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Laser-assisted electron-argon scattering at small angles
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Electron-argon scattering in the presence of a linearly polarized, low-frequency laser field is studied
theoretically. The scattering geometries of interest are small angles where momentum transfer is nearly
perpendicular to the field, which is where the Kroll-Watson approximation has the potential to break down.
The Floquet R matrix method solves the velocity gauge Schrödinger equation, using a larger reaction volume
than previous treatments in order to carefully assess the importance of the long-range polarization potential to the
cross section. A comparison of the cross sections calculated with the target potential fully included inside 20 and
100 a.u. shows no appreciable differences, which demonstrates that the long-range interaction cannot account
for the high cross sections measured in experiments.
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I. INTRODUCTION

Since the development of intense lasers, many studies
have investigated the modification of familiar processes by
the presence of coherent light. Particles that collide in the
presence of a laser field can also exchange energy with the
field in multiples of the laser frequency, a process known
as laser-assisted collision. This paper investigates free-free
transitions in electron scattering, where the state of the target
atom remains unaltered.

In 1973 Kroll and Watson derived an expression for the
cross section of a laser-assisted scattering event in terms of the
elastic field-free cross section. Their main assumptions were
that the time duration of the interaction is short compared to
the laser cycle and that the target itself is unperturbed by the
laser. They found the following expression [1]:

dσν

d�
(kf ,ki) = kf

ki

J 2
ν (x)

dσel

d�
(ε,Q), (1)

where ν denotes the number of laser photons absorbed by the
electron (−ν is the number of photons emitted), kf and ki are
the momenta of the final and initial electrons, Jν is the Bessel
function of the first kind of order ν, and dσel

d�
is the field-free

elastic cross section. With the time-dependent laser vector
potential of the form A(t) = A0 sin(ωt), the other parameters
are defined as follows:

Q = kf − ki , (2)

x = −eA0 · Q
mcω

, (3)

ε = k2
i

2m
− νω

Â0 · ki

Â0 · Q
+ m(νω)2

2(Â0 · Q)2
. (4)

In addition to assuming that the laser frequency ω is small,
the Kroll-Watson approximation (KWA) assumes that the
dimensionless quantity x is sufficiently large that only on-shell
scattering contributes.1 This assumption becomes question-
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1See Sec. 5 of Ref. [1].

able not only when the parameters of the laser are changed but
also in certain critical scattering geometries where A0 · Q ≈ 0.

Wallbank and Holmes have performed experiments inves-
tigating these geometries for several neutral targets, beginning
with helium and argon [2–4]. Their results show cross sections
orders of magnitude greater than the Kroll-Watson prediction
in regions where x is small. One of the first ideas proposed
to explain this discrepancy was the polarization of the target
by the field of the laser; however several separate theoretical
treatments [5–7] showed such an effect to be negligible. It was
also shown that for certain densities of the target gas, double
scattering could account for the experimental signal [8]. Their
determination of the experimental density was approximate,
however, and to our knowledge the density dependence has
not been confirmed experimentally.

Madsen and Taulbjerg [9] explore the derivation of the
KWA, and they develop a generalized approximation by
expanding the T matrix for weak fields and soft photons, but
without assuming x is large. The region where the KWA loses
its validity is therefore avoided. Their calculations show a few
scattering geometries where the differential cross sections
are comparable to the experimental cross sections. The shape
of the experimental cross sections disagrees with the theory
of Ref. [9], though, and there would have to be a very large
uncertainty in the determination of the electron scattering
angle for their calculations to explain the experimental cross
sections at all angles.

The above treatments assume, as does the KWA, that
only on-shell terms, i.e., terms where energy is conserved,
contribute to the scattering event. A few later works use
approximations that include off-shell contributions. Sun
et al. [10] apply the second Born approximation. Jaroń and
Kamiński [11,12] also use a similar off-shell approximation.
They suggest that a diffraction effect due to a long-range
potential, i.e., an interaction with a large extent compared
to the electron deBroglie wavelength, could give rise to the
sorts of cross sections at small angles seen in the experiment.
The results of these in comparison with our calculations are
discussed further in Sec. IV.

The advantage of R-matrix methods is that they provide an
exact solution of the Schrödinger equation within the chosen
reaction volume and so are limited only by the size of that
volume and the numerical methods used in the calculation.
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Chen and Robicheaux [13] used a mixed-gauge R-matrix
method with a reaction volume of 30 a.u. They calculated
cross sections with an order of magnitude similar to that of the
KWA.

The goal of this work is to use an exact R-matrix method
with an expanded reaction volume. Including a longer range
for the electron to interact with the induced dipole potential of
the argon atom will clarify what contribution the long-range
interaction has to the laser-assisted cross section. In Sec. II the
details of the Floquet R-matrix method in the velocity gauge
are laid out, and in Sec. III the connection to scattering states
and the form of the scattering matrix are derived. Section IV
discusses our numerical results, and Sec. V summarizes our
findings. Atomic units are used throughout the rest of this
paper.

II. FLOQUET R-MATRIX METHOD

The time and angle dependence of the electron wave
function is represented by expanding in a product set of
spherical harmonic and Floquet basis functions,

�β(r,t) =
∑
ν,l

F
β

νl(r)

r
Yl0(�)

e−i(E+νω)t

√
2π/ω

, (5)

where β enumerates a complete set of linearly independent
solutions of the Schrödinger equation. In order to make the
treatment of larger reaction volumes tractable, this paper treats
only scattering geometries where the incoming electron is
parallel to the laser polarization. The cylindrical symmetry
of this case allows setting mz = 0 for the entire calculation,
considerably reducing the number of basis functions needed.

Taking β as a column index, and combining the others
into a row index, the radial functions can be thought of as
composing a matrix F (r). With this the logarithmic derivative,
or R matrix, is defined as

R(r) = F (r)[F ′(r)−1]. (6)

The R matrix describes the behavior of the channel functions
at the surface of a volume of constant radius r .

The R matrix is found by solving the Hamiltonian in the
velocity gauge for an electron scattering off of a potential.
The wavelength of the laser is around 2 × 105 a.u., which is
much larger than the region of interaction of interest, so the
vector potential is essentially constant in space. This leads to
the following form for the Hamiltonian:

H = p2

2
− 1

c
A · p + V (r). (7)

The target atom is represented by a model potential, borrowed
from Chen and Robicheaux [13], containing a shielded
Coulombic core and a long-range induced-dipole term:

V (r) = −Z

r
e−a1r − a2e

−a3r − α

2r4

(
1 − e−(r/rcut)3)2

, (8)

where Z = 18, the atomic number, and α = 10.77, the argon
polarizability. The other parameters of the model potential,
which were fitted to the field-free phase shifts for argon, are
a1 = 3.04, a2 = 10.62, a3 = 1.83, and rcut = 1.76.

A. Variational principle for the R matrix

An extension of the eigenchannel R-matrix method,
adapted for the Floquet formalism and for the velocity gauge,
yields the solution to the Schrödinger equation. The solution is
calculated numerically within a finite reaction volume �. It is
helpful to begin with the Schrödinger equation for the velocity
gauge Hamiltonian in integral form. (Note that, for notational
brevity, we employ notation commonly used in differential
geometry throughout this section. Function arguments and
differentials are omitted from the integrands, but the integral
is unambiguous as the domain of integration is denoted as a
subscript on the integral sign.) The Schrödinger equation is∫

�,T

�∗i
∂�

∂t
=

∫
�,T

�∗
(

−1

2
∇2� − i

c
A · ∇� + V (r)�

)
.

(9)

The full version of the energy operator is necessary due to
the fact that, in the Floquet formalism, wave functions can be
superpositions of states with different energies E + νω, which
is the electron’s kinetic energy at infinity. The only restriction
on the space of wave functions considered is that the spatial
inner product between any two wave functions is periodic, i.e.,∫

�

�∗
1 �2(t) =

∫
�

�∗
1 �2(t + T ). (10)

This is a reasonable assumption based on the fact that the
Hamiltonian is itself periodic.

Application of the first Green identity to the kinetic term
gives a term with the derivative on the surface ∂�:

1

2

∫
∂�,T

�∗ ∂�

∂n
=

∫
�,T

(
1

2
∇�∗ · ∇� − i

c
A · �∗∇�

+V (r)�∗� − �∗i
∂�

∂t

)
. (11)

This is the usual starting point to find a variational principle for
the logarithmic derivative. Because the velocity gauge contains
a first derivative term, however, this must be taken into account
in order to construct a variational principle. Using a form of
the divergence theorem, the identity becomes

1

2

∫
∂�,T

(
�∗ ∂�

∂n
+ i

c
A · n̂�∗�

)

=
∫

�,T

(
1

2
∇�∗ · ∇� − i

2c
A · (�∗∇� − ∇�∗�)

+V (r)�∗� − �∗i
∂�

∂t

)
. (12)

Now define the operator L̃ as follows:

L̃� = ∂�

∂n
+ i

c
A · n̂�. (13)

The set of channel functions in all surface coordinates forms a
linear space on the surface of �. Consider wave functions �β

that are eigenfunctions of L̃ on this surface, i.e., L̃�β |∂� =
bβ�β |∂� . The value bβ corresponds to the term of the same
name used by Aymar et al. [14], except for being defined with
the opposite sign. It is the usual logarithmic derivative with
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one term added:

bβ =
(

1

�β

∂�β

∂n
+ i

c
A · n̂

)
∂�

=
(

∂ ln(�β)

∂n
+ i

c
A · n̂

)
∂�

. (14)

The following functional is the variational principle for the eigenvalues bβ of the generalized logarithmic derivative operator:

b[�] = 2

∫
�,T

(
1
2∇�∗ · ∇� − i

2c
A · (�∗∇� − ∇�∗�) + V (r)�∗� − �∗i ∂�

∂t

)
∫
∂�,T

�∗�
. (15)

It can be shown that the first variation δb[�β] vanishes for all deviations δ� from the exact solution. To show this, integrate by
parts and use the periodicity restriction (10) on the energy operator:

δ

(∫
�,T

�∗i
∂�

∂t

)
=

∫
�,T

δ�∗i
∂�

∂t
−

∫
�,T

i
∂�∗

∂t
δ�. (16)

Using this, the variation can be written

δb[�β] ∝
∫

∂�,T

�∗
β�β

∫
�,T

(
1

2
∇δ�∗

β · ∇�β − i

2c
A · (δ�∗

β∇�β − ∇δ�∗
β�β) + V (r)δ�∗

β�β − δ�∗
βi

∂�β

∂t

)

−
∫

�,T

(
1

2
∇�∗

β · ∇�β − i

2c
A · (�∗

β∇�β − ∇�∗
β�β) + V (r)�∗

β�β − �∗
βi

∂�β

∂t

) ∫
∂�,T

δ�∗
β�β + c.c. (17)

The first Green identity can now be applied to each of the kinetic terms, and the divergence theorem can be applied to the vector
potential terms, to show the variation vanishes.

B. Solving for the R matrix

In practice we restrict ourselves to a spherical reaction
volume S with radius r0, centered on the origin, rather
than the general reaction volume �. In this case the unit
normal vector n̂ is the same as the unit radial vector r̂
on the surface ∂S. The numerical solution of the R matrix
is carried out by expanding the wave function in a basis
set: � = ∑

pi cpiψpi(r,t) = ∑
pi cpi

up(r)
r

�i(�,t), The radial
basis functions up(r) can in principle be arbitrary. In this
calculation we have chosen radial basis functions according to
a finite-element discrete-variable representation (FEM-DVR)
of the kind described in Ref. [15]. The channel functions
�i(�,t) have the form �i = Yli0(�) e−i(E+νi ω)t√

2π/ω
. The variational

principle (15) is then written as an eigenvalue equation,
�c b = � c, with the following definitions for the matrices:

�pi,qj =
∫

S,T

ψ∗
pi

(
H − i

∂

∂t

)
ψqj +

∫
∂S,T

ψ∗
piLψqj , (18)

�pi,qj =
∫

∂S,T

ψ∗
piψqj . (19)

Here L is the usual Bloch operator with the field term,
defined so that L� = 1

r
∂r�
∂r

+ i
c
A · n̂�, whose eigenvalues

are the logarithmic derivative of the reduced wave function.
This differs from L̃ in Eq. (13) only by the addition of one
Hermitian term, so it is still variational. Only a small subset
of the basis functions have nonzero value on the surface of the
reaction volume, which allows the full eigenvalue equation to
be reduced using the method of Greene and Kim [16]. Denoting
these open type basis functions with o and the others with c,
the eigenvalue equation can be written as follows:

(
0 0

0 �oo

)(
cc

co

)
b =

(
�cc �co

�oc �oo

)(
cc

co

)
. (20)

The eigenvalue equation can then be rearranged as follows:

�oocob = �co, � = �oo − �oc�
−1
cc �co, (21)

which places most of the load of the calculation on the linear
solution for �−1

cc �co, which requires fewer resources than a full
diagonalization, although it must be solved for each collision
energy of interest. The matrix R is then calculated from
the eigenvalues and eigenvectors found from Eq. (21). The
resulting R matrix is symmetric and is related to the reduced
wave function F (r) as follows:

R−1(r) = F ′(r)[F (r)]−1 + W, (22)

Wi,j = i

c

∫ T

0
dt

∮
d� �∗

i (�,t)A(t) · n̂(�)�j (�,t). (23)

III. SCATTERING IN A LASER FIELD

A. Matching to scattering solutions

The vector potential term in the Schrödinger equation can
be removed by the following transformation [17]:

� = ��, � = exp

(
i

c

∫ t

A(τ ) · p dτ

)
. (24)

After defining α(t) = 1
c

∫ t A(τ ) dτ , it becomes clear that � is
a translation operator; i.e., for functions of position, �f (r) =
f [r + α(t)]�. It follows simply that � obeys the equation

i
∂�

∂t
= −1

2
∇2� + V (|r + α(t)|), (25)

which at large r approaches the free space Hamiltonian,
because V (r) → 0 faster than 1

r
. We may therefore match
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to free space scattering solutions of the form

�β =
∑

i

Yli0(θ,φ)
e−i(E+νiω)t

√
2π/ω

fiδ
β

i − giK
β

i

r
, (26)

where K is the short-range reaction matrix and the scattering
states are

fi =
√

2ki

π
r jli (kir) and gi =

√
2ki

π
r nli (kir). (27)

The electron energy in each channel i, as it relates to the
floquet index νi and the wave number ki , is εi = E + νiω =
1
2k2

i . Using the reverse translation, � = �−1�, and defining
functions ρ(t) and θ (t) that describe the length and angle
of ρ(t) = r − α(t), the velocity gauge wave function can be
written as

�β =
∑

i

Yli0[θ (t),φ]
e−i(E+νiω)t

√
2π/ω

fi[ρ(t)] − gi[ρ(t)]Kβ

i

ρ(t)
.

(28)

Following Varró and Ehlotzky [18], this can be projected onto
the original basis set in the untranslated coordinates, resulting
in

�μλ(r,t) =
∑
νl,ξj

�νl(�,t)
f
ξj

νl (r)δμ
ξ δλ

j − g
ξj

νl (r)Kμλ

ξj

r
, (29)

f
ξj

νl (r) =
√

2kξ

π
B

ξj

l,ν−ξ rjl(kξ r), (30)

g
ξj

νl (r) =
√

2kξ

π
B

ξj

l,ν−ξ rnl(kξ r), (31)

B
ξj

ls = ij−l−s

2

√
(2j + 1)(2l + 1)

×
∫ 1

−1
dx Pj (x)Pl(x)Js(−kξα0x), (32)

where in Eq. (32), α0 refers to the amplitude of the jitter
motion α(t), i.e., for our particular choice of coordinates and
time α(t) = α0 cos(ωt)ẑ.

Identifying channel indices (ν,l) as row indices, and indices
for linearly independent solutions (μ,λ) as column indices,
Eq. (29) can be summarized in matrix form for the reduced
wave function as in Eq. (5):

F (r) = f(r) − g(r)K, (33)

and using Eq. (22), K can be found in terms of R:

K = {[R−1(r0) − W ]g(r0) − g′(r0)} −1

×{[R−1(r0) − W ]f(r0) − f′(r0)}. (34)

Note that although W , f, and g are not symmetric, this approach
yields a reaction matrix that is symmetric and real.

B. Calculating the cross section

The asymptotic form of the wave function in this Floquet
picture is

� (r,t) = ei(k0z−Et) +
∑
ν∈Z

fν(θ )
ei[kνr−(E+νω)t]

r
, (35)

and the cross section for each Floquet channel follows from
this:

dσν

d�
= r2|r̂ · jout,ν |

|jinc| = kν

k0
|fν(θ )|2. (36)

This can be expressed in terms of the scattering matrix S =
(1 + iK)(1 − iK)−1 :

dσν

d�
= 1

k2
0

∣∣∣∣∣
∞∑

l,l′=0

√
π (2l′ + 1)

× (il
′−lSνl,0 l′ − δl,l′δν,0)Yl,0(θ,0)

∣∣∣∣∣
2

, (37)

where the phase factor il
′−l above is a result of the choice of

phase in the scattering functions (27).

IV. RESULTS

Figure 1 contains our calculation of the cross section along
with a comparison calculation using the KWA. The collision

FIG. 1. (Color online) Differential cross section for electrons
absorbing zero (top) to two (bottom) photons. The solid red line
is the cross section found with the Floquet R-matrix calculation, and
the dashed blue line is calculated using the KWA. This calculation
was performed with the R-matrix boundary at 100 a.u., with 19 total
Floquet channels and angular momentum channels up to l = 150.
The theoretical field-free cross section is included in the top box for
comparison, in black with dashes and dots.
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parameters were chosen to mimic the experiment: a laser
intensity of 5 × 107 W cm−2, which corresponds to a jitter
motion amplitude α0 = 2.0 a.u., a photon energy of 0.12 eV,
and an electron energy of 10 eV. It is worth noting that the
electron energy lies below the first excitation channel of argon,
so it makes sense to keep just the single channel for the target.
The boundary of the reaction volume for this calculation is at
r0 = 100 a.u. Note that this is much larger than α0.

The calculation shown in Fig. 1 contains 19 Floquet
channels up to ν = ±9 and angular momentum channels up
to l = 150 for a total of 2869 channels on the surface of the
volume. This is the size of one dimension of the matrices R,
K , etc. This number of angular momenta is needed to converge
the matching equations for the scattering solution; as is shown
in Eq. (30), the regular scattering solutions are proportional to
jl(kr0), which has significant value when l ≈ kr0. The number
of Floquet channels needed for convergence increases with r0

as well, but this has more to do with the numerical convergence
of the R matrix solution than with the matching. The field
is constant in space, so a larger reaction volume means
more matrix elements coupling the Floquet channels. For
the FEM-DVR radial basis, several different combinations of
sector spacing and DVR order were calculated and compared to
one another to assess convergence. The presented calculation
uses three DVR sectors spaced such that sectors closer to the
origin, where the electron’s de Broglie wavelength is shorter,
have a shorter extent. Each sector contains grid points spaced
according to a Gauss-Lobatto quadrature with 75 nodes. We
found that, in most instances, increasing the order of the
quadrature yields faster convergence relative to computation
time than increasing the number of sectors, despite the fact that
the latter yields sparser matrices. The total number of radial
basis functions is 222, and the total number of basis functions
represented in the linear solution step of Eq. (21) is the product
of this and the number of channels, over 600 000. These
matrices are quite sparse, and the linear solution is carried
out with PARDISO. For Floquet channels ν = 1 and ν = 2, the
differential cross sections are converged with respect to basis
size to within 10−2 and 10−3 a.u. in absolute units of the
maximum difference between calculations and to within 1%
of the cross section value at all angles.

Note that the Floquet R-calculation and the KWA agree very
well for all but very small scattering angles. Also included
in the top plot is the elastic field-free cross section for this
model potential, which essentially results from a fit [13] to
the experimental phase shifts found by Furst et al. [19]. Note
that the the angle of the cross-section minimum corresponds
to the field-free minimum and that the value of the field-free
differential cross section and that for ν = 0 agree at zero angle.
The Floquet differential cross sections also sum to a value that
is indistinguishable from the field-free cross section, but this
is not depicted.

Figure 2 shows the differential cross section at 9◦ for
absorption and emission of up to four photons, again compared
with the KWA result. Note that though the results do not agree
exactly, they differ by far fewer orders of magnitude than
those measured by Wallbank and Holmes at this scattering
angle. For example, the differential cross sections they found
for exchanges of one and two photons were on the order of
1% of the field-free elastic differential cross section, while

FIG. 2. (Color online) Differential cross sections at 9◦ versus the
number ν of photon energies gained by the electron. The cross section
found via the R-matrix calculation (blue dots) has comparable order
of magnitude to the KWA (red crosses) for a few photon numbers,
and it is several orders of magnitude smaller than the experimental
results for all nonzero ν. The parameters of the calculation are the
same as those for Fig. 1.

our calulations show these as roughly 10−2% and 10−6%,
respectively.

Differential cross sections calculated with R-matrix bound-
aries from 10 to 100 a.u. show no differences that are
distinguishable from the convergence with respect to the basis.
Our differential cross section also agrees with that of Chen and
Robicheaux [13], who used a variable gauge approach and
chose an R-matrix boundary of 30 a.u. We can, therefore, rule
out the possibility that the long-range induced-dipole potential
would yield the sort of diffraction suggested by Jaroń and
Kamiński [12] over distances comparable to or even several
times the electron de Broglie wavelength.

It has been suggested that uncertainty in the scattering angle
could account for higher observed cross sections. Madsen
and Taulbjerg [9] even suggest that the incoming electron
beam is poorly collimated, leading to an effective error in the
scattering angle as high as 8◦, as opposed to the 2◦ reported
from the detector width [4]. Convolving the cross sections
shown in Fig. 1 with a Gaussian having a width up to 8◦ does
not give a significant difference in the one- and two-photon
cross sections, however. Whatever the source of such an error,
uncertanties in the scattering angle would not explain the
experimental cross sections for this geometry.

Sun et al. [10] calculate a cross section for a one-photon
exchange that is quantitatively quite close to our result. Their
result for a two-photon exchange is several orders of magnitude
higher, however. This may be due to a convergence issue,
as a group using a similar method for laser-assisted helium
scattering at first found high cross sections [11], but later found
better results that are closer to the KWA [20].

V. CONCLUSIONS

The Floquet R-matrix method provides an exact solution of
the Schrödinger equation in the velocity gauge. By comparing
cross sections calculated with R-matrix boundaries up to
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100 a.u., over ten times the de Broglie wavelength of a 10-eV
electron, we have shown that the induced dipole potential for
argon does not contribute to the laser-assisted cross section.
This is true even at small angles where the momentum transfer
has a very small component along the field, and so the KWA
is less valid. Diffraction from this long-range piece of the
potential cannot account for the high cross sections found in the
experiments of Wallbank and Holmes [2–4], which are several
orders of magnitude higher than both the approximation and
our calculations.

The most plausible explanation for the experimental results
remains multiple scattering. Later experiments for helium by

the same group claim to see the same high cross sections
even when the gas is too dilute for multiple scattering to play
a significant role [21], so it is unclear whether this is the
correct explanation. To our knowledge, a similar experiment
for argon including characterization of the gas density has not
been performed.
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