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Atomic harmonic generation in time-dependent R-matrix theory
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We have developed the capability to determine accurate harmonic spectra for multielectron atoms within
time-dependent R-matrix (TDRM) theory. Harmonic spectra can be calculated using the expectation value of
the dipole length, velocity, or acceleration operator. We assess the calculation of the harmonic spectrum from
He irradiated by 390-nm laser light with intensities up to 4 × 1014 W cm−2 using each form, including the
influence of the multielectron basis used in the TDRM code. The spectra are consistent between the different
forms, although the dipole acceleration calculation breaks down at lower harmonics. The results obtained from
TDRM theory are compared with results from the HELIUM code, finding good quantitative agreement between
the methods. We find that bases which include pseudostates give the best comparison with the HELIUM code, but
models comprising only physical orbitals also produce accurate results.
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I. INTRODUCTION

In recent years, harmonic generation (HG) has become one
of the richest veins of research for atomic, molecular, and
optical physics. Not only has HG enabled ultrashort light-
pulse generation [1], but it has also given rise to a series of
very sensitive measurements of molecular [2], atomic, and
even electronic dynamics [3]. The sensitive nature of HG has
made it increasingly important to develop accurate methods of
modeling the process.

Many studies aimed at describing HG make use of the single
active electron (SAE) model [4,5], a significant simplification
which allows for the efficient computation of harmonic spectra.
SAE methods have been used to probe the relationship
between atomic structure and HG. For instance, the Cooper
minimum in argon has been linked with the minimum in the
photoionization spectrum caused by a zero-dipole moment
between the p ground-state wave function and the d wave
function of the photoionized electron for a photon energy of
around 48 eV [6,7]. The minimum is observed to exist in both
the photoionization spectrum and the harmonic spectrum and
is easily described by the SAE method as it does not depend
on the interactions between different electrons. However,
there have been various studies carried out in molecular
systems where multielectron dynamics are found to be of great
importance [2,8]. Even in atomic systems there are features
of photoionization, and hence harmonic spectra that are the
result of electronic interactions which require a multielectron
description [3,9–11].

Over the last few years, we have developed time-dependent
R-matrix (TDRM) theory to model the interaction of atoms
with short, intense laser pulses, maintaining a full description
of the multielectron dynamics involved [12–14]. TDRM has
recently been extended to account for harmonic generation,
and this capability was demonstrated in showing how
autoionizing resonances can affect the harmonic spectrum
of argon. The appearance of the autoionizing resonances in
these spectra is a consequence of multielectron dynamics: the
interference between the response of 3p and 3s electrons to
the laser field [9]. These calculations represent an important
shift in thinking on HG: the multielectron nature of the
process is reflected in the theoretical approach, and while

there are many processes that can be adequately described
using SAE methods, there are many for which this more
rigorous description may be required.

The determination of the harmonic spectrum can proceed
through the calculation of the time-dependent expectation
value of the dipole, dipole velocity, or dipole acceleration op-
erator. At present there is discussion about which of these op-
erators offers the best prediction of the harmonic response for a
single atom. Recent work [15,16] has suggested that there is a
natural connection with the dipole velocity, while, commonly,
the dipole acceleration operator is used [17–19], especially for
the description of high-order harmonics as better resolution
can be obtained for the high-energy peaks [20]. Much early
work in the field used the dipole length [21,22], and up until
this point the description of HG in TDRM has been restricted
to using this operator [9]. We note that the use of these various
forms has been verified only within the SAE approximation,
and hence we seek herein to verify the independence of HG
with respect to the use of the dipole, its velocity, or acceleration
in a multielectron system. We also assess which form offers
the most numerically stable method, particularly when used
with a limited multielectron basis set. Studies assessing the
propagation of the wave function have demonstrated that to
obtain the most accurate results for a limited basis in the
TDRM approach the laser field is best described in the dipole
length gauge [23]. On the other hand, time propagation in
SAE calculations is commonly performed by describing the
laser field in the velocity gauge. This difference indicates that
we cannot necessarily rely upon knowledge gained from SAE
calculations for the assessment of TDRM calculations.

We have extended the TDRM method to calculate the
harmonic spectrum from the dipole velocity and acceleration
operators simultaneously with the dipole operator spectrum. In
this paper we cover the major theoretical aspects of this exten-
sion and apply the TDRM codes to He in a 390-nm laser field.
Helium is chosen for three reasons. First, the simple structure
allows for the systematic varying of the multielectron basis
functions, the impact of which has been assessed for TDRM
in terms of photoionization [23] but not for HG. Second, the
absence of a closed core simplifies the calculation of dipole
acceleration matrix elements, and hence we can compare
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spectra in all three forms. Finally, using He allows us to
benchmark our approach against a proven alternative method:
we compare our results with those obtained using the HELIUM

code [24].

II. THEORY

A. TDRM theory

The TDRM approach is an ab initio nonperturbative theory
for describing ultrafast atomic processes. Details of the method
can be found in [12,23], so we only give a short overview
here. The time-dependent Schrödinger equation for an atom
containing (N + 1) electrons is

i
∂

∂t
�(XN+1,t) = H (t)�(XN+1,t). (1)

The Hamiltonian H contains both the nonrelativistic Hamil-
tonian of the (N + 1)-electron atom or ion in the absence of
the laser field and the laser interaction term. The laser field
is described using the dipole approximation in the length
form and is assumed to be linearly polarized and spatially
homogeneous. This form provides the most reliable ionization
yields when only a limited amount of atomic structure is
included [23].

We propagate a solution of the time-dependent Schrödinger
equation � on a discrete time scale with time step �t in a
Crank-Nicolson scheme. We can write the wave function at a
time tq+1 in terms of the wave function at the previous time
step tq :

(Hm − E)�tq+1 = −(Hm + E)�tq . (2)

Here the imaginary energy E is defined as 2i/�t , and Hm is
the Hamiltonian at the midpoint of the time interval, tq+1/2.

In R-matrix theory, configuration space is partitioned into
inner and outer regions. In the inner region, all electrons are
within a distance ain of the nucleus, and a full account is taken
of all interactions between all electrons. In the outer region,
an ionized electron moves beyond the boundary ain, and thus
exchange interactions between this electron and the electrons
remaining close to the nucleus can be neglected. The ionized
electron then moves in only the long-range multipole potential
of the residual N -electron core and the laser field.

Following [13], we can evaluate Eq. (2) at the boundary ain

as a matrix equation:

F(ain) = R(ain)F̄(ain) + T(ain), (3)

in which the wave function F at the boundary is described
in terms of its derivative F̄ plus an inhomogeneous vector T
arising from the right-hand side of Eq. (2). The R-matrix R
connects the inner- and outer-region wave functions at the
boundary ain.

Given an inner-region wave function, R and T are evalu-
ated at the boundary ain. Subsequently, they are propagated
outwards in space up to a boundary aout, where it can be
assumed that the wave function F has vanished. The wave
function vector F is set to zero and then propagated inwards
to the inner-region boundary. Once F has been determined at
each boundary point, the full wave function can be extracted
from the R-matrix equations. We can then iterate the procedure
using Eq. (2).

B. Harmonic generation

The electric field produced by an accelerating charge is
given, using the nonrelativistic Lienard-Wiechert potentials in
the far-field limit, by

E(t) = k

〈
ψ(t)

∣∣∣∣ [pz,H ]

ih̄

∣∣∣∣ψ(t)

〉
+ keElaser(t), (4)

where e is the electronic charge, z is the laser polarization axis,
k is a proportionality constant, pz is the canonical momentum,
and Elaser is the electric field of the laser pulse. We can write〈

ψ(t)

∣∣∣∣ [pz,H ]

ih̄

∣∣∣∣ψ(t)

〉
= d

dt
〈ψ(t)|pz|ψ(t)〉, (5)

and it follows that

E(t) ∝ d̈(t) = d2

dt2
〈ψ(t)|z|ψ(t)〉. (6)

The power spectrum of the emitted radiation is then given, up
to a proportionality constant, by |d̈(ω)|2, the Fourier transform
of d̈(t) squared.

Although the radiation produced is proportional to the
dipole acceleration, it is common practice in HG calculations
to calculate d(ω), i.e., to use the expectation value of the dipole
length instead. This is because a simple relationship exists
between d and d̈ which can be extended to include the dipole
velocity form:

ω4|d(ω)|2 = ω2|ḋ(ω)|2 = |d̈(ω)|2. (7)

Therefore the harmonic response of a single atom can be
expressed in terms of the expectation value of the dipole
operator,

d(t) = 〈�(t)| − ez|�(t)〉, (8)

or of its velocity,

ḋ(t) = d

dt
〈�(t)| − ez|�(t)〉, (9)

or acceleration,

d̈(t) = d2

dt2
〈�(t)| − ez|�(t)〉, (10)

where z is the total position operator along the laser polariza-
tion axis.

As discussed in [23] the TDRM code can use either the
length or velocity gauge for the propagation of the wave
function. While, in keeping with the findings of [23], we
use the length gauge, we can still utilize the dipole velocity
matrix elements produced by the R-matrix suite of codes which
“seed” the TDRM code. Thus we can store both z and dz/dt

and use Eqs. (8) and (9) directly for the determination of the
time-varying expectation values of the dipole operator and the
dipole velocity.

However, in order to calculate the expectation value of the
dipole acceleration we cannot use Eq. (10) directly. Instead,
using Ehrenfest’s theorem, it is possible to write the dipole
acceleration as

d̈ (t) =
〈
∂H

∂r

〉
=

〈
eZ cos θ

r · r

〉
− eNelec〈�|E(t)|�〉, (11)

053420-2



ATOMIC HARMONIC GENERATION IN TIME-DEPENDENT . . . PHYSICAL REVIEW A 86, 053420 (2012)

where Z is the nuclear charge, r is the total position operator,
θ is the angle between r̂ and ẑ, and Nelec is the number
of electrons. The second term in Eq. (11) is often seen
without this factor of Nelec as in the SAE approximation it
is just 1. We can make a small change to the way the radial
integrals are calculated in the R-matrix suite, which allows
the calculation of 〈1/r · r〉 instead of 〈r〉. Then we can use
Eq. (11) to calculate the dipole acceleration. Thus, we can now
simultaneously calculate harmonic spectra using the dipole
length, velocity, and acceleration operators. The propagation
of the wave function is still carried out in the length gauge.

The use of the acceleration form will, however, be restricted
to He-like targets. The use of Ehrenfest’s theorem [in Eqs. (5)
and (11)] requires that the wave function be exact, or close to
it. For general multielectron systems we normally impose a
fixed core where (at least) the first two electrons are restricted
to a single orbital. Imposing this restriction means that the
electronic repulsion is not fully described. More precisely, if
the orbital of electron e1 is fixed and the orbital of electron e2

is not, then the action on e2 will not necessarily equal minus
the reaction on e1. Thus, the commutator[

(p1 + p2),
1

|r1 − r2|
]

(12)

may not be guaranteed to vanish. On the other hand,[
(r1 + r2),

1

|r1 − r2|
]

(13)

will still vanish. Thus, while the expectation value
〈[r cos θ,H ]〉 can be calculated accurately, 〈[[r cos θ,H ],H ]〉
cannot, rendering Ehrenfest’s theorem untenable. Thus, the
comparisons we employ for the simple He test case which
follows can be extended to general multielectron systems only
for the dipole length and velocity forms.

C. Calculation parameters

The one-electron basis used for describing the residual He+
in the inner region consists of orbitals expressed in terms of B

splines. The residual He+ ion is represented through a series
of models of increasing complexity [23]. The basic model
consists of only the He+ 1s state, which we call 1T (one
true state). We also use two models comprising six states.
The first is built using true orbitals 1s, 2s, 2p, 3s, 3p, and
3d (6T) and the other using five pseudo-orbitals and the true
1s orbital: 1s,2s,2p,3s,3p, and 3d, called 6P (six states with
pseudostates). Pseudostate models have been found to be more
accurate in the time propagation of the He wave function
responding to short light fields, especially in the velocity-gauge
description of the light field. Pseudostate models may thus
provide a better basis for the description of the ionization and
HG processes, provided that these processes are not affected
by artificial resonances introduced by the pseudostates.

The inner-region radius is set at 20 a.u., which is sufficiently
large to contain the residual ion for each model we use.
The outer-region boundary is set at 600 a.u. to prevent any
reflections of the wave function for the duration of the short
laser pulse employed. The set of continuum orbitals contains
80 B splines for each angular momentum � of the continuum
electron up to a maximum value Lmax = 19. Convergence
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FIG. 1. (Color online) The harmonic spectrum (up to a constant
of proportionality) as calculated from the dipole acceleration for He
in a 390-nm, 4 × 1014 W cm−2, 3-2-3 laser field, using as a model
residual ion description, the 1s state (black dotted line), the 1s, 2s,
2p, 3s, 3p, and 3d states (red dashed line), and the 1s,2s,2p,3s,3p,
and 3d pseudostates (blue solid line). The single-state model provides
a reasonable approximation to the more detailed descriptions beyond
the first harmonic, where there is a large discrepancy between the
spectra.

testing was carried out retaining angular momenta up to a value
of Lmax = 27, and while changes in the harmonic spectra are
observed, they occur at energies beyond the cutoff, outside the
region of interest here. The outer region is divided into sectors
of 2 a.u. containing 35 ninth-order B splines per channel. The
time step used in the wave function propagation is 0.1 a.u.

We use 390-nm laser pulses, consisting of a three-cycle sin2

ramp-on followed by two cycles at peak intensity, followed by
a three-cycle sin2 ramp-off (3-2-3). We also calculate spectra
for different pulse shapes and find that while the spectra
change, the comparisons between them are generally described
by the results presented below for the 3-2-3 pulse. There is
one important exception to this general observation, which is
discussed in Sec. III D.

III. RESULTS

A. Comparison of various target states

The harmonic response, as calculated from the expectation
value of the dipole acceleration, of a He target in the 1T, 6T, and
6P configurations is shown in Fig. 1. The spectra display the
expected form, a pronounced first-harmonic peak followed by
a plateau of peaks at odd multiples of the fundamental photon
energy, which decay exponentially beyond a cutoff. The cutoff
of the plateau appears at a photon energy of approximately
45 eV. The standard formula for the cutoff energy, Ip + 3.2Up

[25], where Ip is the ionization potential and Up is the
ponderomotive energy, is not necessarily appropriate in this
wavelength and intensity regime. Nevertheless, for the current
parameters, it predicts a cutoff energy of 42 eV. The observed
cutoff is therefore not inconsistent with the cutoff formula.

We can compare the spectra to assess how the description
of atomic structure affects the calculated HG spectra. The 1T
calculations are in better agreement with the more detailed
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FIG. 2. (Color online) The length-form harmonic spectrum of He
in a 390-nm, 4 × 1014 W cm−2, 3-2-3 laser field, using as a residual
ion description the 1T (black dotted line), 6T (red dashed line), and
6P (blue solid line) models (see Fig. 1 for details). Results from the
1T model provide a reasonable approximation to results from the
more detailed descriptions, especially in the cutoff region. There is
also good agreement for the first harmonic when compared with the
large discrepancy in Fig. 1.

calculations at higher energies, especially in the cutoff region
between the 13th and 19th harmonics, where agreement is
within 30%. In the low-energy region, especially in the first
harmonic, the spectra differ significantly; the first harmonic
response in the 1T model is 60 times greater than that in the 6P
model. The inconsistencies in the lower harmonics between
the 1T and the 6T and 6P models imply that the low-energy
harmonics in the dipole acceleration calculation are highly
sensitive to changes in the atomic structure and that in the
higher-energy cutoff region the details of the atomic structure
are not as important. There is a factor of 3 difference in the first
harmonic peak between the 6T and 6P models. As pseudostates
may better represent the changes to the ground state than
true states, this difference implies that the first harmonic is
especially sensitive to the description of the ground state.
The 6P spectrum shows a double-peak structure at the ninth
harmonic stage which the two true-state models do not.

As the first term in the dipole acceleration is proportional
to 1/r2, it is most sensitive to changes in the wave function at
small r . If the description of the atomic structure close to the
nucleus is not exact, this can lead to significant inaccuracies
in the low-energy region of the spectra calculated from the
dipole acceleration, especially the first harmonic peak. Figure 2
shows the same harmonic spectra as Fig. 1, but in this case the
spectra are calculated from the dipole length operator. In this
form the harmonics are far less sensitive to the details of the
atomic structure close to the nucleus, as can be seen by the
excellent agreement between the three spectra at the first and
third harmonics (within 20%).

In fact the agreement between the spectra from the different
target states is generally better in the length and velocity forms
than in the acceleration: except for the 9th and 11th harmonics,
the agreement between the 6T and 6P dipole-length spectra is
within 20%. This further highlights that the dipole acceleration
is especially sensitive to the description of atomic structure.
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FIG. 3. (Color online) The harmonic spectrum of a pseudostate
(6P) He target in a 390-nm, 4 × 1014 W cm−2, 3-2-3 laser field, as
calculated from the dipole length (black dotted line), velocity (red
dashed line), and acceleration (blue solid line). Agreement to within
20% is found between all three spectra up to the 19th harmonic peak
(60 eV). The spectra diverge beyond this point.

The main difference between the three spectra appears again
in the ninth harmonic. This difference is very similar to the
difference seen in Fig. 1 in which the dipole acceleration
was used to determine the harmonic spectrum. This indicates
that this difference originates from the different bases used,
rather than the choice of operator for the determination of the
harmonic spectrum. This topic will be discussed further in
Sec. III C.

B. Comparison of dipole length, dipole velocity,
and dipole acceleration forms

As has been addressed in the previous section, TDRM
theory can calculate harmonic spectra from the dipole length,
dipole velocity, or dipole acceleration operators. We have
already seen how the dipole acceleration is sensitive to the
description of the atomic structure, particularly when it comes
to the low-energy region of the spectrum.

Figure 3 shows the harmonic spectrum of 6P He in a
390-nm, 4 × 1014 W cm−2 laser field as calculated using
the dipole length, velocity, and acceleration forms of the
dipole matrix elements. The pseudostates model gives a more
accurate description of the changes in the ground state due to
the laser pulse and hence should give a more accurate picture
of the harmonic spectrum than the true-state model. In terms
of the agreement between the spectra this holds true, as the 6P
model gives a consistent agreement between the three different
approaches to calculate the harmonic spectrum where the 6T
model breaks down at low harmonics. For the 6P model the
three spectra agree within 20% at every harmonic peak up
to the 19th harmonic, well into the cutoff region. In the 6T
there is agreement within 20% between the dipole length and
velocity spectra, but the dipole acceleration spectrum differs
by 60%, 30%, and 40% in the first, third, and fifth harmonics,
respectively.

Regardless of which model is used, the three spectra diverge
beyond the 19th harmonic (Fig. 4), with the dipole length
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FIG. 4. (Color online) The high-energy harmonic spectrum of
true state (6T) He target in a 390-nm, 4 × 1014 W cm−2, 3-2-3
laser field, as calculated from the dipole length (black dotted line),
velocity (red dashed line), and acceleration (blue solid line). The
leftmost harmonic shown is the 19th harmonic, above which the
spectra diverge.

spectrum becoming noisy and the dipole acceleration spectrum
displaying a few more weak harmonics decaying into noise.
The dipole velocity spectrum, on the other hand, displays a
second plateau of peaks not seen in the other spectra. These
peaks are not predicted classically, and their absence from
the other spectra implies that they are spurious. This implies
that the length and velocity forms are reliable, but only in
an energy range up to and including the cutoff region. This
is especially important as, for general multielectron targets,
the acceleration form will be prohibitively sensitive to the
limitations in the description atomic structure (see Sec. II C).
However, by using both the dipole length and dipole velocity
operators it is possible to obtain reliable harmonic spectra for
multielectron systems using the TDRM approach.

C. Comparison with HELIUM

Having demonstrated that the TDRM method is self-
consistent within a certain energy range, we now seek to
benchmark our results against those from a proven alternative
method. The HELIUM method [24] uses direct numerical
integration of the full-dimensional TDSE to describe a two-
electron system. By solving the TDSE directly, no significant
approximations are made, and thus all important multielectron
effects are included. This makes HELIUM an excellent code
against which to benchmark TDRM.

Figure 5 shows the length-form harmonic spectra produced
by the 6T and 6P models of He alongside that produced by the
HELIUM code for a target in a 390-nm, 4 × 1014 W cm−2, 3-2-3
laser field. At the harmonic peaks the agreement is very good.
The 6P and HELIUM spectra agree to within 20% up to the 21st
harmonics, while the 6T spectrum is within 30% except at the
9th and 11th harmonics

The inset in Fig. 5 shows the details of the ninth harmonic
from the three calculations and the TDRM 1T model. The 6P
model and HELIUM spectra show a structured peak which the
1T and 6T do not. The ponderomotive energy in the laser field
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FIG. 5. (Color online) The harmonic spectra as calculated from
the dipole length produced from the 6T (black dotted line) and 6P (red
dashed line) He models for TDRM and from the HELIUM code (blue
solid line). The 6P and 6T spectra agree with the HELIUM spectrum
to within 20% and 30%, respectively, up to the 21st harmonic peak
(except at the 9th and 11th harmonics for the 6T spectrum). The inset
shows that both the 6P and HELIUM models have a structured peak at
the 9th harmonic. The 1T (green circles) and 6T spectra do not.

shifts the He ground state down by around 5.7 eV, shifting
the 1s3p bound state into the vicinity of the ninth harmonic
peak. The presence of a bound state has been shown to give
rise to such a structure in the harmonic peaks [9]. It is useful
to notice that the 6T model may not describe the changes to
the He+ ground state in the laser field as accurately. Thus, the
shift of the 1s3p state peak may differ, and consequently,
we do not observe the double-peak structure in the ninth
harmonic for the 6T spectrum. The 1T model does not account
for any changes to the He+ ground state, and differences
between the 1T model and the other models are thus even
larger. Expansion of the basis set in the TDRM approach
thus leads to a harmonic spectrum which gets closer to the
benchmark harmonic spectrum obtained using the HELIUM

code.
The agreement for the TDRM velocity-form spectrum is

even better: within 15% when comparing the velocity-form, 6P,
TDRM spectrum with the length-form HELIUM spectrum. The
excellent agreement between the spectra serves to give weight
to the results obtained from both methods. The sensitivity of
the harmonic spectra to the description of atomic structure
makes it even more remarkable that the two methods overlap,
especially in the low-energy region. Figure 6 shows the low-
energy region of the velocity-form spectrum obtained from the
6P model TDRM code alongside the length-form spectra from
the HELIUM code and from an SAE simplification derived from
the HELIUM code [26]. The three spectra agree well in the first
harmonic, whereas the acceleration-form spectra (not shown)
vary widely. This confirms that the dipole velocity and length
are significantly less sensitive to the description of atomic
structure close to the nucleus and are probably more reliable
in the low-energy, especially first-harmonic, region. The grid
spacing in HELIUM and the limited basis set in TDRM impose
constraints on the calculations very close to the nucleus. These
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FIG. 6. (Color online) The low-energy region of the dipole
velocity harmonic spectrum produced from the 6P He model in
TDRM (black dotted line) and the length-form harmonic spectra from
the HELIUM code (red dashed line) and its SAE derivative (blue solid
line). The TDRM and HELIUM spectra are indistinguishable, but the
SAE spectrum overestimates the harmonic spectrum at low energies.

constraints make it likely that the acceleration-form spectra are
less reliable in the first harmonic, which could give rise to the
discrepancy between the two methods.

In the third and fifth harmonics the SAE model markedly
overestimates the harmonic spectra obtained from both the
TDRM and HELIUM models, which are in excellent agreement
with each other. This implies that the SAE model is not
sufficient to describe low-energy harmonic spectra and that
the lowest-energy harmonics are significantly more sensitive
to atomic structure. We note that in the plateau and cutoff
regions the SAE spectrum is in good agreement with the
full HELIUM spectrum, lending justification to the use of the
SAE approximation for investigating the generation of higher
harmonics in He.

D. Comparison of various pulse lengths

To probe the effect of the laser pulse profile on the
harmonic spectra, as well as the 3-2-3 (three-cycle sin2

ramp-on, two-cycle peak intensity, three-cycle sin2 ramp-off)
profile, we ran calculations for various longer pulses, namely,
5-2-5, 3-4-3, and 5-4-5 pulses. Broadly speaking, while the
spectra themselves change (with narrowing peaks for the
longer pulses), the comparisons between the 1T, 6T, and 6P
models with the HELIUM results or between the dipole length,
velocity, and acceleration forms do not change significantly.
Figure 7 shows the spectra produced by 3-2-3 and 5-4-5 laser
pulses. The peak values do not change significantly with the
different pulse profile, but the longer 5-4-5 pulse gives rise
to narrower peaks and greater contrast. This gives a greater
energy resolution between different peaks. Therefore the broad
ninth harmonic peak in the 3-2-3 spectrum in Fig. 7 is further
broadened by the presence of the nearby 1s3p bound state,
whereas the narrower peak arising from the 5-4-5 pulse is
isolated from any nearby atomic structure.
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FIG. 7. (Color online) The dipole velocity harmonic spectra
produced from the 6P He model for a 3-2-3 (blue solid line;
three-cycle sin2 ramp-on, two-cycle peak intensity, three-cycle sin2

ramp-off) and a 5-4-5 pulse (red dashed line). Both pulses have a
peak intensity of 4 × 1014 W cm−2 and a wavelength of 390-nm. The
longer 5-4-5 pulse gives rise to narrower harmonic peaks, but the peak
values are still within 20% of the 3-2-3 spectrum. The inset shows
that there is a significant difference between the two spectra in the
ninth harmonic.

IV. CONCLUSIONS

We have extended the calculation of harmonic spectra
in TDRM theory by determining these spectra through the
time-varying expectation value of the dipole length, dipole
velocity, and dipole acceleration operators and applied the
adapted codes to He irradiated by a 390-nm, 4 × 1014 W cm−2

laser field. We have compared the spectra calculated using
each form, assessed the effect of changing the multielectron
basis set used to describe the residual ion, and benchmarked
our results against those obtained from the HELIUM method.

We have shown that for harmonic photon energies up to and
including the cutoff region the TDRM method provides results
which are both self-consistent (between dipole length, velocity,
and acceleration forms) and consistent with an independent
approach. The favorable comparison between the TDRM and
HELIUM methods in the velocity- and length-form spectra
implies that the present approach can provide excellent results.
Care must be taken in the lower harmonics, especially if
using the dipole acceleration operator where the sensitivity
to inaccuracies in the description of the atomic structure can
seriously affect the reliability of the spectra obtained.

For general multielectron systems we can perform the
calculations using both the dipole length and velocity, and
we compare the two spectra in order to establish bounds
on the reliability of the results. Both methods give excellent
agreement for He well into the cutoff region. The divergence
of the spectra beyond this occurs at energies which are usually
outside the region of interest.

We have also probed the advantages of the various residual
ion descriptions, which can be used within the TDRM method,
finding that smaller basis sets, such as the 1T single-target state,
provide an efficient way of testing the code and a reasonable
approximation to the harmonic spectrum, but larger basis sets
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give more detailed spectra, as would be expected from their
better description of the atomic structure involved. We also
find that the inclusion of pseudostates in the He+ basis seems
to lead to more accurate harmonic spectra. This is particularly
noticeable when compared with the highly accurate HELIUM

method. This is largely due to the more precise way in which
the pseudostate model describes the variations in the He+
ground state in response to the laser field.

However, the use of pseudostates for general multielec-
tron atoms can be problematic. By introducing nonphysical
thresholds into the system, pseudoresonances can show up
in the harmonic spectrum. These inadvertent features do
not appear in the He case presented here, as the energies
at which they become important are outside the harmonic
region of interest. For general multielectron atoms, this is
not necessarily the case. This does not mean that accurate
calculations are not possible for larger atoms. Pseudostates
can be used as long as care is taken: with knowledge of the
position of pseudothresholds, unphysical resonances can be
identified and disregarded. Second, although the 6T He model
is not as close to the HELIUM spectrum as the 6P, it is still
within 30% at every harmonic peak except the 9th and 11th
harmonics (in the dipole length spectra). Physical orbitals can
thus also be used to improve accuracy of harmonic spectra.
The number of physical orbitals required may be larger than if
pseudo-orbitals are used, but this is not a fundamental problem:
it affects only the scale of the calculations. With careful
analysis of, and comparison between, pure physical orbital and
pseudostate models we can reliably assess the accuracy of har-
monic spectra for general multielectron systems using TDRM
theory.

Furthermore, even models which use only physical orbitals
already offer significant gains over SAE models. A simple
example of this is HG in Ar+. Harmonics produced by Ar+
ions have been suggested to be the source of the highest
harmonics observed from a neutral Ar target [27,28]. The
presence of three low-lying 3s23p4 Ar2+ thresholds can have
a significant effect on the harmonic spectrum, and hence
interactions between channels associated with these thresholds
must be accounted for. These interactions are neglected in
an SAE calculation but would be accounted for in a TDRM
calculation involving purely physical orbitals.

We find that the reliability of the results is not significantly
affected by the particular laser pulse profile used. We compared
results for four different laser pulse profiles, finding that while
the harmonic spectra differed between cases, the changes
were consistent between the various target state models and
with the HELIUM code results. In cases where atomic structure
gives rise to structure in the harmonic spectrum the laser pulse
length may affect the way in which this is observed. The greater
energy resolution afforded by longer pulses can isolate the
separate effects of atomic structure.

The results presented are also consistent with those from
various peak intensities. We calculated harmonic spectra for
intensities between 1 × 1014 and 4 × 1014 W cm−2, finding
that the results are largely consistent. At lower intensities the
plateau region is severely truncated, so it is difficult to compare
between the various spectra, but the agreement is still evident
in the cutoff region.

The TDRM method has been rigorously tested up to
intensities of 4 ×1014 W cm−2 and at wavelengths up to
390-nm but requires a significant amount of development
to extend beyond these limits. It will be interesting to compare
these findings with those that will be determined using the
new R-matrix with time (RMT) codes [29,30], which may
be better suited to address higher intensities and longer
wavelengths. While the TDRM method has been proven to
provide interesting insight into the multielectron nature of HG,
it has thus far only been implemented for general multielectron
atoms using the dipole length operator [9]. The next stage
will be to apply TDRM at high intensities to systems other
than He. While the dipole acceleration is too sensitive to the
description of atomic structure to accurately describe such
atoms, the length and velocity forms are stable enough to
provide good results for general targets.
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