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We present a theoretical study for multiphoton double excitation of He atoms exposed to an intense ultrashort
extreme-ultraviolet (EUV) pulse, where the photon energy coincides with the transition energy from the ground
state to a Rydberg state, by solving the time-dependent Schrödinger equation in the hyperspherical coordinates.
Photoelectron spectra under the conditions comparable with a recent experiment [Hishikawa et al., Phys. Rev.
Lett. 107, 243003 (2011)] are calculated and analyzed. We identify the mechanism of the enhanced three-photon
absorption probability which is more than one order of magnitude larger than that for the two-photon process
in accordance with the experiment. The enhancement is attributed to a propensity rule for double excitation in
a two-step mechanism, in which a one-photon absorption by one electron to a Rydberg state is followed by a
two-photon absorption by the other electron to an excited orbital, while the first electron remains at nearly the
same principle quantum number. Based on the time-dependent perturbation theory, the three-photon absorption
probability exhibits peculiar cubic dependence on the pulse duration due to the propensity rule, in contrast to the
linear dependence of the two-photon absorption probability. Thus a crossover between the two- and three-photon
absorption probabilities takes place for sufficiently intense and long pulses. We also study the time evolution of
a doubly excited two-electron wave packet created by an intense ultrashort EUV pulse efficiently using the same
enhancement scheme, opening up the possibility of visualizing the correlated motion of two electrons in the time
domain.
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I. INTRODUCTION

Recent advances in high brilliance ultrashort radiation
sources in the spectral range of extreme-ultraviolet (EUV)
and soft-x-ray regime, notably the developments in high-order
harmonic generation (HHG) [1–3] and free electron lasers
(FEL) [4–7], have extended studies of nonlinear processes to
the short-wavelength regime in the atomic time scale of femto-
to subfemtoseconds. Of particular interest is to probe and even
control the fundamental dynamics of correlated multielectron
systems using such new ultrashort intense radiation sources.
As the simplest and most fundamental two-electron system,
He provides an ideal system for exploring electron dynamics.
Indeed, multiphoton double ionization of He generated by
ultrashort intense EUV pulses has attracted considerable
attention with many theoretical [8–15] and experimental
[16–19] investigations

Compared with double ionization, however, double exci-
tation has not been studied much so far. Since the doubly
excited states of He are embedded in the singly ionizing
states below the double ionization threshold, they are observed
in photoelectron spectra as autoionizing resonances. From
the theoretical point of view, such photoelectron spectra
can be rigorously calculated by solving the time-dependent
Schrödinger equation (TDSE) with the correct asymptotic
boundary condition from the standard scattering theory, and
can be compared with other calculations and experimental data
directly. Moreover, the two electrons in a doubly excited state
are affected by each other in a compact space near the nucleus,
having a well-defined closed orbital for a long time. Therefore,
studies of double excitation are advantageous in analyzing the
electron correlations in the time domain.

Several works have dealt with multiphoton double excita-
tion of He with intense ultrashort lasers in the EUV regime.
Theoretically, Scrinzi and Piraux [20] used the complex scaling
method to solve the TDSE for He in a strong laser field, giving
the total ionization yields as a function of laser frequency
with peaks below the n-photon threshold attributed to doubly
excited resonances. Palacios, Rescigno, and McCurdy [21]
solved the TDSE for He under short laser pulses with the
exterior complex scaling. Total cross sections for two-photon
single ionization are presented and resonances due to doubly
excited state were identified in the calculated total ionization
yields for multiphoton single ionization. Experimentally, two-
photon resonant excitation to the 2p2 1Se state by femtosecond
high-order harmonic pulses was demonstrated [22]. Similarly,
resonant two-photon absorption of FEL radiation to the high-
lying doubly excited states in N ∼ 5 manifolds has been
reported [23]. A recent experiment measures the photoelectron
spectra corresponding to autoionization of He doubly excited
states resulting from three-photon excitation [24], showing that
nonlinear double excitation is greatly enhanced by the resonant
transition through the intermediate Rydberg states of 1snp.
In this experiment, the photoelectron peak corresponding to
three-photon absorption was much greater than the one of
two photons, reflecting an interesting nonlinear nature of the
process. The enhanced three-photon absorption was attributed
to the efficient double excitation by a one-photon resonant
transition to a Rydberg state for the outer electron and a
subsequent two-photon absorption to excite the inner electron.
Resonances due to the doubly excited states converging to
the He+(N = 3) level were revealed by the shot-by-shot
photoelectron spectroscopy and identified by theoretical cal-
culations. However, the mechanism for the dominance of the
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three-photon ionization yields over the two-photon process as
observed in the experimental measurement requires a careful
theoretical interpretation. One of the main purposes of this
paper is to identify the enhancement mechanism quantitatively
with rigorous solutions to the TDSE for He under intense EUV
fields.

In addition to the spectroscopic studies in the energy
domain, simultaneous excitation of several doubly excited
states by an EUV pulse leads to an autoionizing two-electron
wave packet, opening up the possibility of studying the
correlated electron motions in the time domain. Using the
attosecond technology to control and probe the coherent
evolution of the wave packet has been suggested as a means
to visualize the correlated motion of electrons in He atoms
[25]. We explore in the present study an energy region of
the spectra where the doubly excited resonances are well
separated. Therefore, we can analyze the time evolution of the
correlated doubly excited wave packet by examining its density
distributions in the hyperspherical coordinates and identifying
the moleculelike modes.

In this paper, our focus is to explore the interaction
between He atoms and a strong EUV field in the regime
where collective excitation due to electron correlation plays an
important role. The paper is organized as follows. In Sec. II, we
describe the computational method to calculate photoelectron
spectra of He atoms exposed to intense EUV pulses using the
time-dependent hyperspherical (TDHS) method. We present
the theoretical results in Sec. III. The parameters for the EUV
pulses are chosen to simulate realistic experimental conditions.
The resonances in the spectra are identified and analyzed in
Sec. III A. In Sec. III B we present the pulse duration and field
intensity dependence of the photoelectron spectra. Enhanced
double excitation is observed and its mechanism is identified
by an analysis based on the time-dependent perturbation theory
in Sec. III C. Owing to a propensity rule for double excitation
in a two-step model, the three-photon absorption probability is
shown to have a cubic dependence on the pulse dependence, in
contrast to the linear dependence of the two-photon absorption
probability, thus becoming dominant for sufficiently long and
intense pulses. Due to the bandwidth of the EUV pulses,
a doubly excited wave packet is efficiently created by a
single pulse and its subsequent time evolution is analyzed in
Sec. III D. We summarize the paper in Sec. IV. We use atomic
units throughout unless otherwise stated.

II. THEORETICAL METHODS

We solve the TDSE,

i
∂

∂t
�(t) = [H0 + V (t)] �(t), (1)

where H0 is the Hamiltonian of He atom,

H0 =
2∑

i=1

(
−1

2
�i + 2

ri

)
+ 1

|r1 − r2| (2)

and V (t) is the time-dependent interaction between He and a
laser field. We use a linearly polarized field, so the interaction
within the dipole approximation in the length form can be

expressed as

V (t) = (z1 + z2)f (t), (3)

where the time-dependent electric field is chosen to be

f (t) = F0 cos2

(
πt

τ

)
cos ωt, (4)

for −τ/2 � t � τ/2 and zero elsewhere. F0 is the amplitude
of the laser field and the peak intensity is given by I =
1
2εcF 2

0 with ε being the dielectric constant. ω = 2πc/λ is
the central angular frequency corresponding to the photon
energy with λ being the wavelength. The full width at half
maximum (FWHM) of the pulse duration is given by T =
τ [cos−1(2−1/4)]/π = 0.364τ .

We solve Eq. (1) by the TDHS method, which is similar to
the one used for ion-He collisions [26]. This method contains
three steps: (i) Setting up box-normalized basis functions in
hyperspherical coordinates. (ii) Solving the time-dependent
equation using the box-normalized basis set. (iii) Extracting
the transition amplitude by projecting the result of the time
propagation onto the eigensolution of the target He atom with
the correct boundary condition.

In the TDHS method, the radial distances r1 and r2 are re-
placed by hyperradius R ∈ [0,∞] and hyperangle α ∈ [0,π/2]
defined by r1 = R cos α and r2 = R sin α, where R stands for
the size of the system and α measures the relative distance of
the two electrons from the nucleus. In the calculation of the
wave functions, we use the spherical angles r̂i = (θi,φi) (i =
1,2) of each electron in the laboratory-fixed frame. We will
use another set of hyperangular coordinates in the body-fixed
frame for the analysis of the wave functions. We obtain
the box-normalized eigenfunctions of H0 within R � R0 by
using the slow-variable discretization (SVD) method [27]
based on the discrete variable representation (DVR) method
[28] with R as the adiabatic parameter. In this method, the
nonadiabatic couplings with respect to R are treated rigorously
without laborious calculations. Therefore, the SVD method is
advantageous in evaluating the wave functions accurately as
well as the matrix elements efficiently in the next step of the
time propagation.

We solve the TDSE, Eq. (1), using the second-order
split-operator method [29]. Since the dipole transition matrix
elements among the box-normalized eigenfunctions should be
calculated once for all before the time propagation, the time
propagation is carried out efficiently. A similar time-dependent
scheme was used in [30].

When the laser field is off at τ/2, we extract the transition
amplitude from the time-dependent two-electron wave func-
tion �(τ/2) by projecting onto the eigensolution of the target
He atom with correct incoming wave boundary condition,
�

(−)
kNlm. Here, k denotes the momentum of the photoelectron,

and Nlm are the quantum numbers for the He+ ion. We
calculate the scattering state wave function following the
method in [31] with a single hyperradial sector of R ∈ [0,R0].
In this method, the R matrix at the boundary R0 is calculated
by a spectral resolution of the Green’s function with respect
to R using the box-normalized eigenfunctions prepared in the
first step of the calculation. Then, the S matrix is obtained
by carrying out the two-dimensional matching in (R,α) to the
asymptotic Coulombic wave function of He+(Nlm) + e− at

053426-2



TWO-ELECTRON DYNAMICS IN NONLINEAR DOUBLE . . . PHYSICAL REVIEW A 86, 053426 (2012)

R = R0. Thus, the transition amplitude to the final state given
by

AkNlm = 〈�(−)
kNlm|�(τ/2)〉 (5)

is calculated using the quadrature rule with respect to R

and α efficiently. Then the photoelectron spectra SEp,Nlm are
obtained from

SEp,Nlm = k

∫
|AkNlm|2dk̂, (6)

where the integration over k̂ is carried out analytically and
Ep = k2/2 is the photoelectron energy. When we plot the
photoabsorption spectrum as a function of the total energy E

measured from the double ionization threshold, we sum up the
spectra for all possible He+(Nlm) channels, namely,

S̄E =
∑
Nlm

SEp,Nlm, (7)

with

Ep = E + 2

N2
. (8)

In the actual calculations in the present study, a hyperradial
box size of R0 = 1600 a.u. is used so that the reflection of the
wave function from the boundary during the time propagation,
for the pulse durations considered in this study, is negligible.
We have checked the convergence with respect to the number
of total angular momentum L included, and confirmed that
L = 0,1,2,3 are adequate for the laser intensities and durations
considered in this paper. As a result, a total number of 120 000
two-electron basis functions are included in the calculations.

III. RESULTS AND DISCUSSIONS

A. Global features of photoelectron spectra

Inspired by the recent experimental work [24], we focus
on the photoionization processes of He by intense EUV
pulses, where the photon energy coincides with the transition
energy to a Rydberg state of He(1snp). In this subsection,
we provide global features of photoelectron spectra obtained
by our numerical calculations. Figure 1 gives a schematic
diagram, showing two- and three-photon ionization of He from
the ground state. While two-photon absorption results only in
ionization with He+(N = 1) + e−, indicated as process (B),
three-photon absorption leads to two possible ionization paths
with He+(N = 2) + e− and He+(N = 1) + e− corresponding
to processes (A) and (C), respectively. In the experiment,
intense FEL EUV pulses with λ ∼ 51.4 nm, I ∼ 5 TW/cm2,
and T ∼ 100 fs were used. In Fig. 2, we present calculated
photoelectron spectra as functions of photoelectron energy
Ep for slightly different laser parameters of λ = 51.202 nm
with I = 56.2 TW/cm2 and T = 8.29 fs. In the present work,
using the reduced mass of the electron and He+ in order to
take into account the mass polarization effects, we apply the
conversion factor of 1 a.u. = 27.207 696 eV in computing the
photoelectron energy. We choose a photon energy in resonance
with the transition from the ground state to the 1s6p state,
resulting in three-photon absorption to an energy region where
doubly excited states of He∗∗(3lnl′) are densely located. While
a shorter pulse is used in the theoretical study due to the limited

FIG. 1. (Color online) Scheme of three-photon double excitation
of He using EUV FEL. (A), (B), and (C) indicate three possible
paths by which photoelectrons with different kinetic energies can be
observed.

computational capacity, a higher intensity is chosen to have a
similar laser fluence given by the product of IT .

Spectra in logarithmic scale shown in Fig. 2(b) demonstrate
rich resonance structures near 7.24 and 48.1 eV corresponding
to processes (A) and (C), respectively. A smooth peak centered
at 23.8 eV is due to the two-photon absorption corresponding
to process (B). Figure 2(a) shows convoluted spectra in linear
scale taking into account a finite resolution on experimental
photoelectron detection. We use a bias voltage of 6 eV, which
is comparable with experimental conditions [24], but a higher
energy resolution (Ep/�Ep = 300) is adopted to resolve the
dominant resonances in the spectra more clearly. Despite
the difference in intensities and pulse durations, the overall
resonance structure in the convoluted spectrum for process (A)
is similar to the experimental observation, although individual
resonances were hardly resolved in the experimental spectra
due to a lower resolution (cf. Fig. 3 in [24]). We also note that
the resonances appear in higher photoelectron energies due to
the larger photon energy used in the calculation. The small
background in the spectra for both (A) and (C) indicates that
autoionization,

He + 3ω → He∗∗ → He+(N = 1,2) + e−,

dominates over direct ionization,

He + 3ω → He+(N = 1,2) + e−.

The integrated areas obtained from the spectra give the
probabilities corresponding to these processes, showing the
ratio of 1:1/3.7:1/156 among processes (A), (B), and (C).
The ratio of 156:1 between the probabilities for processes
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FIG. 2. (Color online) Theoretical photoelectron spectra of He
irradiated by an intense EUV laser field with λ = 51.202 nm,
T = 8.29 fs, and I = 56.2 TW/cm2. Spectra in left, center, right
panels corresponds to ionization processes (A), (B), and (C) illus-
trated in Fig. 1. Arrows indicate the energies corresponding to two-
or three-photon absorption from the ground state for each process.
(a) Convoluted spectrum; (b) raw spectrum.

(A) and (C) can be understood in terms of the autoionization
branching ratios of 101 ∼ 102 : 1 for He+(N = 2) + e− and
He+(N = 1) + e− [32]. These behaviors are in sharp contrast
with one-photon ionization spectra obtained with synchrotron
radiation, where the He+(N = 1) + e− process has a larger
yield with a large background due to the dominance of
direct ionization [33]. A more interesting feature in the
spectra is that the ratio of 3.7:1 between the probabilities for
processes (A) and (B), which is similar to the experimental
observation, indicating that three-photon processes are greatly
enhanced by the resonant transition through the intermediate
Rydberg states. As will be discussed later, the ratio between
the three-photon absorption probabilities for [(A) + (C)] and
the two-photon absorption probability for (B) depends on pulse
duration and intensity. We will demonstrate how this can be
understood based on the time-dependent perturbation theory
in the following subsections.

In order to further analyze the characteristics of various
resonance series, we plot the partial wave contributions to
the photoelectron spectra corresponding to processes (A) in
logarithmic scale for the raw spectra and in linear scale for
the convoluted spectra in Fig. 3. According to the dipole
selection rule, three-photon absorption from the ground state of
He(1s2 1Se) leads to 1P o and 1Fo states. For the classification
of the doubly excited states, we adopt the correlation quantum
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FIG. 3. (Color online) Theoretical photoelectron spectra of He
irradiated by an intense laser with λ = 51.202 nm, T = 8.29 fs, and
I = 56.2 TW/cm2 for the process of He(1s2) + 3ω → He+(N =
2) + e−. The 1P o (solid red line) and 1F o (dashed blue line) channels
are shown in different colors. Energy positions of the 1P o and 1F o

doubly excited states converging to the He+(N = 3) threshold are
indicated in the bottom panel. These doubly excited states are labeled
with the (K,T )An notation. The photoelectron energy corresponding
to three-photon absorption from the ground state is 7.25 eV. The top
panel gives the convoluted spectra in linear scale in order to show the
relative intensities of the resonances.

numbers, N (K,T )An [34–39], where N and n denote the
principal quantum numbers of the inner and outer electrons,
(K,T ) represents their angular correlation. A indicates the
radial correlation of the two electrons oscillating in phase
(A = +) or out of phase (A = −), while A = 0 represents
states with neither of these properties. We will come back
later to the relation of the correlation quantum numbers to
the moleculelike motions. The indicated energy positions and
the N (K,T )An quantum numbers for the 1P o resonances are
taken from [40]. The classification of the 1Fo resonances is
based on the energy positions from [41] and [42]. However,
according to the hyperspherical studies in [43], the broad
1Fo resonance near 6.91 eV should be assigned as 3(1,1)+5 .
As one can see from the convoluted spectra in Fig. 3, all
resonance series are almost equally populated with slightly
larger yields of 3(0,0)−n

1P o and 3(2,0)−n
1Fo states in contrast

to the dominance of the selective series of N (N − 2,1)+n =
3(1,1)+n in the single-photon ionization [44]. In addition, in
terms of the principal quantum number of the outer electron,
the most prominent resonances results from doubly excited
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states with n = 6 or 7. These properties in the three-photon
spectra can be attributed to the following two-step excitation
model:

He(1s2)
ω−→ He(1snp)

2ω−→ He∗∗(3lνl′), (9)

where the first step is a one-photon absorption to bring one 1s

electron to an np state with n = 6 or 7, and the second step
takes place by a two-photon transition of the other electron
from 1s to 3l state through the isolated core excitation [45]
with the first electron remaining at nearly the same principal
quantum number, ν ≈ n. Here no significant propensity asso-
ciated with the (K,T )A quantum numbers is expected in each
step, thus opening up the new pathways to the dense manifold
of series of doubly excited states corresponding to different
(K,T )A values to assist the nonlinear double excitations. We
will show that the two-step model in Eq. (9) can explain another
important observation in the spectra, i.e., the dominance of the
three-photon yield over the two-photon yield.

B. Intensity and pulse duration dependence

Nonlinear processes are sensitive to laser parameters. In
the shot-by-shot measurements with FEL pulses [24], the
intensity and photon energy dependence were studied using
the inherent fluctuation of FEL pulses. Since the resonant
condition requires matching in energy, one has to take into
consideration the finite bandwidth of the ultrashort pulse.
Hence, pulse duration dependence provides important infor-
mation on the multiphoton ionization. In this subsection, we
discuss the intensity and pulse duration dependence of one-,
two-, and three-photon absorption probabilities as well as the
corresponding photoabsorption spectra to reveal the origin
of the enhancement of the three-photon absorption processes
shown in the previous subsection.

In Fig. 4 we show the intensity dependence for the one-,
two-, and three-photon absorption probabilities. Here we use
the same pulse duration of T = 8.29 fs as in Fig. 2 and a shorter
one of T = 1.38 fs. These probabilities are obtained from
summing/integrating over the photoabsorption spectrum in the
corresponding energy regions. Note that the contributions to
two different processes (A) and (C) are added up for the three-
photon absorption probabilities. Note also that the one-photon
process contains the transition to the Rydberg states as well as
the low-lying singly ionizing states due to large bandwidths.
Clearly, the absorption probabilities corresponding to one-,
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FIG. 4. (Color online) Intensity dependence of the one-, two-,
and three-photon absorption probabilities for EUV pulses of
λ = 51.202 nm with two different pulse durations. (a) T = 1.38 fs,
(b) T = 8.29 fs.
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FIG. 5. (Color online) Convoluted photoabsorption spectra of He
irradiated by an EUV pulse with λ = 51.202 nm and T = 8.29 fs
for different intensities. (a) Scaled with the square of intensity I 2

shown in the energy region corresponding to two-photon absorption
from the ground state. (b) Scaled with I 3, shown in the energy region
corresponding to three-photon absorption from the ground state.

two-, and three-photon processes are proportional to the
powers of intensity, I , I 2, and I 3, respectively, indicating
the perturbative nature of the interaction under the given
laser parameters. For the longer pulse of T = 8.29 fs, the
three-photon absorption probability becomes larger than the
two-photon absorption probability for I > 20 TW/cm2 as
shown in Fig. 4(b). Recall that the ratio between the three-
and two-photon absorption probabilities reaches about 3.7
at I = 56.2 TW/cm2 as shown in the previous subsection.
Looking into more details, Fig. 5 shows the photoabsorption
spectra as functions of total energy E scaled by I 2 and I 3

for the two- and three-photon processes, respectively [cf.
Eq. (7)]. The spectra in Fig. 5(b) are convoluted with the energy
resolution of E/�E = 300 as in Fig. 2(a), but no bias voltage
is applied. The resonances corresponding to both process (A)
and (C) appear in the total energies of E ≈ −0.2335 a.u..
In Fig. 5(a), for the two-photon spectra, the peak heights
show a small but visible saturation at higher intensities due
to a larger ground-state depletion, indicating the perturbative
picture would begin to break down at I ≈ 50 TW/cm2 for
T = 8.29 fs. Indeed, the slope of the two-photon probability
in Fig. 4(b) is slightly deviated from I 2 at the highest intensity.
In the scaled three-photon absorption spectra in Fig. 5(b), small
discrepancies in some of the resonances can be also seen for the
highest intensity of I = 56.2 TW/cm2 from those for others.
Note that, for the shorter pulse of T = 1.38 fs, only a very small
deviation in the two-photon spectra at the highest intensity of
I = 56.2 TW/cm2 is observed.
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FIG. 6. (Color online) Pulse duration dependence of the one-,
two-, and three photon absorption probabilities for EUV pulses of
λ = 51.202 nm with two different intensities. (a) 5.05 TW/cm2,
(b) 56.2 TW/cm2.

We now turn our analysis to the pulse duration dependence.
Figure 6 presents the one-, two-, and three-photon absorption
probabilities at the same intensity of I = 56.2 TW/cm2 as in
Fig. 2 and a lower intensity of I = 5.05 TW/cm2. For both
intensities, the one- and two-photon absorption probabilities
scales linearly in T , while the three-photon absorption
probabilities shows T 3 dependence. Similar to the intensity
dependence, a crossover between the two- and three-photon
absorption probabilities can be seen at T ∼ 5 fs for I =
56.2 TW/cm2. Further examination on the photoabsorption
spectra provides a complementary picture for the pulse
duration dependence. Figure 7(a) presents the transition
probabilities to 1snp states divided by the asymptotic energy
spacing of �ωn ∼ n−3, which are smoothly connected with the
energy normalized photoionization spectra in the continuum
at the threshold energy of −2.0 a.u.. It is clearly shown that the
peak heights at the resonance energy position is scaled by T 2

and the “spectral width” is proportional to T −1. Consequently,
the one-photon transition probability obtained by “integration”
over the corresponding energy region is proportional to T

as shown in Fig. 6. Similarly, in the two-photon absorption
spectra in Fig. 7(b), the T 2 scaling of the peak height and
the T −1 scaling of the width result in a linear dependence on
T in the two-photon absorption probability. On the contrary,
the three-photon absorption spectra shows the peak heights
scaled by T 4 and the widths by T −1 as shown in Fig. 7(c),
leading to a higher power dependence of T 3. Note that the
spectra in Fig. 7(c) are convoluted with the energy resolution
of E/�E = 300 without bias voltage.

According to the above studies of intensity and pulse
duration dependence based on the rigorous solutions to the
TDSE, we can conclude that the one-, two-, and three-photon
absorption probabilities for the photon energy in resonance
with the 1s6p state, p(1), p(2), and p(3), follow the power laws

p(1) = a1IT , (10a)

p(2) = a2I
2T , (10b)

p(3) = a3I
3T 3, (10c)

where the coefficients are estimated as a1 = 1.9 × 10−3

[TW/cm2 fs]−1, a2 = 1.6 × 10−8 [(TW/cm2)2 fs]−1, and a3 =
9.7 × 10−12 [(TW/cm2)3 fs3]−1, respectively. As mentioned
earlier, the present numerical study is limited to shorter pulse
durations compared with the actual FEL. We can estimate the
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FIG. 7. (Color online) Photoabsorption spectra of He irradiated
by an EUV pulse with λ = 51.202 nm and I = 5.05 TW/cm2

for different pulse durations. (a) One-photon absorption spectra
(excitation or ionization probability per unit energy) scaled with the
square of the pulse duration T 2. (b) Two-photon absorption spectrum
scaled with the square of pulse duration T 2. (c) Three-photon
absorption spectra scaled with T 4 and convoluted as in Fig. 5(b).
Resonances at −0.194 and −0.188 a.u. are due to the 4(2,1)4

1P o and
4(2,1)4

1F o doubly excited states, respectively.

absorption probabilities for the experimental FEL parameters
of 5 TW/cm2 and 100 fs using the power laws. The results are
p(1) = 0.95, p(2) = 4.0 × 10−5, and p(3) = 1.2 × 10−3, and
the ratio of p(3)/p(2) = 30 agrees well with the experimentally
observed value of 24, although the laser parameters may be
close to the limit of validity of the power laws due to the
ground-state depletion.

C. Analysis based on perturbation theory

In the previous subsection, we studied the intensity and
pulse duration dependence of the photoelectron spectra for
one-, two-, three-photon absorption, and found the power
laws in Eq. (10) based on the accurate TDSE results. In this
subsection, we analyze the multiphoton processes in more
detail based on the time-dependent perturbation theory. Our
analysis reveals that the atomic structure plays a crucial role in
the pulse duration dependence of the spectra. More specifically
the selective excitations in the second step in Eq. (9) are
critical. This will lead us to derive the power laws in Eq. (10)
analytically.

The solution to the TDSE may be expanded by the energy
eigenstates of He,

|�(t)〉 =
∑∫

j

cj (t)|ϕj 〉e−iωj t , (11)
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where ϕj is the eigenfunction and ωj is the corresponding
energy. Here,

∑∫
is used to denote a summation over discrete

states and an energy integration over the energy normalized
continuum states as well. In the time-dependent perturbation
theory, the expansion coefficient with respect to the j th state
for the J -photon absorption, c

(J )
j (t), is given by

c
(J )
j (t) = −iF0

∑∫
j ′

djj ′

∫ t

−∞
f (t ′)eiωjj ′ t ′c

(J−1)
j ′ (t ′)dt ′, (12)

for J � 1 and c
(0)
j (t = 0) = δjI , where I stands for the

initial ground state. Here, djj ′ = 〈ϕj |z1 + z2|ϕj ′ 〉 is the dipole
transition matrix element, and ωjj ′ = ωj − ωj ′ . The transition
amplitude and probability are given by c

(J )
j = c

(J )
j (t → ∞)

and p
(J )
j = |c(J )

j |2, respectively. The J -photon absorption
probability p(J ) is then given by the sum and/or integration
of p

(J )
j over the corresponding energy region, EJ , i.e., p(J ) =∑∫

j∈EJ
p

(J )
j . In the following analysis, we use a laser pulse

with a Gaussian envelope,

f (t) = F0e
−(t/aT )2

cos ωt, (13)

for simplicity instead of the squared cosine envelope in Eq. (4)
used for TDSE calculations. Here a = (2 ln 2)−1/2 and T is the
FWHM of the Gaussian pulse.

In the present case, one-photon absorption mainly leads to
population of the Rydberg states in the vicinity of 1s6p. The
first-order amplitude to the Rydberg 1snp states, denoted by
n, is simply obtained by carrying out the time integration,

c(1)
n = −iF0dnI

∫ ∞

−∞
dt ′ f (t ′)eiωnI t ′

≈ − i

2
F0dnI

√
πaT e−(ω−ωnI )2a2T 2/4. (14)

Here the rotating wave approximation (RWA) is employed.
The one-photon absorption probability per unit energy is then
given by

p(1)
n

�ωn

∝ |dnI |2
�ωn

IT 2e−(ω−ωnI )2a2T 2/2, (15)

where I stands for the laser intensity. For large n, the
energy spacing is approximated by �ωn ∼ n−3 and the dipole
transition matrix element is scaled as dnI ∝ n−3/2 [46], so
that the squared dipole moment density, |dnI |2/�ωn, becomes
constant and smoothly connected to that for the continuum
states. Consequently, the peak height and the width for
one-photon absorption spectra are scaled as T 2 and T −1,
respectively, as shown in Fig. 7(a). Moreover, due to the
small energy spacing, the sum over the Rydberg states can
be approximated by an energy integral, i.e.,

p(1) =
∑

n

p(1)
n

�ωn

�ωn ∼
∫

p(1)
n

�ωn

dωn, (16)

and extended to the continuum states. As a result, the one-
photon absorption probability is given by

p(1) ∝ IT , (17)

which explains the power law in Eq. (10a). This result is
equivalent to Fermi’s “golden rule” of perturbation.

Next, we consider the two-photon absorption to the 1sεs

and 1sεd states (denoted by ε) via the 1snp Rydberg states.
The transition amplitude with the RWA is given by

c(2)
ε = −F 2

0

∑
n

dεndnI

×
∫ ∞

−∞
dt ′ f (t ′)eiωεnt

′
∫ t ′

−∞
dt ′′ f (t ′′)eiωnI t ′′ , (18)

where the double time integral can be evaluated analytically.
Since the dipole transition matrix element between a Rydberg
and continuum states is also scaled as dεn ∝ n−3/2 with a
smooth phase [46], the product dεndnI/�ωn should be approx-
imately constant again. The summation over the intermediate
Rydberg states, n, can also be approximated by an energy
integral. Therefore, denoting qεI = dεndnI/�ωn, we have

p(2)
ε ∝ I 2|qεI |2T 2e−(2ω−ωεI )2a2T 2/4. (19)

This result provides the photoabsorption spectrum whose
height and width are scaled by T 2 and T −1, respectively, as
shown in Fig. 7(b). The two-photon absorption probability,
obtained by integrating p(2)

ε over the corresponding energy
region, becomes

p(2) ∝ I 2T , (20)

which is consistent with the power law in Eq. (10b). Note
that the situation is very different from the two-photon single
ionization via lower singly excited states of He, where only
one or a few intermediate states are contributing due to larger
energy separations [47]. In such a case, p(2) is dominated by a
component ∝ T 2 corresponding to the two-photon absorption
via a particular single intermediate bound state, and a linear
dependence on T would appear in very short pulse durations.

Let us move on to the three-photon absorption. As described
earlier, the final states of the three-photon absorption process
can be approximately treated as the discrete doubly excited
states, since autoionization is the dominant mechanism and
direction ionization is negligible. The transition amplitude to
the doubly excited state 3lνl′, denoted by ν, is written as

c(3)
ν = iF 3

0

∑∫
εn

dνεdεndnI

∫ ∞

−∞
dt ′ f (t ′)eiωνε t

′

×
∫ t ′

−∞
dt ′′ f (t ′′)eiωεnt

′′
∫ t ′′

−∞
dt ′′′ f (t ′′′)eiωnI t ′′′ . (21)

Here we use the symbol ν for doubly excited states to
distinguish them from singly excited states denoted by n.
Assuming dνε as well as dεn are smooth functions of ε over a
wide range, the triple time integral and the energy integral with
respect to ε can be carried out analytically. The result reads

c(3)
ν ∝ F 3

0 T 2
∑

n

qνndnIe
−(ωνI−3ω)2a2T 2/12e−(ωνn−2ωnI )2a2T 2/24

×
{

1 + erf

[
i
(ωνn − 2ωnI )aT

2
√

6

]}
, (22)

where qνn = dνεdεn is the quadrupole transition matrix el-
ement between the Rydberg states of 1snp and the doubly
excited states 3lνl′, and erf is the Gauss error function. Recall
that the two-photon absorption in the two-step model in Eq. (9)
is very selective, coupling a 1snp Rydberg state to specific
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doubly excited states of 3lνl′ with n ≈ ν. In other words, in
the summation of n, qνn is significant if n ≈ ν, and can be
written as

qνn ∼ Qνδνn, (23)

with Qν being a constant. Therefore, the summation in Eq. (22)
can be reduced to a single term and

p(3)
ν ∝ I 3T 4|QνdnI |2e−(ωνI−3ω)2a2T 2/6e−(ωνn−2ωnI )2a2T 2/12

×
{

1 +
∣∣∣∣erf

[
i
(ωνn − 2ωnI )aT

2
√

6

]∣∣∣∣
2 }

. (24)

This is consistent with the result that the spectra is scaled as T 4

in Fig. 7(c) and the most prominent resonances appearing in the
photoelectron spectra corresponding to doubly excited states of
3lνl′ with ν = 6 or 7 as in Fig. 3. Given that the argument of the
error function is small, the three-photon absorption probability,
obtained by the integration of p(3)

ν over all doubly excited
states, provides at least a cubic dependence on T ,

p(3) ∝ I 3T 3, (25)

which agrees with the power law in Eq. (10c). It is worth
noting that if qνn is a smooth function of n for each ν, then
the summation over the Rydberg states in Eq. (22) would give
a factor of T −1. Consequently, the three-photon absorption
probability would be proportional to T , and the crossover
between the two- and three-photon absorption probabilities
would not occur. The properties of the quadrupole transition
matrix element qνn between the Rydberg states of 1snp and
the doubly excited states of 3lνl′ as in Eq. (23) is the key to
determine the dynamics of the present three-photon process.

In order to verify the structure of qνn as given in Eq. (23),
we calculate the three-photon transition amplitudes including
only a particular Rydberg state n according to the third-
order perturbation theory as in Eq. (21). It is clearly seen
from the results in Figs. 8(b) and 8(d) that the three-photon
absorption via a given Rydberg state 1snp primarily leads
to population in the doubly excited states of 3lνl′ with either
ν = n or ν = n + 1, confirming that the two-photon excitation
is selective as in Eq. (23). In addition, an incoherent sum
of the photoelectron spectra corresponding to three-photon
absorption via all Rydberg states agrees well with the TDSE
spectrum as shown in Fig. 8, indicating that the resonant
transitions via different Rydberg states would not interfere
with each other. Note that, for the laser parameters used,
the full calculation based on the third-order perturbation
theory, requiring a coherent sum of the transition amplitudes
via all intermediate states, actually gives results identical
to the TDSE calculations. Therefore, it is confirmed that
qνn is significant if the outer electron of the intermediate
Rydberg state and the final doubly excited state have nearly
the same principle quantum number n ≈ ν. These findings
further support the essence of the two-step model in Eq. (9),
i.e., a one-photon excitation to a Rydberg state followed by
a two-photon isolated core excitation to a doubly excited
state.

To conclude this subsection, it is worth mentioning
that, while time-dependent calculations are often limited to
pulse durations shorter than the actual ones used in the
experiments, the perturbative analysis given above can be
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FIG. 8. (Color online) (a) Convoluted photoelectron spectra for
the process of He(1s2) + 3ω → He+(N = 2) + e− irradiated by an
EUV pulse with λ = 51.202 nm, T = 1.38 fs, and I = 5 TW/cm2

in the 1P o channel. Results from TDSE and third-order perturbation
theory are identical. (b) Convoluted photoelectron spectra in the 1P o

channel as (a), but calculated by the third-order perturbation theory
with only transition paths via a specific Rydberg state as indicated.
(c) Same as (a) for the 1F o channel. (d) Same as (b) for the 1F o

channel.

useful in comparing theoretical and experimental studies
on few-photon multiexcitation or ionization problems. We
also comment that it is often assumed that the higher-order
amplitudes are much smaller than the lower-order ones, i.e.,
|c(0)

j | 
 |c(1)
j ′ | 
 |c(2)

j ′′ | 
 · · · in the perturbation theory, but
the assumption is unnecessary. Moreover, the assumption
is irrelevant in the presence of resonances. In addition, the
so-called generalized multiphoton absorption cross section
defined by the ionization rate for a monochromatic field within
the framework of time-independent approaches is often used
to characterize multiphoton-multielectron excitations [48], but
it is not suitable for analyzing spectra generated by pulses of
finite durations in real experimental situations.

D. Correlated two-electron motions in time domain

Directly probing correlated electronic motions in two-
electron atoms in the time domain has been discussed
theoretically [25,49], but not yet been realized experimentally.
In [25], it is demonstrated that the time-varying moleculelike
motion of a doubly excited wave packet can be revealed
by measuring doubly ionized electron momentum vectors in
coincidence using an attosecond pulse. One of the remaining
issues is how to create effectively a well controlled doubly
excited wave packet with a realistic laser pulse. In the previous
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FIG. 9. (Color online) Total and partial photoelectron spectra
shown in logarithmic scale for the process of He(1s2) + 3ω →
He+(N = 2) + e− irradiated by an EUV pulse with λ = 52.139 nm,
T = 5.5 fs, and I = 126 TW/cm2. The 1P o (solid red line) and
1F o (dashed blue line) components are shown in different colors.
Energy positions and corresponding doubly excited states of relevant
resonances in this energy region are labeled. The top panel gives
the convoluted spectra in linear scale in order to show the relative
intensities of the resonances. The arrow in the upper panel indicates
the energy position of three-photon absorption from the ground state.

subsections we showed that a coherent doubly excited wave
packet composed of 3lnl′ states can be created very efficiently
via the resonant three-photon transition by using intense EUV
FEL pulses. In this subsection, we examine the time evolution
of the correlated two-electron motions pumped by such an
intense laser pulse. In order to make it transparent for analyzing
the two-electron wave packet, we study the case with a photon
energy close to the 1s4p transition since the density of Rydberg
states is lower. As a result, only few doubly excited states are
populated through three-photon absorption and a wave packet
is formed.

For example, we demonstrate in Fig. 9 the photoelectron
spectra obtained by a pulse of λ = 52.139 nm, T = 5.5 fs,
and I = 126 TW/cm2. We have chosen the photon energy,
which is slightly higher than the 1s4p resonance transition,
in order to demonstrate the wave-packet dynamics clearly.
The intensity is just beyond the perturbation regime, so that
the scaling laws as discussed in the previous section do
not apply. As seen in the photoelectron spectra, five doubly
excited states are significantly populated, and the excitation
probabilities of these states are listed in Table I. The sum of
the double excitation probabilities of 1.4 × 10−4 is less than
the experimental result of 1.2 × 10−3 estimated in the previous
subsection. In the following, we first examine the correlated
two-electron wave functions for those states individually. Then
we analyze the time evolution of the two-electron wave packet
after the pulse is over.

TABLE I. Probability for exciting the doubly excited reso-
nances in the photoelectron spectrum irradiated by a pulse with
λ = 52.139 nm, T = 5.5 fs, and I = 126 TW/cm2. The energy
positions indicate the photoelectron energy corresponding to three-
photon ionization to He+(N = 2) + e− state. Numbers in square
brackets indicate powers of 10.

State Energy position (eV) Probability

3(2,0)−4
1P o 5.824 1.1[−5]

3(−1,1)+3
1P o 5.909 1.2[−5]

3(1,1)+4
1P o 6.225 6.4[−5]

3(0,0)−4
1P o 6.322 1.9[−5]

3(2,0)−4
1F o 6.041 3.4[−5]

1. Vibrational and rotational modes of the constituent
doubly excited states

The characteristics of the two-electron wave functions for
the doubly excited states can be visualized by the vibrational
and rotational probability density distributions in the hyper-
spherical coordinates in the body-fixed frame. In Fig. 10, we
plot the vibrational and rotational density distributions for
those doubly excited states defined by

ρvib(�v) =
∫

|ψ |2d�rdR, (26)

ρrot(�r ) =
∫

|ψ |2d�νdR, (27)

where �v = {α,θ12 = cos−1(r̂1 · r̂2)} measures the stretching
and bending vibrational motions, and �r = (α′,β ′,γ ′) refers
to the three Euler angles to describe overall rotational motions.
We choose the body-fixed frame axis as

Sz = (r̂1 − r̂2)

|r̂1 − r̂2| , Sx = (r̂1 × r̂2)

|r̂1 × r̂2| , Sy = (Sz × Sx)

|Sz × Sx | ,

with the rotational axis Sz parallel to the interelectronic axis.
Since we are interested in transitions from the ground state
of He with M = 0, only the M = 0 component of the total
angular momentum L for the doubly excited states are shown.
Note that we plot the rotational density as a function of β ′
and α′, since it does not depend on γ ′ for M = 0. Here
ψ contains only the doubly excited component of the wave
function, obtained by diagonalizing the He Hamiltonian H0 in
Eq. (2), excluding the lower adiabatic hyperspherical channels
converging asymptotically to the He+(N = 1,2) thresholds.
Therefore, the obtained wave functions exclude the continuum
component of the autoionizing states.

Let us examine these distributions for each state in more
detail. The (K,T )A quantum numbers of these states can
be related to vibrational and rotational quantum numbers in
rovibrational motions of a linear XY2 molecule, where X

stands for the nucleus and Y for the electron [39]. In the
molecular picture, A = ± describes the radial correlation
of the two electrons in the symmetric and antisymmetric
stretching vibrational modes, respectively. K is related to the
bending vibrational quantum number v through the relation
v = N − K − 1. T corresponds to the projection of the total
angular momentum along the rotational axis parallel to the
interelectronic axis.
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FIG. 10. (Color online) Rotational and vibrational density distribution for the doubly excited states appearing as prominent resonances in the
photoelectron spectra in Fig. 9. Upper panel shows vibrational density distributions, ρvib(α,θ12) in Eq. (26), where α and θ12 describe stretching
and bending vibrational motions, respectively. Lower panel shows polar plots of rotational density distributions, ρrot(β ′,α′) in Eq. (27), where
β ′ = cos−1 ẑ and α′ = tan−1 ŷ/x̂ represent polar angles that determine the rotational axis with respect to the interelectronic axis.

From left to right as labeled in Fig. 10, the first four are 1P o

states, ordered according to their energy levels, and the last
one is a 1Fo state. In the following, we would describe them
one by one in detail.

(a) For the lowest state, 3(2,0)−4
1P o, ρvib(�v), has a

node at α = π/4, corresponding to the antisymmetric (or
out-of-phase) stretching vibrational mode with A = −. In
the θ12 coordinate, a maximum at θ12 = π with no node
refers to the ground state in the bending vibrational mode
with v = 0. ρrot(�r ) for this state exhibits resemblance to
the spherical harmonic |YLT (β ′,α′)|2 with (L,T ) = (1,0),
indicating a rotationally excited state with its principal axis
perpendicular to the interelectronic axis.

(b) The second state, 3(−1,1)+3
1P o, is an intrashell state,

where the two electrons have the same principal quantum
number N = n = 3 with A = +. One can see two nodal lines
at θ12 = π and ∼π/2, corresponding to an excited bending
vibrational mode, and antinode at α = π/4 corresponding to
a symmetric mode in stretching vibrational motion. (In the
molecular picture, v refers to the number of nodes in the
extended region of 0 � θ12 � 2π .) Since this state is excited in
the bending vibrational mode with v = 3, the energy is higher
than the intershell state of 3(2,0)−4

1P o, which is in the ground
state in the bending vibrational mode. Indeed, its energy is the
highest among the intrashell states with N = n = 3. ρrot(�r )
for this state exhibits resemblance to |Y11(β ′,α′)|2, indicating
a rotationally excited state with the principal axis parallel to
the interelectronic axis.

(c) The third lowest state, 3(1,1)+4
1P o, is an A = + state,

exhibiting an antinode at α = π/4, thus an intershell state in
the symmetric stretching vibrational mode. This state is the
first excited state with v = 1 in ρvib(�v), characterized by a
nodal line at θ12 = π . ρrot(�r ) for this state is similar to the one
for 3(−1,1)+3

1P o, thus having the same rotational properties.
(d) The fourth state, 3(0,0)−4

1P o, has one additional nodal
line at θ12 ∼ 2π/3 in comparison with 3(2,0)−4

1P o, represent-
ing a higher excited state in bending vibrational motion with
v = 2. This is an intershell state in an antisymmetric stretching
vibrational mode, as indicated by the A = −. Its rotational

properties are similar to that of 3(2,0)−4
1P o, characterized by

|Y10(β ′,α′)|2.
(e) ρvib(�v) for 3(2,0)−4

1Fo is similar to that for 3(2,0)−4
1P o

as expected from the same (K,T )A quantum numbers. The
difference is in ρrot(�r ); the one of 3(2,0)−4

1Fo is dominated
by |Y30(β ′,α′)|2.

2. Time evolution of the doubly excited wave packet

Let us turn to our discussion on the time evolution of
the wave packet based on the molecular picture. Figures 11
and 13 show the time evolution of ρvib(�v) and ρrot(�r )
of the wave packet after the EUV pulse is over. Since we
are interested in probing the doubly excited wave packet,
we exclude the ground and singly excited states as well as
continuum components of the autoionizing states as described
earlier for the doubly excited states shown in Fig. 10. Indeed,
in the probing process as discussed in [25], the contribution
from the ground and singly excited states can be distinguished
in terms of photoelectron energy, and the interaction between
the probe pulse and the continuum part is weak, compared with
the doubly excited part. As a result, the density distributions
shown in Figs. 11 and 13 can be understood as a coherent
superposition of those presented in Fig. 10. In the actual
calculations of the time-dependent densities, we propagate the
wave function for a long enough time after the pulse vanishes
with an absorbing boundary condition, which is imposed by
multiplying the hyperradius function at the end of each time
step with a masking function,

g(R) =
{

cos
(

π
2

R−Rm

R0−Rm

)
for R � Rm,

1 for R < Rm,

with Rm = 0.95R0, in order to ensure that the wave function
is not distorted by reflections from the boundary. Note that
the doubly excited component is confined in the regime of
small hyperradius R and thus is not affected by the masking
procedure.

Let us consider ρvib(�v) in Fig. 11. To give a quantitative
measure of the bending vibrational motion of the wave packet,
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FIG. 11. (Color online) Time evolution of the expectation values
of 〈cos θ12〉 after the laser pulse is over at time of zero. 〈cos θ12〉 using
only the 1P o states is shown along with the one obtained including all
the states. Vibrational density distributions from the 1P o component
only (bottom) and the full wave function (top) at several different
times are also plotted. In the calculations for the expectation values
and the density distribution, the hyperspherical channels converging
to the He+(N = 1,2) thresholds are removed from the wave function.
Convolution is carried out to average out the fast oscillation due to
remnant contributions from Rydberg states.

we also plot the expectation value of 〈cos θ12〉 in the figure.
Since the different total angular momentum contributions are
decoupled in ρvib(�v), we first focus on the 1P o component
only. A clear oscillating period of 8.25 fs can be attributed to
the coherent sum of the 3(2,0)−4

1P o and 3(0,0)−4
1P o states with

different K’s. For ρvib(�v) including the 1Fo component, one
can recognize that a large contribution from the 3(2,0)−4

1Fo

state is added incoherently, since this is the only 1Fo state
significantly excited. We can also observe that 〈cos θ12〉 is not
monochromatic due to contributions from other states. Other
frequency components will become discernible if the time
evolution of 〈cos θ12〉 is analyzed for a much longer period.

Next, we examine the time evolution of the stretching
vibrational motion in α. Figure 12 shows the time dependence
of the standard deviation of α about π/4, 〈(α − π/4)2〉1/2. The
time dependence is quite complicated with a small amplitude
[cf. Fig. 12(c)], since more states are strongly coupled in
the stretching vibrational motion. Therefore, probing the
stretching vibrational mode of such a wave packet would
not be easy. Similar to the motion in θ12, we consider the
α motions for 1P o and 1Fo separately. The 1P o component
in Fig. 12(b) shows a beating between two frequencies with a
ratio ∼2. A characteristic period of 10.36 fs, corresponding to
the energy spacing between two A = ± states of 3(2,0)−4

1P o

and 3(1,1)+4
1P o, can be identified. The higher frequency

component involves 3(2,0)−4
1P o and a higher excited state,

3(2,0)−5
1P o, which is much less populated, giving a smaller

amplitude modulation. Coincidentally, the 1Fo component in
Fig. 12(a) also shows beating with a frequency ratio of 2:3,

 0.4

 0.45

 0  5  10  15  20  25  30  35

Time (fs)

(a) 1Fo channel

 0.4

 0.45 (c)

Total

 0.4

 0.45

〈(
α-

π/
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2 〉1/
2 (b) 1Po channel

FIG. 12. Time evolution of the standard deviation of α about
π/4, 〈(α − π/4)2〉1/2 calculated from (a) the 1F o, (b) the 1P o

components, and (c) the full wave function. In the calculations for
the expectation values, the hyperspherical channels converging to
the He+(N = 1,2) thresholds are removed from the wave function.
Convolution is carried out to average out the fast oscillation due to
remnant contributions from Rydberg states.

also involving higher but weakly populated states as in the 1P o

component.
Last we discuss the time evolution of ρrot(�r ). The standard

deviation of β ′ about π/2, 〈(β ′ − π/2)2〉1/2, gives a quantita-
tive measure for the rotational motion of the wave packet with
the larger value corresponding to the smaller angle between the
rotation axis and the interelectronic axis. The time evolution
of 〈(β ′ − π/2)2〉1/2 is shown in Fig. 13 along with ρrot(�r ) of
the wave packet at several different instances. One can extract

Time (fs)

2.4 fs 12 fs 14.4 fs 20.4 fs

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35

〈(
β′

-π
/2

)2 〉1/
2

FIG. 13. (Color online) Time evolution of the standard deviation
of β ′ about π/2, 〈(β ′ − π/2)2〉1/2. Polar plots for the density
distribution of the rotational wave functions at several different times
are also plotted. In the calculations for the expectation values and
the probability density, hyperspherical channels converging to the
He+(N = 1,2) thresholds are removed from the wave function for
better visibility. Convolution is carried out to average out the fast
oscillation due to remnant contributions from Rydberg states.
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an oscillation period of approximately 19 fs corresponding to
the energy spacing between the two prominent components of
3(2,0)−4

1P o and 3(2,0)−4
1Fo states with the same (K,T ) but

different L’s. Contributions from other states are much less
visible due to the small overlap in the wave functions with
different (K,T )A quantum numbers.

The oscillating periods of the rovibrational molecular
motions demonstrated above are of the order of a few
femtoseconds, so that it would be feasible to extract those
correlated motions by measuring doubly ionized electron
momenta using an attosecond pulse [25].

IV. SUMMARY

We have presented a theoretical study for multiphoton
ionization of He, where the photon energy equals to the
transition energy from the ground state to the 1s6p 1P o

Rydberg state. Accurate theoretical photoelectron spectra are
shown by solving the time-dependent Schrödinger equation
rigorously with the time-dependent hyperspherical method.
Taking into account the experimental resolution, convoluted
spectra are presented, giving qualitative agreement with
experimental measurements. Detailed features of resonance
structures could be resolved if the experimental resolution is
high enough, using shot-by-shot photoelectron spectroscopy.
We discussed the intensity and pulse duration dependence
of the photoabsorption spectra and probabilities, providing
insights into modeling the nonlinear processes involving
matter exposed to EUV or x-ray laser fields. Using a two-step
model for the three-photon process, in which one-photon
resonant excitation from the ground state to the 1snp Rydberg
state is followed by a two-photon transition of the inner
electron to the 3lνl′ states with ν ≈ n, we showed the
three-photon absorption probability scales as I 3T 3, while
two-photon probability scales as I 2T . These power laws
explain why the three-photon absorption probability would
dominate for sufficiently intense and longer pulses. The
power laws also explain the experimental value of the ratio

between the three- and two-photon absorption probabilities.
The propensity, where the transition is significant with nearly
the same principal quantum number ν ≈ n during the second
step, plays a very important role. The crossover between the
two- and three-photon probabilities would not occur without
this propensity. This study demonstrates that, in addition to
the direct manifestation in the spectral width, pulse duration is
a laser parameter that can be used to probe the dynamics,
giving different power laws of the photoelectron spectra.
The T 3 dependence can actually be generalized to describe
multiphoton absorption probability of double excitation via
intermediate Rydberg states in a two-step manner, regardless
of the number of photons involved in each step, given that
the transition between the intermediate Rydberg states and
the final doubly excited states is selective. For example, such
conditions are generally satisfied by isolated core excitation
(ICE) processes.

Furthermore, the multiphoton absorption could create a
doubly excited wave packet efficiently, opening up the possi-
bility to probe the ultrafast motion of the correlated electrons
directly in a pump-probe scheme. We have shown an example
of the time evolution of a wave packet created by three-photon
absorption in resonance with the 1s4p state, in which both the
bending vibrational and rotational modes of the two-electron
motion can be demonstrated and resolved. However, since
the stretching vibrational modes are more strongly coupled, it
would require a more selective excitation scheme to generate
a wave packet in which the stretching vibrational modes can
be resolved.
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(1975).

[35] M. E. Kellman and D. R. Herrick, J. Phys. B 11, L755 (1978).
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