, the relevant
figure-of-merit (under the assumption that the signal noise is
field independent) is given by the ratio Fom ≡ A/�β of the
resonance amplitude and the resonance linewidth. The bottom
curve of Fig. 6 shows the expected angular dependence of the
Fom, based on Eqs. (17) and (19). The curve illustrates that the
best Fom is obtained with a purely transverse (θ = π/2) field,
and not at the magic angle, as one can naively expect.

The spectra discussed above can only be obtained when
there are no residual magnetic field components in the plane
perpendicular to the direction of the scanned field. In the
following two sections we will analyze how the resonance
line shapes are affected by the presence of a small constant
residual magnetic field (βp � 1). We will address two specific
geometries, viz., transverse and longitudinal Hanle resonances
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FIG. 4. (Color online) Line shape of Hanle resonances for different values of the magnetic field orientation. The values of θ represent the
angle fit parameter with its error.

defined by the scanned field being, respectively, perpendicular
or parallel to the light polarization.

V. EFFECT OF RESIDUAL FIELDS
ON THE TRANSVERSE GSHE

When the amplitude of a magnetic field �βs that is perpen-
dicular to ε̂ (transverse geometry) is scanned in the absence of
any residual field components, the line shape can be inferred
from the Cartesian representation (10) to be

μ2,0(β‖ = 0,β⊥ = βs) = 1

4
+ 3

4

1/4

β2
s + 1/4

, (20)

which represents a Lorentzian with an amplitude of 3/4 and
a FWHM width of 1, that is superposed on a background of
1/4.

In the experiments reported below we have applied a
discrete set of small, constant parameter fields �βp(⊥ �βs) that
simulate the presence of a residual field. Since the symmetry
of the GSHE is given by the direction ε̂, we have to consider
two distinct orientations of the parameter fields, viz., β̂p ⊥ ε̂

(case 1) and β̂p ‖ ε̂ (case 2).

A. Case 1: β̂p ⊥ ε̂

In this case, both the scanned field �βs and the parameter
field �βp are transverse fields, so that β2

⊥ = β2
s + β2

p , and the
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FIG. 5. Angular dependence of the resonance background, bg(θ )
(solid dots), and contrast, A(θ ) (open circles): dots and circles,
experimental values; lines, Eqs. (18) and (17), respectively.

line shape (20) becomes

μ2,0(β‖ = 0,β⊥ = | �βs + �βp|)
= 1

4
+ 3

4

1/4

β2
s + β2

p + 1/4
(21)

= 1

4
+ 3

4
(
β2

p + 1/4
) β2

p + 1/4

β2
s + (

β2
p + 1/4

) , (22)

which represents a family of upward pointing Lorentzians,
whose amplitudes A decrease with increasing residual field as

A = 3

4

1/4

β2
p + 1/4

, (23)

while their widths increase as

�β =
√

1/4 + β2
p . (24)

The background of 1/4 is not affected by the residual field.
We have recorded a family of such transverse Hanle reso-

nances by scanning βx(≡βs), in the presence of a discrete set
of transverse parameter fields βy(≡βp) of different amplitudes.
The results are shown in the left column of Fig. 7, together
with the theoretical line shapes. The experimental data are well
reproduced by the model.

0 π 4 π 2
0

0.5

1 1

1.5

2

θ

F
om

FIG. 6. (Color online) Angular dependence of the FWHM width
and of the figure-of-merit (Fom) calculated using Eqs. (17) and (19).

B. Case 2: β̂p = ε̂

Let us now examine how the transverse ground-state Hanle
resonances are affected by a residual (parameter) field that is
oriented along the light polarization. For this we rewrite (10)
by identifying β⊥ with βs and β‖ with βp, yielding

μ2,0(βp,βs) = 1

4
+ (

3β2
p + 3/4

) β2
p + 1/4

β2
s + (

β2
p + 1/4

)
−3β2

p

β2
p + 1

β2
s + (

β2
p + 1

) . (25)

The line shape consists of an upward pointing Lorentzian
with a FWHM width of 2

√
β2

p + 1/4 and of amplitude 3β2
p +

3/4, together with a broader, downward pointing Lorentzian
of width 2

√
β2

p + 1 and amplitude 3β2
p . For small parameter

fields βp � 1/2, the narrower resonance dominates. At larger
parameter fields, the broader negative resonance gives the line
shape a pronounced W -shaped structure, while for very large
residual fields (βp � 1, not shown in the data), the line shape
converges to a single upward Lorentzian of amplitude 3/4 and
width 2βp.

We have recorded a family of such transverse Hanle reso-
nances by scanning βx(≡βs) in the presence of a discrete set of
longitudinal parameter fields βp(≡βz) of different amplitudes.
The results are shown in the central column of Fig. 7, together
with the theoretical line shapes. The experimental data are well
reproduced by the model.

VI. EFFECT OF RESIDUAL FIELDS
ON THE LONGITUDINAL GSHE

Last, we discuss the case when the scanned field is
parallel to the light polarization ε̂ (longitudinal geometry).
In the absence of residual fields (orthogonal to the scanned
field), the general formula predicts that there is no GSHE,
i.e., μ2,0(β‖,β⊥ = 0) = 1. However, any small residual field
component will lead to the appearance of a resonance structure.
In experiments we apply again a set of constant parameter
fields �βp ⊥ �ε to simulate the effect of residual fields. We apply
the master expression (10) to the geometry of the longitudinal
GSHE by identifying β‖ with βs and β⊥ with βp. Here we do
not have to make a case distinction as for the transverse GSHE,
since all transverse residual field orientations are equivalent.

Rewriting (10) to make the resonances relevant for the
longitudinal GSHE appear explicitly yields

μ2,0(βs,βp) = 1

4
+ 3β4

p

β2
p + 1/4

β2
p + 1/4

β2
s + (

β2
p + 1/4

)
− 3β2

p

β2
p + 1

β2
s + (

β2
p + 1

) . (26)

As in case 2 of the transverse GSHE, the signal is composed
of two resonances of opposite sign, whose amplitudes and
linewidths can be identified easily from the parametrization
used to write (26).

We have recorded a family of such longitudinal Hanle res-
onances by scanning βz(≡βs), in the presence of a discrete set
of transverse residual fields βp(≡βx) of different amplitudes.
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FIG. 7. (Color online) Comparison of experimental (center line) and theoretical (lower line) line shapes of the transverse and longitudinal
Hanle resonances for a discrete set of parameter magnetic fields βp in the three relevant geometries summarized in the upper line. The parameter
fields βp are given as insets, and the arrows point in the direction of increasing values of βp .

The results are shown in the right column of Fig. 7, together
with the theoretical line shapes. The experimental data are well
reproduced by the model.

VII. DARK AND BRIGHT RESONANCES AND COHERENT
POPULATION TRAPPING EFFECT

In many cases, the redistribution of magnetic sublevel
populations in the atomic ground state by optical pumping
induces in the pumped medium an increased transparency
for the pumping radiation. Our experiments were carried out
on the F = 4 → F ′ = 3 transition, which indeed shows an
increased transparency when the medium is polarized (Fig. 2
and left part of Fig. 8). One refers to this effect as an EIT. In
the GSHE, the magnetic field destroys the spin polarization
and hence the EIT effect produced by optical pumping.
The transmitted power on the ground-state Hanle resonance
(in the inset of Fig. 8) can vary between the extreme levels
determined by the polarized and unpolarized medium. On
resonance (B = 0) the transmission is maximal, i.e., the
absorption minimal. This reduced absorption goes in pair with
a reduced fluorescence, hence the name of dark resonance that
is given to upward pointing Hanle resonances.

There is an important exception to the general rule that a
pumped medium becomes transparent. As first pointed out by
Kazantsev et al. [26], optical pumping on a closed transition
between a ground state with angular momentum F and an
excited state with F ′ = F + 1 makes the polarized medium
more absorbing for the pumping radiation than the unpolarized
medium. In that case one speaks of electromagnetically
induced absorption (EIA) [27,28]. The GSHE of closed (and

to a lesser extend also of some open) F → F + 1 transitions
therefore produces downward (bright) pointing resonances,
in which the magnetic field destroys the electromagnetically
induced absorption (Fig. 8, right).

The underlying physics of the GSHE lies in the mag-
netic field driven dynamic evolution of magnetic sublevel
coherences. However, coherences have not been addressed
explicitly by our theoretical model. By our proper choice of
the quantization direction, only the longitudinal alignment—a
quantity that is fully described by sublevel populations—
intervenes in the preparation and detection processes. The
magnetic field driven sublevel dynamics are treated implicitly

δω δω00

FIG. 8. (Color online) Effect of ground-state spin polarization
on the transmission spectra of F → F,F − 1 transitions (left) and
F → F + 1 transitions (right), showing EIT and EIA behavior,
respectively. Dashed (solid) lines represent absorption lines for unpo-
larized (polarized) atoms. The magnetic field induced depolarization
of the ground state leads to resonances of opposite signs in the two
cases.
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by the equations of motion in step (2). The steady-state
longitudinal alignment m2,0 is derived as a solution of algebraic
equations, in which the coherences are never used explicitly.

When choosing an alternative orientation of the quan-
tization axis, as, e.g., along the magnetic field, the dark
and bright states have to be described in terms of sublevel
coherences. The magnetic field dynamics of step (2) in that
case (ẑ = B̂) are described by a diagonal Hamiltonian, and
therefore straightforward to implement. However, the price
that one pays for the trivial mathematics of step (2) is that
the algebraic description of the state preparation and detection
[steps (1) and (3)] becomes a nontrivial task, in particular when
treating transitions with arbitrary F and F ′.

In the literature the GSHE is sometimes referred to as a
particular case of the coherent population trapping (CPT)
effect [29,30]. From the discussion above, one could rather
speak of a pure population trapping resonance when applying a
treatment (like ours), where ẑ = ε̂, and of a coherence trapping
resonance in a treatment with the choice ẑ = B̂.

VIII. SUMMARY

We have derived an algebraic expression for the line shape
of ground-state Hanle resonances based on atomic alignment.
The expression is valid for magnetic fields of arbitrary
orientation and for transitions between states of arbitrary
angular momenta. The approach is only valid for low laser
intensities that create no atomic multipole moments higher
than m2,0. We have discussed in detail the case when all rank
2 multipole components, i.e., the longitudinal moment m2,0

and the �m = 1,2 coherences m2,±1 and m2,±2, relax at the
same rate. This case yields a particularly elegant mathematical
expression (15) for the GSHE line shape in a field of arbitrary
orientation.

Finally, we have shown that the amplitude, and hence
the achievable contrast of the ground-state Hanle resonance,
is determined and fundamentally limited by the degree of
atomic alignment produced by optical pumping. This result
is interesting in view of the applications of the GSHE and
related effects in quantum sensors, whose performance is
characterized in terms of the resonance contrast.
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APPENDIX A: MAGNETIC FIELD CALIBRATION

The magnetic field generating Helmholtz coils and the
solenoid are driven by homemade voltage-controlled current
sources. We have calibrated all coils using a procedure similar
than the one described in Ref. [9]. We record magnetic
resonance signals driven by a weak magnetic field that
oscillates at a frequency νrf . When ramping the magnitude
of a magnetic field from negative to positive values, the

0 5 10 15 20
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1 2

3 4

Ωy 2Π kHz

Μ 2
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0,
Ω

y
2 Π

,0

FIG. 9. (Color online) Variation of the amplitude of the transverse
Hanle resonance in the presence of transverse fields ωy . A relaxation
rate �/2π = 5.43(2) kHz is inferred from a fit with the theoretical
function (A1).

transmitted light power shows, in addition to the zero-field
Hanle resonance, two magnetic resonance lines at field values
given by ωL = ±ωrf , where ωL = γF

√
B2

x + B2
y + B2

z is the
Larmor frequency corresponding to the modulus of the total
magnetic field. By measuring how these resonant Larmor
frequencies change with the current through each coil, the
three coil calibration constants, measured in Hz/μA, can be
inferred.

For characterizing the Larmor frequencies ωi that corre-
spond to the magnetic field components Bi in terms of the
dimensionless parameters βi = ωi/�, we need furthermore
a determination of the relaxation rate �. We infer � from
the study of Hanle resonances in a specific configuration
using the following procedure. We record a set of transverse
Hanle resonances using different parameter fields �βp ⊥ �ε in
the geometry of the case discussed in Sec. V A. When � is not
known, the amplitudes of these resonances read

A(ωp) = 3

4

�2

4 ω2
p + �2

(A1)

in absolute units, where ωp is the Larmor frequency of the
parameter field.

Figure 9 shows the dependence of the experimental ampli-
tudes on ωp, together with a fit using (A1). A relaxation rate of
�/2π = 5.43(2) kHz is found, that is used in all conversions of
fields Bi to the dimensionless units βi . We note that we have
used the amplitude dependence on βp for the � calibration,
rather than the width dependence on βp, since the extracted
amplitudes are more reliable than the widths, as discussed in
Appendix B.

APPENDIX B: TIME-OF-FLIGHT VS LORENTZIAN
LINE SHAPES

The Hanle resonance line shape is Lorentzian if homoge-
neous broadening mechanisms, such as pressure broadening
in a buffer gas or effects from the finite laser linewidth
[31], dominate the coherence relaxation rates. A review of
coherent relaxation rates effects in the case of electromag-
netically induced transparency was reported by Xiao [32].
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FIG. 10. (Color online) (Left) Experimental line shapes of the transverse GSHE for different values of βp = β⊥ and fit with Eq. (22).
(Right) The amplitudes of the residual.

The essential physical mechanisms discussed therein also
apply to the present study. In the uncoated vacuum cell used
in the experiments described here, a single wall collision
of a polarized atom randomizes its spin orientation. As a
consequence, the resonance line shape slightly differs from
an absorptive Lorentzian, as discussed in Ref. [25]. This effect
is small as evidenced by the results shown in Fig. 10. The
upper graphs show a transverse Hanle resonance in absence

of residual fields, together with a fit by the Lorentzian line
shape model function (10) and the fit residuals, which vary by
a few percent of the total signal amplitude. The lower graphs
show the same resonance in presence of a small (βp ≈ 0.5)
transverse magnetic field, in which case the residuals are
smaller. The conclusion is that the Lorentzian fits yield signal
amplitudes with a systematic uncertainty on the order of few
percent.
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