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We examine two approaches for significantly extending the velocity range of the optical bichromatic force
(BCF), to make it useful for laser deceleration of atomic and molecular beams. First, we present experimental
results and calculations for BCF deceleration of metastable helium using very large BCF detunings and discuss
the limitations of this approach. We consider in detail the constraints, both inherent and practical, that set the
usable upper limit of the BCF. We then show that a more promising approach is to utilize a BCF profile with a
relatively small velocity range in conjunction with chirped Doppler shifts, to keep the force resonant with the
atoms as they are slowed. In an initial experimental test of this chirped BCF method, helium atoms are slowed by
∼370 m/s using a BCF profile with a velocity width of �125 m/s. Straightforward scaling of the present results
indicates that a decelerator for He* capable of loading a magneto-optical trap can yield a brightness comparable
to a much larger Zeeman slower.
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I. INTRODUCTION

Most laser slowing methods rely on the radiative force
in a monochromatic field [1–4]. The momentum transfer h̄k

arising from photon absorption allows atoms to be accelerated
or decelerated, and their velocity distribution to be narrowed
(cooled). However, the radiative force is limited in its mag-
nitude by the spontaneous emission rate γ , to a maximum of
Frad = h̄kγ /2. Long slowing times allow the small transverse
velocity spread in an atomic beam to significantly reduce the
source brightness, negatively impacting the loading of the
slowed atoms into a magneto-optical trap (MOT).

Unlike the radiative force, the dipole force arising from
intensity gradients in a monochromatic standing wave is not
limited by the radiative decay rate. However, it alternates sign
on the scale of an optical standing wave. The average force
is zero, limiting its usefulness in a decelerator, although a
pulsed slower can be created by utilizing a transient standing-
wave lattice produced by an intense pulsed laser [5]. Another
way around this limitation, demonstrated by Kazantsev and
Krasnov [6], is to rectify the dipole force. Adding a second
frequency to the standing wave results in a modulated light
shift, which can be adjusted to keep the sign of the dipole force
positive. This technique eventually resulted in the deflection
of sodium atoms by a few meters per second by Grimm and
co-workers [7].

Continued refinement of slowing techniques in bichromatic
fields by Grimm and co-workers eventually led to the ob-
servation of a much larger rectified dipole force in cesium,
with a velocity range of 225 m/s [8]. This was the birth
of the optical bichromatic force (BCF), which relies on a
pair of counterpropagating two-color beams that, when the
intensity and standing wavelength are carefully selected, will
coherently drive the atom through cycles of photon absorption
and stimulated emission much more rapidly than the radiative
decay rate.

These developments led to more extensive research on the
bichromatic force, which to date has been demonstrated in Cs
[8], Na [9], Na2 [10], Rb [11,12], and metastable helium (He*)
[13–17]. Despite this progress and the obvious advantages of
a strong continuous optical force, there appears to be only one

instance in which the BCF has been used with a MOT, a recent
experiment in which improved efficiency was demonstrated
for atomic beam loading of a 87Rb MOT [18].

We have designed two experiments to test the potential
limits of the BCF and evaluate the feasibility of an atomic
beam slower for He*. The first set of experiments tests the
sensitivity and limitations of the BCF at large detunings. This
is required for a static atomic slower design, which would
utilize one or two pairs of bichromatic beams configured such
that the BCF profile has a wide velocity range, capable of
decelerating He* atoms by several hundred meters per second.

The second set of experiments explores an alternative
BCF slower scheme that avoids many of the difficulties of
using large bichromatic detunings. Here BCF beams with
a relatively small detuning are used, with the addition of
dynamic frequency chirping to maintain resonance with the
changing Doppler shifts of the decelerating atoms. This
design conserves laser power at the cost of added complexity
in the control electronics. More importantly, it keeps the
BCF parameters in a range within which they are robust
against small misadjustments. We demonstrate deceleration
by 370 m/s in a prototype design, constrained mainly by the
low-power diode lasers used for initial tests. We also discuss
straightforward improvements that can more than double this
range.

II. MODELING THE BICHROMATIC FORCE

A. π -pulse model

An intuitive but somewhat inaccurate model for the BCF
[8,9] is based on the concept of periodic momentum exchange
between the atom and the co- and counterpropagating bichro-
matic beams using π pulses. As shown in Fig. 1, each pair
of two-color beams is offset by the atomic Doppler shift kv

so that, in the frame of the moving atom, the frequencies are
offset from the atomic resonance ω0 by ±δ. Thus, the atom
experiences from each direction a traveling sequence of beat
notes, each with duration T = π/δ. In the π -pulse model, the
two sets of beat notes are treated as if they are independent
nonoverlapping pulse trains. In this approximation, if the
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FIG. 1. Simple π -pulse model of the optical bichromatic force on
an atom, adapted from Fig. 1 of Ref. [19]. Two-color beams impinge
from each direction, offset by frequencies ±δ from resonance at ωa .
For large atomic velocities v, Doppler offsets of ±kv must also be
added as shown. The frequency pairs at ±δ give rise to a series of rf
beat notes, each with an area of approximately π .

laser power is chosen so that the beat-note area satisfies
the π -pulse condition for an atomic transition, the atom will
experience a sequence of alternating excitations and stimulated
deexcitations. This occurs when

� = πδ/4, (1)

where � = γ (I/2Isat)1/2 is the on-resonance Rabi frequency
of each bichromatic frequency component [2]. A large decel-
erating force to the left occurs if the excitations come from
the right-hand beam and the deexcitations from the left. If
δ/π � γ , this force will greatly exceed the radiative force
Frad.

This force is quite tolerant of deviations from the exact
π -pulse condition so long as the left-hand beat notes closely
match the right-hand ones. In the pulse-pair model, the two
pulses will then appear to the atom as time-reversed images
of one another. The second pulse in each pair reverses the
curve on the Bloch sphere traced out by the first [20], leaving
the atom back in the ground state after each two-pulse cycle.
This simple time-domain picture is very useful for estimating
the breakdown of the BCF at large detunings or large atomic
velocities, a subject that we discuss further in Sec. III C.

The π -pulse model also leads to a simple and intuitive
estimate for the velocity range of the BCF, which appears
to have been overlooked in the previous literature. To a first
approximation, finite atomic velocities merely induce Doppler
shifts +kv and −kv for the two pulses in each pair, and
since the pulses still appear as time-reversed images there
is little effect. However, the generalized Rabi frequency is also
modified [20], because the Doppler shifts detune the center
or “carrier” frequency of each beat note from the atomic
resonance:

�′ =
√

�2 + (kv)2. (2)

If the Doppler shift kv is comparable to the resonance Rabi
frequency �, the Rabi cycling even for a single pulse is so badly
out of phase that the BCF will be disrupted. In the simplified
limit of a rectangular pulse with � ≈ δ, the resulting full width
of the velocity range is

�v ≈ 2
δ

k
, (3)

in agreement with much more sophisticated models apart from
the factor of 2.

The relative phase between the co- and counterpropagating
beat notes is critical to the optimization of the BCF, as
can easily be seen by considering a single pair of π pulses
separated by time �t , the first arriving from the right and
the second from the left. If the atom is excited by the first
pulse but undergoes spontaneous decay before the second
pulse arrives, it will start cycling in the wrong sequence,
leading to acceleration. This can be minimized by making
�t as short as possible while maintaining the discreteness
of the pulses. Further, if the repetition period T � �t , an
atom that is already cycling in the wrong sequence will be
more likely to radiate to the ground state after the two-pulse
sequence than in between the pulses, placing it back into the
correct sequence for deceleration by future pulse pairs. For
short rectangular pulses the optimal configuration would be
with minimal delay �t , but for beat-note trains, the best one
can do is to set the relative phase to φ = π/2, where φ = 0
corresponds to the limiting case of simultaneous arrival, where
the pulses fully overlap and there is no net force, and φ = π

is the equally ineffective symmetric case where �t = T/2.
Averaging over several radiative lifetimes with φ = π/2, the
correct (decelerating) sequence occurs during three-fourths
of the interaction time, while the atom is accelerated during
the remaining time. Numerical calculations and experiments
support this argument, which reduces the average force by a
factor of 2 compared with perfect in-phase cycling. Because
the individual π pulses exchange momentum increments of h̄k

at rate δ/π , the average bichromatic force is

Fb = h̄kδ/π. (4)

This average force exceeds the radiative force by a factor of
2δ/(πγ ).

B. Doubly dressed atom model

A more complete model that still provides some intuitive
insight involves dressing the atomic levels with the red- and
blue-detuned photon field number states. Originally developed
by Grimm and co-workers [21,22], this “doubly dressed”
model results in a ladder of states separated by h̄δ and an
infinite tridiagonal Hamiltonian matrix that is well described
by Yatsenko and Metcalf [23]. Numerically solving for the
eigenstates of the Hamiltonian provides an estimate of the
BCF magnitude that agrees with the π -pulse model and is also
in agreement that the optimal phase is π/4. Unlike the π -pulse
model it predicts that the optimal Rabi frequency is given by

�opt =
√

3/2 δ. (5)

This result, larger than Eq. (1) by about 56%, is in excellent
agreement with both experiment and more complete numerical
calculations. Applying Floquet theory and using a second-
order perturbation treatment, this model also yields an estimate
of the velocity range of the force, but this prediction is too small
by about a factor of 2, probably because the effects of Doppler
shifts are not fully incorporated [14].

C. Numerical solutions of the optical Bloch equations

A more comprehensive but less transparent approach is to
numerically solve the optical Bloch equations (OBEs) [24,25]
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FIG. 2. Calculated bichromatic force vs velocity for δ = 154γ

and phase φ = π/2, for �opt = √
3/2 δ. This optimum Rabi fre-

quency yields the largest central force, in agreement with Eq. (5)
rather than Eq. (1). Note that the force magnitude is shown as a
multiple of h̄kγ , which is twice the radiative force Frad.

in the bichromatic field. The OBEs fully describe the internal
state of a two-level atom in the rotating-wave approximation
(RWA), taking into account the Rabi cycling of atomic states
in the field as well as spontaneous emission, which is added
phenomenologically. We obtain numerical solutions using a
program based largely on code developed for earlier BCF
studies by the authors of Refs. [8,21,22]. The rotating frame
is chosen to be at the center frequency of the bichromatic
spectrum, leaving some residual time dependence due to the
approximately symmetric detunings ω0 ± δ. The OBEs are
solved over small time steps in the bichromatic field and the
instantaneous force is evaluated using Ehrenfest’s theorem [2],

F (z,t) = h̄{u(t)∇Re[�r (z,t)] − v(t)∇Im[�r (z,t)]}, (6)

and then averaged over several radiative lifetimes. The atomic
velocity is not explicit in the force calculation but is inferred
using a constant-velocity approximation so that the atomic
position is given by z = vt . This process is repeated over a
range of atomic velocities to produce force profiles like the
one shown in Fig. 2.

At the center of the force profile, the calculated amplitude
is maximized when the Rabi frequency satisfies Eq. (5) and
the bichromatic beat phase offset is φ = π/2, verifying both
of the central predictions of the doubly dressed atom model.
Both predictions also agree well with experimental results.
Under these optimal conditions the maximum force is FBCF ≈
h̄kδ/π , also consistent with both the simplified models and
experiments.

The velocity range of the force in the profile of Fig. 2 is
about δ/2k, but the profiles take on distinctly different shapes
for δ � � <

√
3/2 δ [26], developing broad peaks near ±δ/2k

with a force nearly as large as for the central zero-velocity
peak. Atoms traversing a Gaussian bichromatic beam profile
will interact with a range of intensities, so a realistic simulation
should include an average over the force profiles. This yields

an improved estimate of the BCF velocity range [16,17],

�v ≈ δ/k, (7)

that is half as large as the rough estimate in Eq. (3).
The time required to slow an atom across this full velocity

range is tBCF = m�v/FBCF. This “bichromatic slowing time”
is independent of the detuning δ and for helium its value is
tBCF = 5.9 μs. It follows that even a fast beam of metastable
helium atoms, with v̄ ∼ 1000 m/s, can be decelerated by �v

in an interaction length of less than 1 cm.
Another feature of the BCF profile is the sharp dropoff at

either end of its range, clearly visible in Fig. 2. If the force is
applied for a time greater than the bichromatic slowing time,
atoms within the velocity range of the force will “pile up” at
the low-velocity limit. This can yield significant cooling in
addition to deceleration, as can be seen in Fig. 4 and Refs. [8,
14,16]. Recently Metcalf has argued that the cooling is due
to radiation exchange between the bichromatic fields and may
not be subject to limitations tied to the rate of spontaneous
emission [27].

III. LARGE-DETUNING BCF

A practical atomic beam slower for metastable helium must
reduce the atomic velocity by at least 700–800 m/s to produce
a large flux of atoms at MOT capture velocities. Ideally, this
could be achieved with a single pair of counterpropagating
beams producing a BCF profile with a correspondingly large
velocity range. However, this would require unreasonably high
irradiances, so it is necessary to break up the required velocity
range in some way. In this section we investigate the feasibility
of a static two-stage slower and, more generally, we study the
large-detuning limits of the BCF.

A. Experiment

For efficient deceleration by two successive BCF interac-
tions, the first stage should have a velocity profile Doppler
shifted so that its leading edge is located in an appropriate
portion of the slow tail of the atom velocity profile, and the
second stage should have a smaller Doppler shift with its
leading edge just overlapping the trailing edge of the first
profile. We have constructed a decelerator in the first-stage
configuration to test the concept, as diagramed in Fig. 3.
The metastable helium source is a reverse-pumped, liquid-
nitrogen-cooled dc discharge source patterned closely on a
prior design [28,29], with external modifications to permit
installation in an existing vacuum chamber. The metastable
atom flux from the source is about 3 × 1013 He* atoms/sr s
with a most probable velocity of approximately 1050 m/s and
a metastable fraction of roughly 5 × 10−5 [1]. The atomic
beam passes from the source chamber through a 500-μm-
diam skimmer aperture into a time-of-flight chamber. After
passing through a 70-μm-diam collimating aperture, it is
mechanically chopped by a tuning fork chopper operating
at 160 Hz with a 100-μm slit width. The resulting chopped
atom beam, with a divergence half angle of 4.1 mrad, travels
through the counterpropagating bichromatic decelerating laser
beams for a few centimeters. After an additional time-of-flight
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FIG. 3. (Color online) Experimental configuration for observing the BCF in atomic He using detunings of 123γ –278γ with a static Doppler
shift centered at atomic velocity v. Polarizing beam-splitter cubes are denoted by PBC, and a beam splitter by BS.

(TOF) path, the chopped beam impinges on a stainless-steel
Faraday cup. Electrons ejected by He* atom impacts are
collected and detected by a Ceratron continuous dynode
electron multiplier. The He* velocity distribution is then
calculated from the TOF spectra, with a velocity resolution of
about 67 m/s.

A limitation of this method is that it cannot measure
velocities slower than about 350 m/s because the slowed
atoms will then be overlapped by atoms from the suc-
ceeding chopper pulse. For the experiments reported here,
we avoid this problem by selecting an initial velocity
range high enough in the velocity distribution that the
slowed atoms remain above this lower limit. To measure
the velocities in a practical MOT loading scheme, a mod-
ified beam chopper or a laser tagging method would be
required.

The bichromatic laser beam pairs are generated from a
single diode laser (Toptica DL100) locked to the 2 3S1–2 3P2

transition at 1083.3 nm using a saturated absorption spectrom-
eter. This laser at the atomic frequency ωa is double-passed
through an acousto-optic modulator (AOM) operating at the
bichromatic detuning frequency δ/2π , producing two super-
imposed frequencies at ωa ± δ. It is then coupled into a cw fiber
laser amplifier (Nufern NuAmp) with a single-mode output of
up to 7 W. The amplified beat-note train is split into equal parts,
then Doppler frequency shifts of ±kv/2π = ±800 MHz are
added using additional AOMs to center the bichromatic force
profile at a velocity of about 866 m/s. An optical delay line is
used to set the relative phase between the two bichromatic beat-
note trains to the optimal φ = π/2 [8]. The bichromatic beams
enter the chamber linearly polarized, pass through quarter-
wave retarders to produce σ+ light, and cross the helium
atomic beam at an angle of about 1◦. The beams are tightly
focused to waists with top-hat radii of 0.32 mm to provide
the required irradiance without exceeding the capabilities of
the amplifier. Because of this tight focus the overlap with the
atomic beam is imperfect, resulting in an interaction region
about 3.7 cm long but covering only about 40% of the atomic
beam.

B. Results and analysis

The results for this large-detuning slowing are shown in
Fig. 4. We extend previous work using a fixed detuning of 185γ

(∼300 MHz) [15,16] by exploring several different detunings.
The figure shows raw experimental data without enhancement
to compensate for imperfect beam overlap, as was done in
some prior BCF experiments on He* [16,17]. Consequently,
the depth of the holes in the velocity profiles can be at most
40% of the population, which may be further reduced because
the atomic beam contains some atoms in the 2 1S0 metastable
state that cannot be slowed.

Unfortunately these experiments were terminated abruptly
by the failure of our 7-W fiber amplifier. As a result, only one

FIG. 4. (Color online) Experimentally observed velocity profiles
for BCF slowing, increasing in detuning from top to bottom. The
dotted trace (black) is the unslowed distribution, the upper solid trace
(red) is the slowed distribution, and the lower solid trace (blue) is the
difference. Notice the anomalous result at δ = 278γ , consistent with
previous observations of an upper limit to the BCF detuning.
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set of data was acquired in the previously unexplored range of
detunings between 185γ (300 MHz), where a large BCF was
observed [15], and 368γ , where no effect could be found [16].
Our new results are consistent with these prior reports, showing
a badly disrupted BCF at an intermediate 278γ , establishing
an apparent upper limit to the BCF that we discuss further in
Sec. III C.

The changes in the velocity profiles shown in Fig. 4 were
confirmed to be due to the BCF by adjusting the beat-note
phase, by blocking one of the two bichromatic beams, and by
blocking a single frequency component in one of the beams.
As expected, when the phase is increased to φ = 3π/2, the
sign of the force changes and the deceleration becomes an
acceleration. This is perhaps the most obvious and identifying
signature of the BCF. When the phase is set to φ = 0 or φ = π ,
the force vanishes altogether, also as expected. If one or more
of the frequency components is blocked the BCF vanishes
and smaller peaks appear in the atomic velocity distribution
due to the radiative force from each bichromatic frequency
component.

To establish a consistent convention for measuring the
extent of slowing and the velocity range of the BCF, we define
“slowing” as the velocity difference between the peak of the
slowed atom distribution and the corresponding minimum of
the hole in the slowed velocity distribution, as indicated in
Fig. 4. The velocity range of the BCF can be estimated by
measuring the full width between the half maximum of the
slow side of the slowed atom peak and the half minimum on
the fast side of the hole in the original velocity distribution.
This is the convention used by the Metcalf group in their BCF
slowing experiments [16,17]. In some circumstances this may
differ from the actual full width of the BCF velocity profile,
but we adopt this convention to facilitate comparisons between
prior results and ours.

Examining the slowing data summarized in Table I, we
verify that the BCF slowing is proportional to δ, and that the
velocity range of the force is very close to δ/k as predicted
by the numerical calculations described in Sec. II. This agrees
with previous results from the Metcalf group at δ = 185γ [16].

Because the length of the slower is about 3.7 cm, the atoms
experience 6–8 BCF slowing time intervals tBCF, depending
on the detuning. This complicates a direct measurement of the
BCF magnitude since the atoms will be slowed by the full
velocity range even when the force is well below the optimal
value of h̄kδ/2. Attempts to measure transient deceleration by

TABLE I. Summary of BCF slowing results, using the mea-
surement conventions described in the text. Note that the result
for δ = 278γ does not exhibit a velocity profile consistent with
unidirectional BCF slowing, so this slowing measurement is shown
only for comparison.

Detuning, Slowing Velocity range,

γ γ /k δ/k δ/k

123 67 0.55 1.04
154 86 0.56 1.08
185 100 0.54 1.00
278 46 0.16 N/A

pulsing the bichromatic beams were not successful because of
the limited time resolution of the chopped-beam TOF scheme.

There is much insight to be gained from the anomalous
velocity profile obtained with the largest BCF detuning of
δ = 278γ (450 MHz). The symmetric displacements in the
velocity distribution, with a central hole and peaks on either
side, indicate both deceleration and acceleration away from
a center velocity. The observed velocity range is much less
than expected for the normal BCF at this detuning. As
mentioned previously, it was not possible to directly measure
the acceleration or deceleration, but only their accumulated
effects along the length of the slowing region.

The center of the hole is at the center of the force profile,
which for this measurement is Doppler shifted by 800 MHz,
or 493γ /k. It cannot be caused by any of the individual
bichromatic frequency components acting alone because each
would have a large Doppler shift located at either ±158γ /k

from the center of the velocity hole. We also confirmed that
the effect is bichromatic in nature by individually blocking
one or more of the bichromatic frequency components, which
resulted in a complete loss of the velocity shifts.

It thus appears that a bichromatic force is present at
278γ , but that it is no longer a rectified force. This suggests
that the sign of the force is changing sometime during the
many stimulated cycles experienced by the atoms in between
successive radiative decay events that reset the phase of
the cycling. Indeed, we were able to simulate the measured
velocity profile quite well with a numerical Monte Carlo
simulation that assumes a randomly directed force with a
reduced magnitude that is typical of the BCF at 61γ [26].
This supports a dephasing of the BCF, along with a reduction
in magnitude caused either by repeated sign changes or other
effects. The previously observed vanishing of the force at 368γ

suggests that the disruption of the BCF becomes even more
severe at still larger detunings. In the next section we explore
some possible explanations.

C. Upper limits to the BCF

We have examined a wide variety of physical and engineer-
ing limitations that could constrain the largest usable detuning
for the BCF [26], and here we describe the limiting factors
most likely to arise in actual practice. One obvious issue is that
the required laser power scales with δ2, setting an engineering
limitation. In terms of the saturation irradiance Is , the required
irradiance from each beam [Eq. (5)] is

Ib = 3Is

(
δ

γ

)2

. (8)

A typical value of Is is a few mW/cm2, although for He* it
is unusually small at 0.17 mW/cm2. Obtaining the necessary
power is thus a significant challenge for cw experiments with
detunings of several hundred times the natural linewidth γ .

Another major consideration is the impact of imperfections
that cause cumulative dephasing of the stimulated cycling. The
time-domain π -pulse model of Sec. II A is particularly useful
for estimating the size of these effects. The self-cancellation
of each pulse pair depends on precise matching of the left-
and right-hand beat-note “pulses” in Fig. 1. If they are not
symmetric, each successive pulse pair leaves the atom with
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a Bloch vector having a larger phase angle, and when the
accumulated phase change reaches π , the direction of the force
is reversed. To make approximate estimates, we can replace the
bichromatic beat notes with rectangular pulse trains, each with
a repetition period T = π/δ and pulse duration T/2, with their
arrival times offset by T/4. If the resonant Rabi frequencies
are �1 and �2 for pulses arriving from the left and the right,
the total accumulated phase error is approximately

1

2

∫ t ′

0

(√
�2

1 + [ω′
1(t)]2 −

√
�2

2 + [ω′
2(t + T/4)]2

)
dt. (9)

Here the generalized Rabi frequencies incorporate possible
detunings ω′

1 and ω′
2 of the bichromatic center frequencies

from the atomic transition frequency, as in Eq. (2). The
integration time t ′ is the interval between successive resets
of the stimulated cycling by radiative decay or collisional
quenching to the ground state. It is given by t ′ = 4/γ for
an ideal BCF cycle in which the atoms spend one-fourth of
their time in the excited state.

The requirement for a well-defined BCF is that the
dephasing in Eq. (9) is less than π . Because the Rabi frequency
is proportional to the detuning, this becomes increasingly
difficult to achieve at large detunings. Three possible sources
of dephasing are the following.

a. Intensity imbalance between the left- and right-hand
bichromatic beams. This appears as a difference between �1

and �2 and leads to a first-order phase error. Setting the
detunings to zero yields the condition �1 − �2 < 2π/t ′. For
a nominal Rabi frequency of � = 2δ that yields a π pulse in
this approximation, the corresponding fractional imbalance is

�1 − �2

�
� π

δ t ′
or

I1 − I2

I
� 2π

δ t ′
, (10)

using the proportionality of the irradiance I to �2. In a
badly disrupted BCF cycle the probability of atomic excitation
will be close to the saturated statistical value of 1/2, so we
set t ′ � 2/γ in Eq. (10). This yields predictions generally
consistent with experimental experience, although prior work
on cesium suggests that the sensitivity to beam imbalance
is overestimated by about a factor of 2 [8]. For He*,
Eq. (10) predicts that a detuning of δ/2π = 250 MHz requires
irradiances balanced within 2%, and at 500 MHz, within 1%.
In practice, beam balancing beyond the 1% level is exceedingly
difficult because of the imperfect spatial profile of the beams,
accounting in part for the experimental observation of efficient
slowing at 185γ (300 MHz) but not at 278γ or above.

Interestingly, numerical OBE simulations predict much less
sensitivity to imbalance at large detunings than the π -pulse
model and experiments. This appears to be because the
calculated force profile is dominated under these conditions
by multiphoton “Doppleron” resonances [30,31], and their
effects are almost certainly overestimated because our model
assumes perfect two-level atoms that experience a uniform
laser irradiance.

b. “Decelerative dephasing” due to rapidly changing
Doppler shifts as the atoms are slowed. A constant bichro-
matic force Fb given by Eq. (4) will cause a time-dependent
velocity change �v(t) = −Fb t/m, leading to detunings in
Eq. (9) of +k�v(t) and −k�v(t + T/4). In Ref. [26] a
large effect from these detunings is estimated because the

subtraction of the two terms in Eq. (9) is not fully taken
into account. However, after this subtraction only a very
small quadratic term depending on T/4 remains, and no
significant effect is predicted even for helium with its very
small mass. Appreciable dephasing would occur only if there
were also an overall shift ω0 of the bichromatic center
frequency from resonance. Then the detunings would become
ω′

1 = ω0 + kv(t) and ω′
2 = ω0 − kv(t + T/4), yielding a term

proportional to δ. Asymmetric detunings ±kv due to Doppler
shifts, even if large, do not cause this problem because they
retain the mirror-image balance of pulses from the left and
from the right. It is unclear whether this cancellation is equally
complete in the actual BCF configuration with its partially
overlapping beat-note pulses, but major modifications to our
present numerical modeling will be necessary to obtain a
definitive answer.

c. Radio-frequency phase errors. An rf phase shift between
the right- and left-hand BCF beams will alter the nominal
π/2 phase shift between successive beat notes. Phase errors
can arise from external factors such as phase noise in the
electronics, but also from the finite spatial extent of the rf beat
notes. At 300 MHz the length of an rf beat note is 50 cm, which
is much longer than the 4-cm slowing region but nevertheless
leads to an rf phase deviation of 14.4◦ between the beginning
of the region and its end. Numerical modeling of the OBEs
is necessary to analyze the effects, because the quantitative
dependence on the rf phase is not included in the π -pulse
model. A full analysis is given in Sec. 3.5.2 of Ref. [26], where
it is shown that the BCF has a full width at half maximum of
about 9◦ in phase at 300 MHz detuning, or 5◦ at 600 MHz.
Thus, as δ increases, the sensitivity to phase increases even as
phase variations within the slowing region grow in proportion
to δ, and it appears there is little to gain from using a detuning
much beyond 300 MHz. While this problem does not actually
reverse the BCF deceleration, it reduces the force enough to
make a single-stage slower for metastable helium physically
impossible.

A final consideration is that at large irradiances, atomic
energy levels can be modified by ac Stark shifts due to
laser-induced coupling to distant states. For helium this is
not a significant concern, as is shown in detail in Sec. 3.2 of
Ref. [26]. However, in other atomic and molecular systems
this could become a critical issue, since it leads not only
to symmetric shifts ω′

1 and ω′
2 in Eq. (9) but also to rapid

variations with time and position due to the overlapping
traveling BCF beat notes. A brief discussion in the context
of molecular slowing is given in Ref. [19].

Although we could not obtain sufficient experimental
information at large detunings to definitively establish the
cause of the anomalous result at δ = 278γ , it is clear that both
intensity imbalance dephasing and rf errors are predicted to
cause major problems at this detuning. To achieve velocity
changes much larger than those observed at δ = 185γ , a
different approach is needed.

IV. CHIRPED BCF

The chirped BCF decelerator accomplishes the same goal
of slowing metastable helium atoms using bichromatic forces
without requiring the large bichromatic detunings ±δ of the
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FIG. 5. (Color online) Three-dimensional BCF surface used in
the Monte Carlo chirped BCF models. The beat-note phase is assumed
constant over the interaction region so that the force is a function
only of the atomic velocity and Rabi frequency. The surface is
interpolated from numerical solutions to the OBEs. The force is zero
at Rabi frequencies less than 0.4δ and absolute velocities greater than
100γ /k.

static slower described in Sec. III A. Instead we substitute
a BCF with a relatively small detuning and thus a limited
velocity range, in which the center frequency of each bichro-
matic beam pair is dynamically adjusted to stay resonant
with the He* atoms while they are slowed. This is done by
linearly chirping [32,33] both laser frequencies to follow the
changing Doppler shift. This greatly reduces the laser power
requirements and allows the slower to operate well within the
range of detunings for which the BCF is fully effective and
reliable.

A. Modeling

To support our experiments, we have extended the numer-
ical OBE calculations of Sec. II C by using the force profiles
to create a Monte Carlo model of chirped BCF slowing. This
allows us to predict the performance as as a function of the
chirp magnitude and rate. To accomplish this, a two-parameter
force function F (v,�) is needed because both the atomic
velocity and the Rabi frequency evolve slowly with time. The
required profile is interpolated from a series of BCF profiles
calculated for Rabi frequencies throughout the range from
zero to

√
3/2 δ. The resulting BCF surface, depicted in Fig. 5,

shows a pair of prominent peaks at � ≈ 1.0δ in addition to the
primary maximum at � = √

3/2 δ.
Initial atomic velocities at the start of the Monte Carlo sim-

ulation are assigned at random using a probability distribution
function derived from an empirical velocity distribution. The
atoms are also assigned random initial time offsets between
t = 0 and −40 μs to account for the finite atomic pulse
duration, where t = 0 corresponds to the beginning of the
chopper aperture transit across the atomic beam path. The
progress of an individual atom proceeds in small time steps and
the change in velocity due to interaction with the bichromatic
beams is evaluated at each step. The Monte Carlo model also
accounts for the finite length of the chopped atomic beam
pulse, the Gaussian bichromatic beam profile, the relative
sizes of the atomic beam and bichromatic beam waists, and

the transit time of the individual atoms into and through the
bichromatic beams. A fuller account is given in Ref. [26].

Once all the atoms have passed through the interaction
region, the time of flight for each atom is evaluated and
the distributions of both the TOF and the final velocity are
calculated to simulate experimental results. Our initial results
based on the full magnitude of the optimal BCF predicted that
linear chirp ramps with durations of 10–20 μs would work
well, with little change in the size and shape of the slowed
atom peak for chirps with magnitudes as large as 600 MHz.
However, as we discuss in Sec. IV B, in our experiments
the optimal chirp durations were found to be in the range
30–50 μs, with a clear dependence on the chirp magnitude.
This was easily accounted for by reducing the effective BCF
magnitude by a factor of 2 to approximately account for
experimental imperfections, at which point the Monte Carlo
model predictions (shown in Fig. 8) match the experimental
results quite well.

B. Experiment

The experimental layout for the chirped BCF experiments
is shown in Fig. 6, highlighting differences from the large-
detuning layout in Fig. 3. The chirped slower uses two Toptica
DL100 diode lasers, one for the co-propagating +kv beam and
the other for the counterpropagating −kv beam. This allows
independent control of the co- and counterpropagating beam
(±kv) Doppler shifts, a necessity for Doppler chirping. A weak
sample beam from the −kv laser is frequency shifted by +kv

using an AOM and sent to a saturated absorption spectrometer
where it is locked to the 2 3S1 → 2 3P2 transition in helium. The
other laser is stabilized at +kv by an offset locking scheme, in
which the heterodyne beat note between the two lasers is mea-
sured on a photodiode, and locked by a microcontroller-based
phase-locked loop (PLL) circuit to an offset of +2kv, typically
corresponding to about 1.6 GHz. The lasers are initially
locked (without a chirp in progress) at the Doppler shift of
a velocity group v(t0) near the center of the atomic velocity
distribution, ω
 = ωa ± kv(t0), and then chirped in opposite
directions to follow the atomic Doppler shift as a function of

FIG. 6. (Color online) Chirped BCF slower experiment block
diagram showing key optical and electronic components. The
configuration of the slower beams and atomic beam are the same
as shown in Fig. 3.
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time. Frequency modulation of the two lasers is accomplished
using a manufacturer-supplied model DL-MOD interface in
one laser and a homemade copy in the other. The modulation
is produced by a field-effect transistor (FET) connected in
parallel with the laser diode. A voltage ramp applied to the
FET gate causes a portion of the laser diode current to be
diverted to ground, changing the laser output frequency.

The bichromatic frequencies are generated for each laser
separately using single-passed AOMs driven at an rf frequency
2δ. For each laser, the zero- and first-order components are
recombined using a 50% beam splitter to form the bichromatic
beam. The beat-note phase is controlled by locking the rf phase
between a pair of homemade frequency synthesizer boards that
drive the two AOMs. The microcontroller-based synthesizers
share a common 10-MHz clock, and a small offset current is
added to one of the PLL charge pump outputs to control the
phase shift as described in Refs. [34,35].

We found that the rf phase was much less stable than
expected because of microphonic motion of the lasers relative
to the AOMs, which causes phase variations because of
the short acoustic wavelength of the sound waves in the
modulators. A feedback loop was added to provide additional
phase stabilization by monitoring the relative rf phase of the
optical beat notes using an Analog Devices AD8032 phase
detector. By using this phase measurement as an error signal
in the PLL phase-lock circuit, the rms phase jitter was reduced
to approximately 4◦. However, frequent large phase excursions
of up to ±28◦ could not be corrected and reduced the effective
magnitude of the BCF. A better solution might be to utilize
a single AOM for both lasers, and this change is planned for
future work.

Our initial experiments were constrained to a very modest
BCF detuning of 74γ because of the limited optical power
available from the DL100 diode lasers, which provided about
40 mW in each bichromatic beam pair after accounting for
losses in the optics. For the same reason, the beams were
focused to a top-hat radius of 440 μm that was somewhat
smaller than the atomic beam, limiting the fraction of atoms
that could be slowed. This situation could be greatly improved
by the addition of a medium-power optical amplifier, such as
a tapered laser amplifier diode.

C. Results and analysis

The measured He* velocity distributions for chirped BCF
slowing using a detuning of 74γ and chirp magnitudes up to
300 MHz are shown in Fig. 7. We selected a relatively high
initial velocity range centered at 800 m/s only because our
present velocity measurement scheme is unsuitable for atoms
slowed below 350 m/s, as described in Sec. III A. The results
show the predicted increase in slowing with chirp magnitude,
indicating that the chirped BCF profile remains resonant with
a fraction of the atoms while they are slowed.

An analysis of these chirp results is shown in Table II,
in which the measurements of slowing and velocity range
are defined in Sec. III B. A detuning of only δ = 74γ with
a 300-MHz frequency chirp provides a measured slowing of
210γ /k or 370 m/s, the largest amount of slowing reported
in any BCF experiment to date. This is more than twice the
slowing measured for a static detuning of δ = 185γ as reported

FIG. 7. (Color online) Experimentally observed velocity profiles
for frequency-chirped BCF slowing with δ = 74γ , �r = √

3/2 δ, and
φ = π/2. The four panels show chirp ramps of 0 MHz, 100 MHz in
30 μs, 200 MHz in 40 μs, and 300 MHz in 50 μs.

in Table I. The laser irradiance requirements are lower by
nearly a factor of 10 than what would be required for a static
slower with the same velocity range, even if the problems
outlined in Sec. III C could be overcome.

The optimal experimental chirp ramp durations are found
to increase from about 30 to 50 μs as the chirp magnitude
increases from 100 to 300 MHz. As mentioned previously, the
Monte Carlo model described in Sec. IV A yields results in
good agreement if the bichromatic force magnitude is reduced
by a factor of 2 from its ideal value. This reduction could easily
be caused by experimental imperfections such as rf phase jitter
and imperfect Gaussian beam profiles.

The full velocity profiles predicted by these model cal-
culations are shown in Fig. 8. Again the agreement with
experiment is good. The most probable velocity of the slowed

FIG. 8. (Color online) Chirped BCF Monte Carlo model output
after reducing BCF magnitude, using the same experimental param-
eters used to obtain the results in Fig. 7.
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TABLE II. Summary of experimental BCF chirp results for
δ = 74γ . All experiments used the optimal BCF parameters �r =√

3/2 δ and φ = π/2. Slowing is reported both in units of γ /k =
1.76 m/s and δ/k = 130 m/s to facilitate comparison with static
BCF deceleration.

Chirp Ramp Slowing Velocity range,

(MHz) (μs) γ /k δ/k δ/k

0 0 65 0.88 1.57
100 20–40 129 1.75 2.58
200 40–50 168 2.27 3.01
300 50 210 2.84 3.67

group of atoms experimentally matches the model prediction
within 20γ /k, although the fraction of slowed atoms is
relatively small in this initial experimental configuration.
There was no slowing observed when the chirp was increased
to 400 MHz, indicating badly suboptimal BCF conditions. The
model predicts this behavior in two scenarios—a smaller BCF
magnitude than expected, or periodic, temporary loss of the
BCF as would be caused by occasional large phase errors. Both
of these factors were potentially present in the experimental
configuration for this initial test.

The small fraction of slowed atoms was caused not only by
limited beam overlap, but by practical difficulties in using a
chopped atomic beam to measure velocity distributions with a
single frequency-chirp ramp. The atomic beam pulse duration,
about 40 μs at the chopper, expands to more than 120 μs by
the time the atoms reach the interaction region. This is longer
than the chirp ramp duration, so atoms on the leading edge
and trailing edges of the pulse fall outside the chirped BCF
profile and are not slowed. This effect is more pronounced with
faster frequency ramps and results in a much reduced number
of slowed atoms. In a fully realized design, rapidly repeating
chirp sequences can be used in conjunction with a cw atomic
beam to ensure that most of the atoms in a continuous beam
experience the full chirped BCF force, as discussed in Sec. V.

V. CONSIDERATIONS FOR PRACTICAL ATOMIC
DECELERATION FOR MOT LOADING

While our initial attempts to slow He* atoms using the
chirped BCF scheme described in Sec. IV B have been limited
to �v � 370 m/s, this is already a significant improvement,
and the results have allowed us to identify straightforward
improvements that will greatly extend the range. We have also
been able to verify the accuracy of the Monte Carlo model
discussed in Sec. IV A. A detailed account is presented in
Chap. 7 of Ref. [26].

Even without a full redesign, simply scaling the demonstra-
tion experiment at δ = 74γ up to a detuning of approximately
123γ and better stabilizing the rf phase will permit a
doubling of the frequency chirp magnitude to 600 MHz.
To accommodate the δ2 scaling of the laser power while
also better matching the bichromatic beam to atomic beam
diameters, about 0.5–1 W will be required from each of the two
lasers. This power level is readily available from commercially
available tapered amplifier diodes, which unfortunately were
not available to us at the time of the experiments. As shown

FIG. 9. (Color online) Monte Carlo modeling for the velocity
distribution of a fully realized chirped BCF slower acting on a cw
atomic beam, with δ = 123γ and a 600-MHz chirp with a ramp
duration of 10 μs. The black dashed line is the velocity distribution
of the atomic beam source, and the red solid line is the predicted
distribution with the chirped BCF present. Notice the large slow
atom peak at ∼50γ /k and the relatively uniform depletion of a large
range of atomic velocities.

in Fig. 9, Monte Carlo modeling indicates that the 600-MHz
chirp, together with the increased static velocity range at a
detuning of 123γ , is sufficient to slow atoms from the lower
half of the initial velocity distribution to final velocities of
0–100 m/s.

With our present 160-Hz beam chopping rate, the average
brightness of the slowed atomic beam would be very low due
to the atom beam duty cycle of only 1%. To create a slower
capable of replacing a Zeeman slower, the chirp configuration
must be adapted to use a continuous or near-continuous atomic
beam. This requires that the frequency chirping cycle repeats
continuously and as quickly as possible. Using a chirp ramp
duration of 10 μs with an additional 5 μs to reset the laser
frequency gives a cycle period of 15 μs. However, because
the 5 μs is much less than the atomic transit time through the
slower, it will not appreciably interfere with the cw operation
of the slower. The laser frequency locking must occasionally
be reestablished, but it suffices to do this once every few
milliseconds. For these estimates, we assume the laser locks
require 500 μs to reset, which must occur every 2 ms. This
results in a fairly realistic estimate of an 80% duty cycle.

We estimate the output flux of such a slower to facilitate
comparisons to other atomic beam slowing methods. Assum-
ing conservatively that 10% of the metastable helium atoms are
subject to slowing after taking into account the beam overlaps,
BCF velocity range, and initial Doppler shift, we can predict
the intensity of slow atoms using information from the model
simulation shown in Fig. 9. From Sec. III A the metastable
source brightness is 3 × 1013 He* s−1 sr−1. Adjusting for the
duty cycle and slower efficiency, the BCF slowed atom bright-
ness will therefore be 0.8 × 0.1(3 × 1013 He* s−1 sr−1) =
2.4 × 1012 He* s−1 sr−1. Factoring in the measured acceptance
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angle of the slower and its estimated exiting beam diameter
of 500 μm, the estimated slow atom flux is (2.4 × 1012 He*
s−1 sr−1)(1.5 × 10−5 sr)/0.2 mm2 � 2 × 108 He* s−1 mm−2.

This can be compared with the 1083-nm Zeeman slower
used by Vassen group, which has a MOT loading time of
0.5 s [36–42]. Their scheme begins with a dc discharge He*
source somewhat similar to ours, but with a higher brightness
of 3 × 1014 He* s−1 sr−1. A two-part Zeeman slower [36,40]
is used in conjunction with an optical molasses precollimator
that increases the angular acceptance of the slower by a
factor of ∼30 [39]. The output flux of slow He* atoms is
2 × 109 He* s−1 mm−2 [41]. Taking into account the brighter
initial metastable helium source, this is the same flux that
would be predicted for a chirped BCF decelerator without a
precollimator. The main reasons for the improved performance
of the BCF slower are the greatly reduced length and the
absence of transverse heating effects common in long Zeeman
slowers. With the addition of a precollimator the output flux
could be further increased by a factor of 2–50, depending on
the method used [16,42,43].

Development of an improved chirped slower able to slow a
cw atomic beam to rest is currently under way in our laboratory.

VI. SUMMARY

Our investigation of the bichromatic force at large detunings
shows that a static two-stage slower for a metastable helium
beam is probably not feasible. We have added to prior

experimental evidence for an effective upper limit to the
BCF at a detuning of about 250γ for He*, probably due to
accumulated small dephasings of the stimulated Rabi cycling
in between “resets” by radiative decay. In addition, it is difficult
to reliably produce the required laser irradiance at larger
detunings because it increases quadratically.

To circumvent these limits, a BCF slower was developed,
using a small detuning while chirping the Doppler shift
offset frequencies to maintain resonance with the decelerating
atoms. In a prototype experiment we have achieved slowing
of metastable helium by 210γ /k (370 m/s) with a detuning
of only 74γ . This is more than twice the largest BCF slowing
previously attained, and represents a savings in laser irradiance
by nearly a factor of 10. Scaling up the detuning to 123γ ,
increasing the bichromatic beam waists, and rapidly repeating
the chirp will allow the realization of a He* slower capable
of slowing atoms to MOT capture velocities. The chirped
BCF slower is predicted to have a brightness at least com-
parable to current Zeeman slowers, but with a much shorter
length.
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