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We formulate the dynamics of electron-wave propagation in photoionization microscopy for nonhydrogenic
atoms, based on a frame transformation between the spherical and parabolic coordinates used in Harmin’s
Stark-effect theory. An expression for the wave function for photoelectrons ejected from the nonhydrogenic
atomic source has been derived. The spatial distributions of electron current densities or differential cross
sections for Na are computed and compared to those from a recently developed coupled-channel theory. The
difference between these two approaches is analyzed and attributed to the frame transformation for irregular
wave functions. Since more detailed physical information can be extracted by comparing differential cross
sections, rather than total cross sections, photoionization microscopy is proposed to test the Stark-effect
theory.
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I. INTRODUCTION

Investigation of dynamical properties of Rydberg atoms
and molecules in an external electric field has attracted much
attention for decades due to fundamental physics interest in
such systems themselves and their potential applications in
other research fields. So far, a great deal of experimental and
theoretical effort has been spent to understand the behavior
of Rydberg atoms and molecules in external electric fields
(see, e.g., Refs. [1,2] and references therein). Pronounced
asymmetrical line shapes were found in experimental pho-
toionization spectra for several nonhydrogenic atoms [3–5],
and explained by Harmin’s Stark-effect theory in the WKB
approximation [6–8]. These profiles were thought to be due
to interference between continuum and quasidiscrete states
similarly to field-free Fano profiles. Furthermore, it was found
that these experimental spectra exhibit series of polarization-
dependent oscillations, and these oscillations in the Rydberg-
energy region extend beyond the field-free threshold. This
phenomenon was explained by Harmin’s theory. Each peak in
the spectra is related to a resonance specified by the parabolic
quantum number n1 and magnetic quantum number m, and
the oscillations above the field-free threshold are induced by
the external electric field. In addition, the closed-orbit theory
developed by Du and Delos [9] also successfully interprets
such oscillations [10].

As displayed in the experimental photoionization spectra,
a Stark resonance may be broad or narrow, depending on
the energy and the electric field. The long-lifetime feature
of a narrow resonance may be exploited for many research
purposes, such as precise calibrations of applied electric fields
[11–13], and trapping of Rydberg atoms and molecules [14],
which may be used for Bose-Einstein condensates [15], studies
of cold molecular collisions [16], and quantum information
processing [17]. Another peculiar feature of the Stark effect
arises from the tunability of the electric field and of the
corresponding couplings. In some circumstances this can lead
to the stabilization of states in the continuum. As an example,
an extremely narrow Stark resonance in sodium atoms was
experimentally observed and interpreted by Harmin’s theory

[11]. This resonance is located near −184 cm−1, where
two relatively broad resonances cross, and one of them
is narrowed by two to three orders of magnitude due to
interference between quasidiscrete and continuum states, in
the presence of electric fields with strength 3950 V/cm. A
subsequent investigation of sodium Stark resonances shows
that interference narrowing may increase a resonance lifetime
by up to four orders of magnitude over a normal lifetime
of 0.02–0.10 ns [12]. Thus the lifetime of a stabilized Stark
resonance may be as long as 100 ns.

Recently, a precise spectroscopic measurement with an
accompanying theoretical analysis of the Stark effect for neon
in a static electric field has been presented [2]. The theoretical
analysis was based on the multichannel quantum-defect theory
(MQDT) to treat the Stark effect in Rydberg states [18,19],
and the MQDT was developed from Harmin’s Stark-effect
theory using a frame transformation between spherical and
parabolic coordinates. Discrepancies between experiment and
theory near the Stark resonances were observed, and were
suspected to be due to the neglect of the field effect beyond the
core region with r � F−1/2 (F is the electric-field strength).
Such discrepancies indicate the necessity of reexamination of
the approximations made in the MQDT approach, and the
authors of Ref. [2] suggested that it might be necessary to
develop new methodologies to incorporate the field effect near
the core into the MQDT framework.

Harmin’s Stark-effect theory was also questioned by
Stevens et al. [13]. It was found that the frame transformation
of irregular wave functions defined in this theory does not
maintain consistency in the two sides of the transformation
equation. One side of the transformation equation is phase
shifted isotropically, while the other side is phase shifted
on the negative z axis but not on the positive z axis.
However, as indicated above, Harmin’s Stark-effect theory
turns out to be successful in reproducing the experimental
photoionization spectrum for Na in an electric field. Obviously,
it is essential to develop a theoretical scheme, which should
provide more detailed comparison, to examine Harmin’s
Stark-effect theory. Photoionization microscopy [20,21] is able
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to satisfy this requirement. By comparing electron current
densities or detailed differential cross sections, instead of
total cross sections, one can scrutinize Harmin’s Stark-effect
theory. Such a test is the aim of the present paper. For
this purpose, it is necessary to formulate the dynamics of
electron-wave propagation in photoionization microscopy for
nonhydrogenic atoms, based on the frame transformation
between the spherical and parabolic coordinates used in
Harmin’s Stark-effect theory.

A theoretical approach to simulate time-dependent electron
currents produced in photoionization of nonhydrogenic atoms
in a static electric field has been formulated by Robicheaux
and Shaw [22], based on Harmin’s theory in the WKB
approximation [8]. They semiclassically computed electron
wave functions in the Coulomb-Stark potential and the
frame-transformation matrix which connects wave functions
in spherical and parabolic coordinates. In the present paper,
however, these quantities will be calculated by numerical
solution of the Schrödinger equation rather than by the WKB
approximation. Specifically, the effects of Stark resonances are
calculated within the framework of fully quantum-mechanical
theory. We find that the treatment of the frame transformation
of irregular wave functions in Harmin’s Stark-effect theory
may need to be improved.

The paper is organized as follows. In Sec. II, Harmin’s
Stark-effect theory is reviewed. In Sec. III, we derive the
expression for outgoing electron waves produced in pho-
toionization for nonhydrogenic atoms in a uniform electric
field, based on Harmin’s Stark-effect theory. In Sec. IV, com-
putations of the transformation matrices between parabolic
regular and irregular wave functions proposed by Harmin [8]
in the WKB framework are outlined, and some computed
examples from the fully quantum-mechanical theory are listed.
Section V presents spatial distributions of current densities
produced due to photoionization of Na atoms from the
ground state through the intermediate 3 2P3/2 state in electric
fields. Section VI summarizes the approach of photoion-
ization microscopy for nonhydrogenic atoms developed to
test Harmin’s Stark-effect theory, and the main conclusion.
Atomic units are used throughout this paper unless otherwise
noted.

II. REVIEW OF HARMIN’S STARK-EFFECT THEORY

A. Sketch of the theory

This section sketches Harmin’s Stark-effect theory, and
summarizes formulas relevant to the current derivation of the
outgoing electron wave function. We use the same symbols
as Harmin wherever possible. Let the configuration space
be divided into three parts: the core region with r < r0, the
Coulomb region with r0 < r < r1, and the Coulomb-Stark
region with r > r1. The value of r1 is taken from the
range r0 � r � F−1/2, where F represents the electric-field
strength, while r0 is a few bohrs from the origin. The
complicated dynamics happens in the core region, while
the ejected electron experiences only the Coulomb force in
the Coulomb region, since the uniform electric field is
negligible at r < r1. In the Coulomb-Stark region, the electron
moves in the Coulomb and uniform electric fields. We start

first with hydrogenic atoms and then switch to nonhydrogenic
atoms with cores.

The Schrödinger equation for the H atom in a uniform
external electric field is separable in parabolic coordinates,
ξ = r + z, η = r − z, and φ = tan−1(y/x). Let us denote
the energy-normalized solutions to the Schrödinger equation,
regular at r = 0, as

ψεn1m(ξ,η,φ) = uβ(ξ )√
ξ

vβ(η)√
η

eimφ

√
2π

, (1)

where ε is the energy of the electron, n1 is the node number
of u(ξ ), m is the magnetic quantum number, and β is the
separation constant. uβ(ξ ) and vβ(η) satisfy the ordinary
differential equations(

d2

dξ 2
+ 1 − m2

4ξ 2
+ β

ξ
+ ε

2
− F

4
ξ

)
uβ(ξ ) = 0, (2)

(
d2

dη2
+ 1 − m2

4η2
+ 1 − β

η
+ ε

2
+ F

4
η

)
vβ(η) = 0. (3)

From the above two equations, one readily sees that β is an
implicit function of four parameters ε, F , n1, and m, namely,
β(ε,F ,n1,m). Therefore, β represents the four indices, and
to simplify the notation, we write β without arguments. The
forms of Eqs. (2) and (3) together with the boundary conditions
show that uβ(ξ ) → 0 as ξ → ξ0, where ξ0 is a finite value,
while vη(η) is oscillatory as η → ∞. Near the origin, the
behavior of regular solutions of Eqs. (2) and (3) with energy-
independent normalization is as follows:

u(ξ ∼ 0) = Nξξ
(1+m)/2[1 + O(ξ )], (4)

v(η ∼ 0) = Nηη
(1+m)/2[1 + O(η)], (5)

where Nξ and Nη are normalization amplitudes. u(ξ ) satisfies
the normalization condition∫ ∞

0

un1 (ξ )un′
1
(ξ )

ξ
dξ = δn1n

′
1
, (6)

and v(η) has asymptotic behavior at η → ∞,

v(η) →
√

2

πk(η)
sin

(∫ η

k(η′)dη′ + 1

4
π + δβ

)
, (7)

where k(η) represents the WKB wave number, and δβ is
the absolute phase shift. The lower limit of the integration
in the phase integral of Eq. (7) is arbitrary, but the phase
shift δβ depends on its specific choice. Equations (4)–(7)
are essential to calculate frame-transformation matrices. As
in the treatment in parabolic coordinates, the normalization
amplitude Nε
 in spherical coordinates can be factored out
from the zero-field spherical functions, Fε
m(r) (see Ref. [8]
for details). The transformation matrix Uβ
 is defined by the
equation

ψεn1m(r) =
∑




Uβ
Fε
m(r), (8)

and is given by

Uβ
 = aβ


NξNη

Nε


, (9)
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where aβ
 is the transformation coefficient. From its expression
[Eq. (17) of Ref. [8]], it is easy to see that this coefficient
itself is free from effects of the Stark and Coulomb potentials,
and their effects on the transformation matrix are embodied
in the normalization amplitudes Nξ , Nη, and Nε
. It must
be emphasized that the transformation of the wave functions
between parabolic and spherical coordinates is valid only for
the Coulomb region for any β and 
. In the Coulomb-Stark
region, where the electric field is no longer negligible, the
Hamiltonian is not separable in spherical coordinates, and
as a consequence, the parabolic eigenfunction cannot be
obtained in terms of the frame transformation. That means
that Uβ
 is nonorthogonal at fixed ε, except for the field-free
case.

If the region with r � r0 is occupied by an alkali-metal
ion core instead of a bare nucleus, the wave functions in the
Coulomb region, outside the core boundary r0, is written in
the form

�ε
m(r) = cos δ
Fε
m(r) − sin δ
Gε
m(r), (10)

with the notation

Fε
m(r) = 1

r
fε
(r)Y
m(θ,φ), (11)

Gε
m(r) = 1

r
gε
(r)Y
m(θ,φ), (12)

where δ
 = πμ
 is the radial phase shift produced due to the
presence of the core, with μ
 being the quantum defect, and
fε
(r) and gε
(r) represent the radial regular and irregular
Coulomb functions for the excited electron, respectively, given
by

fεl(r) =
√

2

πk(r)
sin

(∫ r

k(r ′)dr ′ + 1

4
π

)
, (13)

gεl(r) = −
√

2

πk(r)
cos

(∫ r

k(r ′)dr ′ + 1

4
π

)
, (14)

so that gεl(r) lags π/2 in phase behind fεl(r).
To find a transformation relation of the wave functions

in spherical and parabolic coordinates, Harmin defined an
irregular parabolic wave function v(η) lagging π/2 in phase
behind v(η) in the Coulomb region, in a way similar to
the definition of irregular Coulomb functions [see Eq. (14)].
However, Harmin shows that the phase accumulation be-
yond the Coulomb region leads to the following behavior
at η → ∞:

v(η) →
√

2

πk(η)
sin

(∫ η

k(η′)dη′ + 1

4
π + δβ − γβ

)
,

(15)
where γβ is the asymptotic relative phase shift [relative to the
phase of the regular parabolic wave function; see Eq. (7)],
which lies in the range 0 < γβ < π . The total irregular
parabolic eigenfunction is denoted as

χεn1m(ξ,η,φ) = uβ(ξ )√
ξ

vβ(η)√
η

eimφ

√
2π

. (16)

The orthonormalization relation of the parabolic eigenfunc-
tions, and the Wronskian of v(η) and v(η) are expressed as
follows in Harmin’s work:〈

ψε′n′
1m

′
∣∣ψεn1m

〉 = 〈
χε′n′

1m
′
∣∣χεn1m

〉
= δ(ε′ − ε)δn′

1n1δm′m, (17)〈
ψε′n′

1m
′
∣∣χεn1m

〉 = 〈
χε′n′

1m
′
∣∣ψεn1m

〉
= cos γβδ(ε′ − ε)δn′

1n1δm′m, (18)

Wη(vβ,vβ) = 2/π sin γβ. (19)

Here it should be mentioned that the integrals involving χεn1m

have to be defined cautiously, as the function χεn1m diverges
at the origin.

In the Coulomb region, Harmin introduced the parabolic
Green’s function and utilized the equivalence of the parabolic
and spherical Green’s function to relate the irregular wave
functions with the boundary conditions, the orthonormaliza-
tion relations, and the Wronskian of v(η) and v(η), prescribed
in Eqs. (17)–(19). The resulting transformation relation is

Gε
m(r) =
∑

β

csc γβŨ
βχβ(r), (20)

where Ũ denotes the transpose of the matrix U . The regular and
irregular wave functions in parabolic and spherical coordinates
for nonhydrogenic alkali-metal atoms are connected with the
use of Eqs. (8) and (20), respectively.

B. Harmin’s choice of irregular wave functions

This section reviews critically the irregular wave functions
defined by Harmin. Obviously, such an irregular solution is not
something that is defined uniquely. Any linear combination
of vβ(η) and v̄β(η) is also an irregular solution. The choice
of the specific irregular solution should be based on the
outgoing-wave (incoming-wave) boundary condition, that is,
the outgoing (incoming) wave solution should have the
following asymptotic form:

v±
β (η) →

√
2

πk(η)
exp

[
±i

(∫ η

k(η′)dη′ + δβ

)]
. (21)

As is well known, the theory may also be formulated in terms
of the standing-wave Green’s function. Then the irregular
solution should be chosen as

v̄SW
β (η) = −Re{v+

β (η)} (22)

i.e., v̄SW
β (η) is lagging π/2 in phase behind vβ(η) in the

asymptotic region, but not in the Coulomb region. It is apparent
that v̄SW

β (η) does not correspond to Harmin’s v̄(η) which is
defined in terms of its behavior in the Coulomb region, but not
in the asymptotic region. It is easy to see that the asymptotic
behaviors of v̄SW

β (η) and Harmin’s v̄β(η) are not identical if the
states are close to, but not exactly on, Stark resonances, i.e., if
the relative phase shift is close to, but not exactly, π/2.

There is another problem in the frame-transformation
theory noticed by Stevens et al. [13]: the phase in the left-hand
side of Eq. (20) is shifted uniformly with respect to the
spherical angle θ , but the corresponding shift in the right-hand
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side is not uniform in θ . Accordingly, if the phase of the
parabolic function v̄β(η) is uniformly shifted relative to that
of v(η), the frame transformation for the irregular function,
Eq. (20), results in a Gε
m different from the result of exact
numerical calculations. We will illustrate in Sec. V, where
some numerical examples will be presented, that the exact
irregular wave function is significantly different from the
transformed irregular wave function defined by Harmin.

We conclude that the exact irregular solution with a
given asymptotic boundary condition can be obtained only
by backward integration or by using integrals containing
the Green’s function (see, e.g., Ref. [23] for details). The
coupled-channel theory developed in Ref. [24] is completely
equivalent to such a procedure. As was noticed by Stevens
et al. [13], the deficiency of the frame transformation for the
irregular solution “heals” quickly off the z axis, but may be a
limiting factor in precision calculations.

III. FORMULATION OF THE OUTGOING WAVE

A. Solutions of the homogeneous Schrödinger equation

In this section, we utilize the frame transformation de-
scribed in the preceding section to formulate parabolic
standing-wave solutions and incoming and outgoing solutions
of the homogeneous Schrödinger equation. As exhibited in
Ref. [24], for alkali-metal atoms with a closed core and
a valence electron in highly excited states, the parabolic
standing-wave solution expanded in partial waves can be
written as

�εβm =
∑
β ′

�β ′(ξ )
1√
η
Fβ ′β(η)�m(φ), (23)

where the indices β ′ and β identify the channel and
solution, respectively, �β ′(ξ ) = uβ ′ (ξ )/

√
ξ , and �(φ) =

exp(imφ)/
√

2π as given in Eq. (1). We will explore now the
behavior of Fβ ′β outside the core region. This function, valid in
both the Coulomb-field and Coulomb-Stark regions, is written
as a linear combination of regular v and irregular v parabolic
solutions with an unknown coefficient Rβ ′β ,

Fβ ′β = vβ ′δβ ′β − vβ ′Rβ ′β, (24)

where v and v have the same asymptotic forms as those
given in Eqs. (7) and (15), but the semiclassical phase shifts
therein should be replaced by the corresponding quantum
phase shifts. We will show below how the unknown coefficient
is determined in terms of a frame transformation between
parabolic and spherical wave functions. Substituting the above
expression into Eq. (23), one obtains with the help of Eqs. (1)
and (16)

�εβm(r) =
∑
β ′

[ψεβm(r)δβ ′β − χεβ ′m(r)Rβ ′β], (25)

where the subscript n1 of ψ and χ in Eqs. (1) and (16)
is replaced by β. Such a replacement does not cause any
confusion. This expression can be considered as the parabolic
standing-wave solution. The solution of the Schrödinger
equation for alkali-metal atoms in the absence of electric
fields is needed to determine the unknown coefficient Rβ ′β .
The spherical standing-wave solution in the Coulomb region,

where the frame transformation is performed, is of the form

�ε
m(r) = Fε
m(r) − tan(πμ
)Gε
m(r). (26)

Note that Eq. (10) used by Harmin is related to Eq. (26) by
�ε
m = cos δ
�ε
m. Multiplying both sides of Eq. (26) by Uβ


and summing over 
, one obtains with the aid of Eqs. (8), (12),
and (20)∑




Uβ
�ε
m(r) =
∑
β ′

[
ψεβm(r)δβ ′β − csc γβ ′

×
∑




Uβ
 tan(πμ
)Ũ
β ′χεβ ′m(r)

]
. (27)

If we define

csc γβ ′
∑




Uβ
 tan(πμ
)Ũ
β ′ = Rβ ′β, (28)

the two equations (25) and (27) are equivalent. Thus we have
determined the unknown coefficient Rβ ′β , and therefore the
parabolic standing-wave solutions outside the core region.
From the above equations, R can be regarded as the reaction
matrix in parabolic coordinates. Here we would point out that
our way of determining the reaction matrix is similar to those
of Sakimoto [19] and Robicheaux and Shaw [22].

For simplicity, we introduce a compact matrix notation, in
which Eq. (24) reads

F = v − vR, (29)

with

R = csc γU tan(πμ)Ũ = csc γK, (30)

where F , v, and v are row matrices, the trigonometric functions
represent diagonal matrices, and U tan(πμ)Ũ is denoted as K.
The asymptotic regular and irregular parabolic solutions are
explicitly needed to formulate the incoming- and outgoing-
wave solutions. They may be written as

vβ(η) → −i√
2πk(η)

[eiϕβ (η) − e−iϕβ (η)], (31)

vβ(η) → −i√
2πk(η)

[ei[ϕβ (η)−γβ ] − e−i[ϕβ (η)−γβ ]], (32)

where vβ(η) and the phase ϕβ(η) may be calculated by
integrating the Schrödinger equations for continuous states,
as is done in Ref. [25]. It is convenient to utilize the matrix
form of the standing-wave solutions to define the incoming-
and outgoing-wave solutions F±. Multiplying both sides of
Eq. (29) by the matrices ∓i(I − csc γ e±iγK)−1, we obtain
with the aid of Eqs. (31) and (32)

F+ = −iF (I − csc γ eiγK)−1 = 1
2 (v− − v+S), (33)

F− = iF (I − csc γ e−iγK)−1 = 1
2 (v+ − v−S∗), (34)

where I is the identity matrix, e±iγ is the diagonal matrix with
diagonal elements e±iγβ ,S∗ indicates the conjugate ofS, given
by

S = (I − csc γ e−iγK)(I − csc γ eiγK)−1, (35)
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and v± are row matrices with elements

v±
β =

√
2

πk(η)
e±iϕβ (η). (36)

It is natural to regard S as the scattering matrix coupling
parabolic channels. This matrix turns out to be unitary. The
proof is given in the Appendix. If one replaces the standing-
wave solution Fβ ′β in Eq. (23) by F−

β ′β , the three-dimensional
orthonormalized wave function is obtained:

�−
εβm =

∑
β ′

�β ′(ξ )
1√
η
F−

β ′β(η)�m(φ). (37)

In matrix notation, the equation reads

�− = i�(I − csc γ e−iγK)−1, (38)

and we further obtain, using the frame transformation near the
core given above,

�− = i�Ũ (I − csc γ e−iγK)−1, (39)

where �−, �, and � are row matrices. The expression
gives the connection relation between parabolic and spherical
eigenfunctions.

B. Outgoing wave functions with the
atom–radiation-field interaction

The solution of the inhomogeneous Schrödinger equation,
namely, the Schrödinger equation with a source describing
the interaction between the atom and radiation field, is the
outgoing wave function, which has been theoretically proven
to be [24]

�out(r) = −iπ
∑
β ′m

D−
β ′m�β ′(ξ )

v+
β ′(η)
√

η
�m(φ), (40)

where D−
β ′m is the dipole matrix element for a transition from

the initial state to a final state �−
εβ ′m, and is given by

D−
βm =

∫ ∞

0
[�−

εβm(r)]∗D�ini(r)dr. (41)

It should be mentioned that the constant factor in the expression
of �out is different from that of Ref. [24]. The difference
is due to the different coordinate systems. In the present

paper, the ξ parabolic coordinate (ξ = r + z) is used in
order to correspond to Harmin’s frame transformation, while
the ξ semiparabolic coordinate (ξ = √

r + z) is used for
computation convenience in Ref. [24]. It can be shown that
the expression for the outgoing wave function (40) reduces
to that for H atoms, as given in Ref. [25], if the quantum
defect goes to zero. Substituting Eq. (39) into the above
equation, one is able to express the parabolic dipole matrix
element in terms of the spherical dipole matrix element
〈�ε
m|D�ini〉, transformation matrices U , relative phase shifts
γ , and quantum defects μ. 〈�ε
m|D�ini〉 and μ may be
calculated by directly integrating the radial Schrödinger
equation or using the R-matrix code, as is done in Ref. [26],
while calculations of U are illustrated in Sec. V.

Equations (40) and (41) give the outgoing-wave solution

�out(r) =
∫

G+(r,r′)D�(r′)dr′ (42)

of the inhomogeneous equation

(ε − H )�(r) = D�ini(r) (43)

where H is the total Hamiltonian, and G+(r,r′) is the Green’s
function corresponding to the outgoing-wave boundary con-
dition. As obvious from the above equations, at η > η′ the
Green’s function can be written as

G+(r,r′) = −iπ
∑
βm

[�−
εβm(r′)]∗�β(ξ )

v+
β (η)
√

η
�m(φ). (44)

It should be emphasized that the principal difference
between the frame-transformation theory (FTT) formulated in
the present paper and the coupled-channel theory (CCT) [24]
lies in calculations of the dipole matrix elements D−

βm [see
Eq. (41)] involved in the expression of the outgoing wave
function, Eq. (40). In the FTT, D−

βm are evaluated from the
frame transformation of wave functions, whereas in the CCT,
they are obtained directly by numerical integration of coupled-
channel equations with appropriate boundary conditions at the
origin and infinity.

C. Electron current density and differential cross sections

The measurement of differential cross sections in pho-
toionization provides a much more stringent test of theories
than the measurement of total photoionization cross sections.

TABLE I. Separation constants β, transformation coefficients aβ
 with 
 = 2, normalization amplitudes Nξ and Nη, and transformation
matrices Uβ
 at ε = −154 cm−1, F = 880 V/cm, and m = 1. The number in brackets indicates the power of 10.

n1 β aβ
 Nξ Nη Uβ


0 3.764 2356[−2] −2.387 6046[−1] 3.773 2071[−2] 1.387 3411[+0] −1.881 3729[−1]
1 7.564 0854[−2] −2.191 3812[−1] −5.373 5223[−2] 1.359 6758[+0] 2.410 0770[−1]
2 1.139 8636[−1] −1.993 3659[−1] 6.625 9432[−2] 1.331 1750[+0] −2.646 6010[−1]
3 1.526 7033[−1] −1.793 6027[−1] −7.701 5045[−2] 1.301 7907[+0] 2.706 8336[−1]
4 1.916 8475[−1] −1.592 1331[−1] 8.665 8232[−2] 1.271 4983[+0] −2.640 7273[−1]
5 2.310 2206[−1] −1.388 9961[−1] −9.552 2399[−2] 1.237 6204[+0] 2.471 7941[−1]
6 2.706 7515[−1] −1.184 2284[−1] 1.038 0380[−1] −9.249 2455[−1] 1.711 4870[−1]
7 3.106 3730[−1] −9.778 6477[−2] −1.116 2916[−1] −1.686 7391[−2] −2.771 5515[−3]
8 3.509 0215[−1] −7.699 3799[−2] 1.190 8575[−1] −3.459 7165[−4] 4.775 0138[−5]
9 3.914 6366[−1] −5.604 7925[−2] −1.262 3655[−1] 9.850 0231[−7] 1.049 0604[−7]
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FIG. 1. (Color online) Comparison of differential cross sections from the coupled-channel theory [red (dark gray)] and the frame-
transformation theory [cyan (light gray)] of Harmin at four selected energies, in which −77.1926 and −54.1078 cm−1 are right in Stark-resonance
locations for the m = 0 final states, and −62 and −41 cm−1 are far away from Stark resonances. The ground-state Na atoms placed in an electric
field along the z axis with field strength F = 3590 V/cm are photoionized by a two-step transition procedure: they are first excited to the
intermediate state 1s22s22p63p 2P3/2 by the first π -polarized laser light beam, and then ionized by the second π -polarized laser light beam. Due
to spin-orbit coupling, the intermediate excited state is a mixture of two pure states R31Y10 and R31Y11, and therefore the ejected electron currents
include contributions from the two states, corresponding to two transitions mi = 0 → mf = 0 and mi = 1 → mf = 1, simply labeled as 0 → 0
and 1 → 1. The curves in the lowest panel for each figure, labeled as both 0 → 0 and 1 → 1, are for 2

3
dσ

dρ
(m = 0 → 0) + 1

3
dσ

dρ
(m = 1 → 1).

The detector is assumed to be located at zdet = −1000 μm.

This is precisely the concept of photoionization-microscopy
experiments [20,21], where the use of a position-sensitive
detector allows the measurement of the differential cross
section. Photoionization microscopy allows in fact the direct
experimental observation of the squared modulus of the wave
function of an electron ejected into the continuum in the

presence of a static electric field. In that sense, it provides an
extremely demanding test of the various theoretical approaches
and offers a unique experimental possibility to challenge the
models.

The theoretical formulas for electron current density and
differential cross sections have been given in Ref. [24]. They
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are listed here for convenience. Let us assume that a detector
placed under the atomic source in a uniform electric field,
and the plane of the detector is perpendicular to the z axis.
A dimensionless ratio of the electron current density to the
photon current density in cylindrical coordinates (ρ, z, φ)
reads [27,28]

R(ρ,zdet,φ) = 2πω

c
Im

[
�∗(r)

d�(r)

dz

]
z=zdet

, (45)

where ω is the photon frequency, c is the speed of light, and
zdet represents the distance from the origin to the detector.
This is in fact the differential cross section, but per unit area,
rather than per unit solid angle. This ratio can be integrated
over the azimuthal angle φ, and it is convenient to represent
the result as a differential cross section per unit length in the ρ

variable,

dσ (ρ,zdet)

dρ
=

∫ 2π

0
R(ρ,zdet,φ)ρ dφ. (46)

IV. TRANSFORMATION MATRICES AND RELATIVE
PHASE SHIFTS

Equation (9) shows that the transformation coefficients aβ


and normalization amplitudes Nξ , Nη, and N
 are needed to
obtain transformation matrices. For aβ
 and N
, the explicit
analytical expressions have been given by Harmin [8], and
therefore the description of their computational details is
omitted here. We illustrate only how Nξ and Nη are calculated
using the quantum-mechanical approach. A computational
program was written to integrate the Schrödinger equation
in mixed semiparabolic and parabolic coordinates with ζ =√

r + z and η = r − z [25]. The program is used to compute
the semiparabolic eigenfunctions u(ζ ), while the parabolic
eigenfunction u(ξ ) can be obtained in terms of the mapping
relation u(ξ )/

√
ξ = u(ζ )/

√
ζ . It should be emphasized that

both the semiparabolic coordinate in Ref. [25] and the
parabolic coordinate in the present paper are labeled by the
same symbol ξ and their eigenfunction also by the same u(ξ ).
To show the difference and for convenience of discussion,
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FIG. 2. (Color online) Differential cross sections for Na [red (dark gray)] and artificial H [green (light gray)] atoms calculated in the
coupled-channel theory. The laser light beams, the electric field strengths, and the position of the detector are the same as those in Fig. 1. The
comparison displays the influence of atomic cores on the differential cross sections or the ejected electron currents.
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the semiparabolic coordinate and its eigenfunction used in
Ref. [25] are correspondingly changed to ζ and u(ζ ) here.
Near the origin, the behavior of the normalized u(ζ ) is [25]

u(ζ ∼ 0) = Nζ ζ
(1/2+m)[1 + O(ζ )], (47)

where Nζ denotes the normalization amplitude in the semi-
parabolic coordinate. From the numerical solution of u(ζ )
and its behavior near the origin indicated in Eq. (47), Nζ

can be extracted, while the normalization amplitude Nξ in the
parabolic coordinate is readily demonstrated to be Nζ /

√
2.

The normalization amplitude Nη of v(η) is extracted from the
numerical solution of v(η) and its behavior near the origin
indicated in Eq. (5).

Table I illustrates the transformation matrices Uβ
 with

 = 2 and related quantities β, aβ
, Nξ , and Nη, calculated
using the program of Ref. [25] at ε = −154 cm−1, F =
880 V/cm, and m = 1. The corresponding normalization
amplitude N
 in spherical coordinates is 0.066 432 627 at

 = 2. At this value of ε, our calculation shows that the
electron waves corresponding to the parabolic quantum states
with n1 = 0,1, . . . ,6 propagate above the potential barriers,
and the quantum tunneling begins from the quantum state of
n1 = 7 and rapidly converges. The values of Nη display such a
rapid decreasing tendency from n1 = 7 to 10. According to the
table, it is sufficient to take a 10 × 10 transformation matrix
to do a frame-transformation calculation at this value of ε.

V. RESULTS AND DISCUSSION

The outgoing wave functions formulated from the frame-
transformation theory of Harmin in the preceding sections are
now used to calculate electron current densities and differential
cross sections. Let us consider a two-step transition for Na
atoms in a uniform electric field. Electrons in the ground state
1s22s22p63s 2S1/2 are excited first to an intermediate state
1s22s22p63p 2P3/2 by polarized laser light and then ionized

by another polarized laser light. Here these applied laser
beams may be of σ+ or π polarization. A model potential
of Na atoms is adopted to describe the interaction between the
residual ion (Na+) and the outer valence electron [29]. The
reliability of the model potential for the current purpose has
been checked by calculating quantum defects for field-free
Na atoms. The obtained results are 1.350, 0.859, and 0.022
for 
 = 0, 1, and 2, respectively. These values are in good
agreement with reported experimental and theoretical data
[30]. For the 1s22s22p63p 2P3/2 state, the Coulomb potential
and electron-electron interaction are much stronger than the
interaction between the outer valence electron and electric
field, so neglecting the electric field is a good approximation
for the intermediate state. The radial wave function for this
field-free intermediate state is obtained by solving the radial
Schrödinger equation in spherical coordinates. The radial
integrals of the dipole matrix elements for the 3p → εs and
3p → εd transitions in the field-free case are also calculated
using this model potential and agree with Harmin’s data
within 6.5%.

It is apparent that comparison of differential cross sections
provides a more stringent test of theories than comparison
of total cross sections. In order to test the Stark-effect
theory of Harmin, the recently developed coupled-channel
theory, which has turned out to be successful in simulating
experimental photoelectron currents for Li atoms in an electric
field [24], is applied to calculations of differential cross
sections for Na atoms, and then the results from the CCT
and FTT are compared. A two-step transition procedure of
photoionization is selected for ground-state Na atoms placed
in a uniform electric field of 3590 V/cm due to irradiation
of ππ -polarized laser light, namely, 1s22s22p63s 2S1/2 →
1s22s22p63p 2P3/2 → 1s22s22p6 + e, as described above.
For this two-step transition of photoionization, Harmin’s
theory reproduces the experimental total cross sections
(see Ref. [8]). Owing to the spin-orbit coupling, the
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FIG. 3. (Color online) Comparison of differential cross sections from the coupled-channel theory [CCT, red (solid)] and the frame-
transformation theory [FTT, cyan (dashed)] of Harmin, applied to H atoms, at two selected energies, in which −71 cm−1 is far away from Stark
resonances, and −82.8465 cm−1 is right in the Stark resonance (n1,n2,m) = (22,0,1). The ground-state H atoms placed in a uniform electric
field with field strength F = 3590 V/cm are irradiated by the σ+π -polarized laser light beams, namely, a two-step transition procedure is
assumed: they are first excited to the 2p (m = 1) intermediate state, and then ionized by the second π -polarized laser light beam. In contrast
to the case of multielectron Na atoms shown in Fig. 1, the frame-transformation theory of Harmin can exactly reproduce differential cross
sections of H atoms.
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intermediate state 1s22s22p63p 2P3/2 is a mixture of the two
pure states, R31(r)Y10 and R31(r)Y11; therefore ionization
from this intermediate state involves both the m = 0 → 0 and
m = 1 → 1 transitions. Thus the two-step transition procedure
can be regarded as follows: the electron is first excited to
the intermediate state R31(r)[

√
2
3Y10(θ,φ)| 1

2 , 1
2 〉 +

√
1
3Y11(θ,φ)

| 1
2 ,− 1

2 〉] by the first π -polarized laser light beam, and then
ionized by the second π -polarized laser light beam, where
| 1

2 ,± 1
2 〉 represent two spin states. The differential cross

sections from the CCT and FTT are compared in Fig. 1 at
four selected energies right in Stark-resonance locations or
away from Stark resonances. The differential cross sections
from the two theories display obvious discrepancies for the
0 → 0 transitions at the four energies. Such discrepancies
should be attributed to frame transformations for irregular
wave functions between spherical and parabolic coordinates
(See the discussion below for such a comparison).

However, from Fig. 1, one sees only small discrepancies
for the 1 → 1 transitions. To explain why the discrepancies
are noticeable for the 0 → 0 transitions, but small for the
1 → 1 transitions, let us first analyze atomic core effects in
the differential cross sections. We have artificially removed
the short-range spherically symmetric core potential defined in
Eq. (20) of Ref. [24] to solve the resulting coupled Schrödinger
equations, and use the obtained wave functions to compute
differential cross sections for an artificial atom which is
described by the Na wave function in the initial state and by the
H wave function in the final state. This kind of artificial atom
is hereafter called the artificial H atom. The differential cross
sections of the artificial H and real Na atoms are compared in
Fig. 2 at these four energies. A much better agreement between
the artificial H and real Na atoms is observed for the 1 → 1
transitions than for the 0 → 0 transitions for each energy. This
means that the Na atomic core produces a larger effect on the
m = 0 final state than the m = 1 final state. This phenomenon
has been interpreted in terms of the orbital penetration effect
(see Ref. [24] for detailed discussion). Furthermore, one
sees the remarkable discrepancies of the differential cross
sections between the artificial H and real Na atoms at energies
ε = −77.1926 and −54.1078 cm−1, where the resonances are
located for the m = 0 final states. Such discrepancies should
be attributed to the more pronounced influence of the atomic
core under quantum resonance tunneling situations. The
presence of the atomic core shifts the resonance positions
with respect to the H case. −77.1926 and −54.1078 cm−1

are not resonance locations for H atoms. Now, let us return to
Fig. 1. Obviously, the different atomic core effect on the m = 0
and m = 1 final states is the reason that the discrepancies are
noticeable for the 0 → 0 transitions, but small for the 1 → 1
transitions.

In the Stark-effect theory of Harmin, frame transformations
between spherical and parabolic coordinates are performed
for both regular and irregular wave functions to describe
nonhydrogenic atoms [8]. As was discussed in Sec. II and will
be shown below, the frame transformations are correct only
for the regular wave function but not for the irregular wave
function. Thus, we expect that for H atoms in an electric field,
the frame transformation used by Harmin should produce exact
electron current densities or differential cross sections. To
illustrate this conclusion, differential cross sections calculated

by the CCT and FTT are drawn in Fig. 3 for H atoms in
an electric field of 640 V/cm at the two selected energies.
Excellent agreement between the CCT and FTT results is seen
for H atoms. It has been shown that Harmin’s theory [8] can
reproduce experimental photoabsorption spectra (total cross
sections) for Na in an electric field of 3590 V/cm. We used the
CCT to calculate total cross sections by integrating differential
cross sections and found that the experimental photoabsorption
spectra for Na are very well reproduced by the present CCT.
The experimental and computational photoabsorption spectra
are drawn together in Figure 4. The good agreement confirms
the reliability of the CCT. We would point out that good
agreement of total cross sections for any theoretical approaches

FIG. 4. (Color online) The photoabsorption spectrum for Na
atoms in a uniform electric field calculated in the coupled-channel
theory. The laser light beams, the electric-field strengths, and the
position of the detector are the same as those in Fig. 1. The comparison
with experiment confirms the reliability of the coupled-channel
theory. The top, intermediate, and bottom panels are experimental
[3], Harmin’s computational [8], and the present CCT results,
respectively. σF in the intermediate panel denotes the total cross
section. This notation is as used by Harmin in Ref. [8].
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FIG. 5. (Color online) Comparison of frame-transformed (FT)
regular and irregular wave functions, given by Eqs. (8) and (20),
with wave functions obtained by directly integrating the Schrödinger
equation (DE). (a) Regular wave functions; (b) and (c) irregular
wave functions. The irregular parabolic wave function has the
asymptotic behavior of Eq. (15). We take F = 640 V/cm, m = 1, and
ε = 135.8231 cm−1. The two spherical coordinates are fixed to be
θ = 150◦ and φ = 0.

may conceal some drawbacks of theories themselves, and a
more stringent test of theories would be to compare differential
cross sections, as is done in Fig. 1.

To check the validity of the frame transformation of the
wave functions introduced by Harmin [8], we numerically
examined Eqs. (8) and (20) by comparing the transformed
and directly calculated regular and irregular wave functions at
some energies and electric-field strengths, where the Coulomb
wave functions in the spherical coordinate are obtained from
Seaton’s code [31]. An example at a special energy and electric
field is illustrated in Fig. 5. This comparison shows that the
frame transformation between parabolic and spherical coor-
dinates produces exact regular wave functions, but the trans-
formed irregular wave function is very poor. This figure helps
to explain the existing discrepancies of the differential cross
sections between the CCT and FTT results shown in Fig. 1. Ob-
viously, the frame transformation of irregular wave functions
introduced by Harmin [8] needs to be further investigated.

VI. SUMMARY AND CONCLUSION

We formulated outgoing wave functions for photoelec-
trons produced in photoionization for nonhydrogenic atoms
in the presence of a uniform electric field, based on the
frame transformation used in Harmin’s Stark-effect theory
between the spherical and parabolic coordinates. The spatial
distributions of electron current densities or differential cross
sections for Na are computed and compared to those from
a recently developed coupled-channel theory. We analyzed
the discrepancies between these two theories and concluded
that the frame transformation of irregular wave functions
introduced by Harmin is responsible for such discrepancies.
Despite its relative inaccuracy in the frame transformation,
Harmin’s theory has long been proved to be efficient for
computing photoionization spectra (i.e., total cross sections) in
the presence of an external electric field. It should be pointed
out that total cross sections may conceal some drawbacks
or limitations of theories themselves, and more detailed
physical information may be extracted by comparing detailed
differential cross sections, instead of total cross sections.
Therefore, photoionization microscopy may become a more
useful tool to test the Stark-effect theory. From this point
of view, photoionization-microscopy experiments provide a
unique experimental possibility to challenge theoretical mod-
els. Excellent agreement has already been obtained between
the coupled-channel theory and experiment in photoionization
of lithium atoms [24], where comparison was limited to the
case of excitations far from resonances in order to avoid
the peculiarities appearing in quasibound states. In future,
comparison between differential cross sections measured on
lithium in a photoionization-microscopy experiment with the
coupled-channel theory will be extended to the case of Stark
resonances, even more challenging for the theory.
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APPENDIX: THE UNITARY PARABOLIC
SCATTERING MATRIX

In this Appendix, we prove that the parabolic scattering
matrix S defined in Eq. (35) is unitary, i.e., SS† = S†S = I ,
whereS† specifies the transpose and conjugate ofS. This proof
begins from an obvious equality

K csc γ (eiγ − e−iγ ) = csc γ (eiγ − e−iγ )K, (A1)

where csc γ and e±γ are diagonal matrices with diagonal ele-
ments csc γβ and e±γβ , respectively, and K is the symmetrical
matrix given in Eq. (30). Adding I + K csc2 γK on both sides
of the equation yields

(I − K csc γ eiγ )(I − csc γ e−iγK)

= (I − K csc γ e−iγ )(I − csc γ eiγK). (A2)

This equation will be utilized below. From Eq. (35), S† is
written in the form

S† = (I − K csc γ e−iγ )−1(I − K csc γ eiγ ). (A3)

Thus

SS† = (I − csc γ e−iγK)(I − csc γ eiγK)−1

× (I − K csc γ e−iγ )−1(I − K csc γ eiγ )

= (I − csc γ e−iγK)[(I − K csc γ e−iγ )

× (I − csc γ eiγK)]−1(I − K csc γ eiγ ). (A4)

Inserting Eq. (A2) into the equation gives

SS† = (I − csc γ e−iγK)(I − csc γ e−iγK)−1

× (I − K csc γ eiγ )−1(I − K csc γ eiγ ) = I. (A5)

Similarly, it is easy to show that S†S = I .
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