
PHYSICAL REVIEW A 86, 053412 (2012)

Fast compression of a cold atomic cloud using a blue-detuned crossed dipole trap
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We present the experimental realization of a compressible blue-detuned crossed dipole trap for cold atoms
allowing for fast dynamical compression (∼5–10 ms) of 5 × 107 rubidium atoms up to densities of ∼1013 cm−3.
The dipole trap consists of two intersecting tubes of blue-detuned laser light. These tubes are formed using a
single, rapidly rotating laser beam which, for sufficiently fast rotation frequencies, can be accurately described
by a quasistatic potential. The atomic cloud is compressed by dynamically reducing the trap volume, leading to
densities close to the Ioffe-Regel criterion for light localization.
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I. INTRODUCTION

The use of optical dipole traps for manipulating and
trapping ultracold atoms has been crucial to the evolution of
this field of research. For example, they can be used to form a
Bose-Einstein condensate (BEC) [1], create artificial crystals
of light [2], or study physics in low dimensions by freezing
the spatial degrees of freedom [3].

Light-matter interaction in the dense regime is a very
dynamic and challenging field of research [4–6], where one
of the long-standing problems is an understanding of the role
of cooperative effects (superradiance [7,8], subradiance [9],
collective Lamb shift [10]) and disorder (weak [11] and strong
[12] localization). In order to reach this regime, a dipole trap
can be used to compress the cloud to high densities where the
strong-localization phase transition [12] is expected to occur
at a threshold given by the Ioffe-Regel criterion [13] kl ∼ 1,
where k = 2π/λ is the light wave vector and l = 1/(nσ ) is the
mean free path (with n the atomic density and σ the scattering
cross section). For resonant two-level systems, the scattering
cross section σ0 = 3λ2/(2π ) allows the Ioffe-Regel criterion
to be expressed as nλ3 ∼ 1. Such densities correspond for
rubidium atoms to 1013–1014 cm−3, three orders of magnitude
higher than magneto-optical-trap (MOT) densities. These high
densities are commonly obtained in dipole traps for bosonic [1]
or fermionic [14] ultracold gases. However, the relatively
low number of atoms (∼105) and long duty cycles (∼10 s)
make it difficult to efficiently study light-matter interaction
in dense regimes [15] where a large number of atoms as
well as short duty cycles are important assets for efficient
detection of signatures of cooperative effects and/or strong
localization of light. Indeed the Ioffe-Regel criterion should
not be confused with the BEC threshold n�3

T ∼ 1, where �T

is the thermal de Broglie wavelength. In contrast to Bose-
Einstein condensation, we do not expect a drastic constraint on
temperature for the Ioffe-Regel criterion of strong localization.

In this paper, we present a compressible blue-detuned
crossed dipole trap to achieve a very fast dynamical compres-
sion (∼5–10 ms) of a large number of 87Rb atoms (∼5 × 107)
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to densities compatible with the Ioffe-Regel criterion, i.e.,
∼1013 cm−3. Trapping atoms in a “dark” region surrounded by
blue-detuned light has several advantages, such as minimizing
photon scattering, light shifts of the atomic levels, and light-
assisted collisional losses [16]. Experimentally, blue-detuned
trap are more difficult to produce than red ones. However, an
original method [17] consists in using a focused Gaussian
laser beam which is rapidly rotating and obtained by use
of two perpendicular acousto-optical modulators (AOMs).
If the rotation frequency is sufficiently high, the resulting
time-averaged potential forms a tube of light. Crossing two
of these tubes leads to a dark volume where atoms are
trapped. This method allows dynamic control of the shape
and the size of the trap which, for example, might be used
to optimize the loading efficiency with a large trapping
volume and then compress the cloud using a fast dynamical
reduction of the trap size. These blue-detuned time-averaged
potentials have been used in the past to study thermal cloud
compression [17] and optical billiards and chaos [18–20], or
to design microscopically tailored potentials for BECs [21] or
ultracold Fermi gases [22]. For red dipole traps, a dynamical
compression allowed quantum degeneracy to be reached via
runaway evaporative cooling using a mobile lens to change the
trap waist dynamically [23].

II. EXPERIMENTAL SETUP

A. Trap configuration

The trap consists of two tubes of blue-detuned light, crossed
at 90◦ to create a box of light [see Fig. 1(a)] where the
atoms are confined. The size and the shape of the box can
be dynamically adjusted. Figure 1(b) shows the experimental
setup used to create the tubes of light. A laser beam with 1 mm
waist passes through two AOMs (Gooch & Housego M080-
2B/F-GH2), crossed at 90◦. The AOMs are powered by two
radio-frequency (rf) signals whose instantaneous frequencies
are respectively given by f1(t) = f0 + �f cos (2πfmt) and
f2(t) = f0 + �f sin (2πfmt). The central frequency f0 is
fixed at 80 MHz, the modulation frequency amplitude �f is
at most 20 MHz and the modulation frequency fm is generally
set to 90 kHz. In the (+1,+1) diffraction order of the AOMs,
the laser beam is rotating at frequency fm, and a lens, placed
at a focal distance of 150 mm from the AOMs, creates a
time-averaged tube of light with a diameter of 1 mm and a
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FIG. 1. (Color online) Sketch of the experimental setup. (a) Top view of the setup, showing the location of the two horizontal tubes forming
the crossed blue-detuned dipole trap. (b) Details of the setup used to produce the two tubes [(+1, +1) orders of the AOMs]. On the top, only
the contour of the trap is sketched while on the bottom only the beam profile is shown. For simplicity, we do not show the two mirrors that are
used to cross the tubes 1 and 2 (the dashed lines show the position of the crossing). VCO indicates voltage-control oscillator.

waist of 65 μm in the lens focal plane where the atoms are
trapped. Using a system of lenses and mirrors, the tube can
be “recycled” and crossed at 90◦ from its initial direction (see
Fig. 1). By varying the modulation frequency amplitude �f ,
the trap size can be dynamically controlled.

A rotating laser beam with power P , waist w, and a radial
intensity profile given by I (x,y) = 2P

πw2 exp [−2(x2 + y2)/w2]
describing a circle of radius a creates a time-average intensity
profile

I (r) = 2P

πw2
exp

(−2(r2 + a2)

w2

)
I0

(
4ar

w2

)
, (1)

where r is the radial distance of the polar coordinate system
and I0 is the zeroth-order modified Bessel function. For
87Rb atoms, the dipole potential for a linearly polarized
light with detuning � with respect to the D2 line such that
�′

FS � |�| � �′
HFS, where h̄�′

FS and h̄�′
HFS are respectively

the energy splitting of the fine and hyperfine excited states, is
given by [16]

U (r) = 2

3

h̄�2

8�

I (r)

Isat
, (2)

� being the linewidth and Isat the saturation intensity of the
transition. For large trap size a/w � 1, i.e., when the radius is
large compared to the waist, Eq. (2) simplifies to the intuitive
formula

U (r) = U0 exp

(
−2(r − a)2

w2

)
, (3)

where the potential height is given by

U0 = 2

3

h̄�

8
√

2π3/2

�

�

P

Isataw
. (4)

When the trap is small, i.e., a/w < 1, the two walls of the
tube start touching each other and the trap can no longer
be described as a box with Gaussian walls, but is well
approximated by a harmonic potential

U (r) = U1 + 1
2mω2r2, (5)

where U1 = (2/3) h̄�
4π

�
�

P
Isatw2 exp (−2a2

w2 ) is the “offset” value of

the potential at the center of the trap and ω = 2
√

U1
m

√
2a2−w2

w2

is the trap frequency. Figure 2 shows the radial profile of
the time-averaged potential for two trap radii as well as its

harmonic approximation. The possibility of controlling the
trap frequency by tuning its radius can allow for runaway
evaporative cooling by compensating the reduction of the trap
frequency due to the lowering of the potential barrier (reducing
the intensity or increasing the detuning) by a reduction of the
size of the trap. The trap frequency is very sensitive to the trap
radius. A careful control of the approach to the final trap radius
is thus required when reaching the harmonic regime.

B. Laser system

The laser system consists of a distributed-feedback (DFB)
laser diode injecting a semiconductor laser amplifier SACHER
delivering up to 1 W. After the optical isolator, the beam
(power 900 mW) is coupled into a large-core (10 μm),
monomode, polarization-maintaining photonic crystal fiber
(NKT Photonics LMA-PM-10). The coupling efficiency into
the fiber is 60%, limited by the quality of the laser mode of the
semiconductor amplifier.

At the output of the fiber, 550 mW of collimated linearly
polarized light injects the crossed AOMs, yielding 250 mW in
the (+1,+1) diffraction order for creating the light tube. The
power of the beam can be controlled by adjusting the rf power
driving the AOMs. The light frequency ν can be tuned over
120 GHz without mode jump by adjusting the current I of the

FIG. 2. (Color online) Radial profiles of the time-averaged
potential for two trap radii. The solid curves correspond to Eqs. (1)
and (2) for trap radii a = 500 μm (blue, outer peaks) and a = 100 μm
(red, inner peaks). The green dashed line represents the harmonic
approximation of the potential [see Eq. (5)] for a = 100 μm. It
gives U1 = 85 μK and ω/(2π ) = 860 Hz. The parameters are P =
200 mW, � = 40 GHz, and w = 65 μm.
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FIG. 3. (Color online) Measured cross sections of the blue-
detuned tubes for two different VCO modulations. As an example, we
show two useful configurations: the square and the circle. (a) Signals
(V1(t),V2(t)) that are sent to the VCOs. (b) Pictures of the resulting
cross sections taken at the position where the atoms are trapped. The
size of the trap is L � 1 mm and the waist w = 65 μm.

DFB diode (dν/dI = 2 GHz mA−1). Typical detunings used
with this setup range between 5 and 80 GHz.

Such semiconductor laser systems have the advantage of
moderate costs and simplicity of implementation. However,
they often have a modest mode quality and more importantly
they possess an amplified spontaneous emission background
which spreads over 40 nm, containing photons at resonance
with the atomic line. For experiments where this background
spectrum is a limitation, a titanium-sapphire laser or a
frequency-doubled laser might be a more convenient choice.

C. Electronic control of rf signals

In order to create the tubes of light, a precise control of
the rf signals feeding the AOMs is necessary. For this, we use
voltage-control oscillators (VCOs) delivering rf signals whose
instant frequencies fi(t) linearly depend on the input voltages
Vi(t). Thus, the two input voltages (V1(t),V2(t)) are associated
with a position (x(t),y(t)) in the (+1,+1) diffraction order
of the AOMs, such that it is possible to create tubes of
light with arbitrary cross sections. Figure 3 shows the signals
Vi(t) which produce circular and square tubes as well as the
subsequent experimental pictures of these cross sections. We
use homemade VCOs, based on the Mini-Circuit POS-150 +
chip with output frequency between 50 and 150 MHz and a
3 dB input modulation bandwidth of 100 kHz. Two phase-
locked Agilent 33220A function generators are used to drive
the VCOs. The VCOs are feeding two Mini-Circuit ZHL-1A
rf amplifiers.

In Fig. 3(b), we notice that the ring-shaped potential
is slightly asymmetric. We attribute this to nonlinearities
in the overall system response (x(V1(t)),y(V2(t))) which is
supported by the fact that this asymmetry is reduced for
smaller traps since they require lower modulation amplitudes.
The square-shaped trap is not affected because its parametric
equations do not lead to a combined motion in the x and
y directions (the nonlinearities imply only that the straight
lines are not drawn at constant speed). By designing and
engineering the synthesizer signals driving the VCOs, it would

be possible to compensate for the trap asymmetry. However, all
the measurements performed in this paper use the ring-shaped
potential without compensating for the asymmetry, to keep the
system complexity to a minimum.

D. Parameters and experimental sequence

Unless otherwise stated, the parameters of the trap are
as follows: size L = 1 mm (radius a = 500 μm), waist
w = 65 μm, detuning � = 40 GHz, rotation frequency fm =
90 kHz, laser power for a single tube P = 200 mW, linear
polarization. For these parameters, the potential height for
87Rb atoms is 190 μK [see Eq. (4)].

We first load a MOT of 87Rb atoms from a vapor cell with a
background gas pressure of ∼10−9 mbar. All lasers are tuned
close to the D2 line of 87Rb and are derived from DFB diodes,
conveniently amplified with a tapered amplifier and controlled
via AOMs. In this series of experiments, we deliberately
choose to work with a moderate number of atoms to investigate
the performances of our trapping scheme. We trap ∼5 × 107

atoms in 2.5 s. The loading time can be reduced by increasing
the rubidium background pressure when a larger atom number
needs to be trapped using, e.g., ultraviolet light-emitting diodes
to temporarily increase the hot gas pressure during the MOT
loading—so-called light-induced atomic desorption (LIAD)
[24,25]. The cooling laser detuning is −3� and the temperature
of the cloud is ∼55 μK. We then apply a 50 ms temporal dark
MOT period where the intensity of the repumping laser is
reduced by a factor of 10 and the detuning of the cooling beam
is increased from −3� to −6�. This allows us to compress
and produce a homogeneous distribution of atoms, mainly in
the F = 1 hyperfine ground state, with a density ∼1011 cm−3

and a temperature ∼20 μK. During the temporal dark MOT
period, the intensity of the dipole trap is progressively ramped
up in order to maximize the “mode matching” between the dark
MOT and the dipole trap. After this, the magnetic field and the
laser cooling beams are turned off. In order to keep the atoms in
a single hyperfine level, we choose to keep the repumping laser
on at all times after loading, thus forcing the atoms into the F =
2 hyperfine level.1 Then the atoms evolve freely in the dipole
potential and the trapping time varies between 5 ms and 1.2 s.
Using absorption or fluorescence imaging techniques, the
properties of the cloud, e.g., the number of atoms, temperature,
and density, are measured. In the following, unless otherwise
stated, absorption imaging from the side of the cell is used
to perform quantitative measurements. Figure 4 shows in situ
fluorescence images of the cloud taken from the top of the cell
for a single tube and for the crossed dipole trap.

III. LOADING

The loading period corresponds to the transfer of the
atoms from the dark MOT to the dipole trap. During the first

1Pumping the atoms into the F = 1 hyperfine level would instead
require the development of a specific depumping laser. Indeed,
keeping the MOT cooling beams on to pump the atoms in the F = 1
hyperfine level would not be efficient and would lead to several
scattered photons, thus preventing us from attaining our goal of
reaching high densities.
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FIG. 4. (Color online) In situ fluorescence images of the atoms
in the dipole trap taken from the top of the cell after 100 ms of
holding time. (a) Single-tube trap. (b) Crossed trap. Parameters: P =
200 mW, � = 40 GHz, L = 1 mm, w = 65 μm, and fm = 90 kHz.

∼60 ms, the atoms are in a transient regime before reaching a
quasisteady regime. In order to optimize the transfer efficiency
from the dark MOT to the dipole trap, it is important to
understand the mechanisms occurring during this stage.

A. Transient regime

During the transfer of the atoms from the dark MOT to
the dipole trap, the mode matching is not perfect, exciting
breathing modes and oscillations of the center of mass of the
cloud. Figure 5 shows the center-of-mass position and the
root-mean-square (rms) size of the cloud after a 5 ms time
of flight as a function of the holding time in the dipole trap.
We notice that the cloud is squeezed along the direction of
gravity [smaller rms size in Fig. 5(b)] as can also be seen on
the in situ images (see Fig. 7). We observe oscillations of the
cloud size that we identify as breathing modes. Their period
is similar to that observed on the center-of-mass position.
The oscillation period is ∼25 ms, which is compatible with
atoms falling from a height h = 500 μm and bouncing on
the bottom of the trap with a period 2

√
2h/g ∼ 20 ms.

The damping of the oscillations is important because of the
strong trap anharmonicity. After ∼60 ms, the oscillations are
almost completely damped and the trap enters the so-called
quasisteady regime.

rm
s

FIG. 5. (Color online) Center-of-mass position (a) and rms size
(b) of the cloud after a 5 ms time of flight as a function of the holding
time in the dipole trap. The blue points correspond to measurements
along the x axis, which is orthogonal to the direction of gravity.
The red squares represent measurements along the z axis, which is
defined as pointing opposite to gravity. This figure shows center-of-
mass oscillations and breathing modes during the transient regime.
Parameters: P = 200 mW, � = 40 GHz, L = 1 mm, w = 65 μm,
and fm = 90 kHz.

FIG. 6. (Color online) Number of atoms (a) and cloud temper-
ature (b) measured 60 ms after loading as a function of the laser
power (Pmax = 200 mW). The blue points correspond to a detuning
of 20 GHz and the red squares to � = 40 GHz. The solid lines in
(a) are fits of the data according to Eq. (7) using the potential barrier
height U as the only free fitting parameter. We obtain U = 320 μK
for � = 20 GHz and U = 190 μK for � = 40 GHz. Parameters:
L = 1 mm, w = 65 μm, and fm = 90 kHz.

B. Trapped atom number

At the end of the transient regime, ∼60 ms after the atom
transfer from the dark MOT, we study the number of trapped
atoms and the temperature of the cloud as a function of the laser
power, which can be adjusted between 0 and 200 mW. Figure 6
shows the data for two different laser detunings � = 20 GHz
(blue points) and � = 40 GHz (red squares). The trap is loaded
from a dark MOT with �1.3 × 107 atoms and a temperature
of �22 μK. The size of the trap is L � 1 mm.

Both the number of atoms and the temperature reach a
plateau after P = 0.5Pmax for � = 20 GHz and P = 0.7Pmax

for � = 40 GHz. The temperature plateau corresponds to the
temperature of the dark MOT. This can be understood by
noticing that when the barrier height is sufficiently high, all
the atoms (initially in the trapping region) are trapped and
their temperature is that of the dark MOT. Before the plateau,
the temperature increases linearly with laser power, which can
be understood as a consequence of the linear increase of the
potential barrier with laser power. The red squares in Fig. 6(b)
clearly point at the origin when P → 0, which is consistent
with the fact that only atoms with an energy (kinetic plus
potential) smaller than the barrier height are trapped during
loading. However, the blue points do not extend to the origin
when P → 0, which might be due to spontaneous-emission
heating, which is more important for a detuning of 20 GHz
than for 40 GHz.

We define the loading efficiency as the number of atoms
in the trap after 60 ms of holding time (i.e., at the end of
the transient regime) divided by the number of atoms in the
dark MOT measured before loading. For the data presented
on Fig. 6, the loading efficiency is 60%, which corresponds
to an excellent value compared to what is usually observed in
red-detuned dipole traps. When the size of the dark MOT is
smaller than the trap volume, the nontrapped atoms correspond
to those having a too large energy (kinetic plus potential): they
“jump” over the potential barrier. If gravity were compensated
(by, e.g., optical pumping of the atoms in a particular Zeeman
sublevel and applying a vertical magnetic field gradient),
the atoms would possess only kinetic energy, which should
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significantly improve the loading efficiency. The maximum
estimated number of atoms that can be trapped is ∼108 (equal
to the density of the dark MOT, ∼1011 cm−3, times the trapping
volume, ∼1 mm3).

1. Model for trap loading

We consider the case of a box-shaped trap and suppose
that in the dark MOT, the atoms are uniformly distributed in
space, with a momentum probability distribution given by the
Boltzmann distribution

p(p,r) = �3
T

L3
exp

[
− p2

2mkBT

]
,

where �T = h/
√

2πmkBT is the thermal wavelength. The
probability density for an atom to have an energy E is
p(E) = ∫

d3p d3r
h3 δ(E(p,r) − E)p(p,r), where the energy of

the atom takes the form E(p,r) = p2/(2m) + mgz, with the
z axis defined along the direction opposite to gravity. After
some calculations, we find

p(E)= 2√
πkBT

√
E

kBT
exp

[
− E

kBT

]
F

(
E

mgL
,
mgL

kBT

)
, (6)

where the function F is defined as F(α,β) =∫ min(α,1)
0 du

√
1 − u/α exp (βu). In the g → 0 case,

i.e., without gravity, Eq. (6) simplifies to the
well-known free-space density probability p(E) =
2/(

√
πkBT )

√
E/(kBT ) exp [−E/(kBT )], where in front

of the Boltzmann factor exp [−E/(kBT )] one recognizes the
three-dimensional free-space density of states. If the height
of the potential barrier is U , then the fraction of atoms N/N0

that are trapped during loading is given by

N

N0
=

∫ U

0
dE p(E). (7)

The solid lines in Fig. 6 correspond to fits according to Eq. (7)
which allows us to determine, using a single free fitting param-
eter, the potential height U corresponding to Pmax = 200 mW.
We obtain U = 320 μK for � = 20 GHz and U = 190 μK
for � = 40 GHz. We can compare these values to theoretical
estimations by substituting the experimental parameters into
Eq. (4), leading respectively to U = 380 and 190 μK, in good
agreement with the values extracted from the fit.

IV. QUASISTEADY REGIME

After the transient regime leading to the loading of the
trap, the evolution of the cloud properties occurs on a longer
time scale: the quasisteady regime. In this section, we study
the evolution of the cloud in this quasisteady regime in order
to characterize the trap and to understand the mechanisms
limiting its performance. To this end, two quantities are of
particular interest: the trap lifetime and the temperature of the
cloud. The lifetime τ is determined from an exponential fit
N0 exp (−t/τ ) to the decay curve of the number of atoms in
the trap as a function of the holding time, while the temperature
is inferred from the rms size of the cloud measured in time of
flight.
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FIG. 7. (Color online) (a) In situ absorption image of the cloud
inside the dipole trap 450 ms after loading (sideview). The white
dashed line represents the limits of the trap. The atoms lie down on
the bottom of the trap due to gravity. (b) Vertical optical thickness
profile (blue solid curve). The origin is chosen at the position of the
maximum optical thickness. The fit b(z) = b(0) exp [−mgz/(kBT )]
(red dashed line) leads to a temperature of 18 μK. The temperature
estimated using the standard time of flight measurement gives 21 μK.
Parameters: P = 200 mW, � = 40 GHz, L = 1 mm, w = 65 μm,
fm = 90 kHz.

A. In situ density profile

For a trap of size L, gravity effects can be neglected
when mgL 	 kBT . For a cloud temperature of 40 μK, this
condition gives L 	 400 μm, showing that gravity is an
important parameter for large traps. The influence of gravity
can be observed in the absorption imaging from the side
of the chamber as shown in Fig. 7 where atoms lie down
on the bottom of the trap. This situation is similar to that
observed with strontium MOTs on the intercombination line
at 689 nm [26].

For atoms at thermal equilibrium in the dipole trap, one
expects the optical thickness profile along the vertical direction
to be given by the Boltzmann factor

b(z) = b(0) exp

[
−mgz

kBT

]
. (8)

Figure 7 shows the in situ density profile of the cloud
obtained by absorption imaging. A fit from Eq. (8) leads to
a temperature of 18 μK. The temperature of the cloud given
by a time-of-flight measurement is 21 μK, in good agreement
with the in situ measurement. As one does not expect a
thermodynamic equilibrium to be reached when considering
the conservative dynamics of independent particles in a
trap, the good agreement between these two methods of
estimating the temperature of the atomic cloud suggests that
relaxation due to residual light scattering combined with a
limited trap height or “s-wave” collisions (the elastic s-wave
collision rate after loading is �el � 10 s−1) might be present
in our system.

B. Losses due to “hot” collisions

The MOT loading time of ∼20 s allows us to infer a
background gas pressure of P ∼ 10−9 mbar [27]. The trap
loss rates due to the background species i can be estimated
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TABLE I. Coefficients Ci of the van der Waals potential between
rubidium and background species i in Hartree atomic units (a.u.) =
e2a5

0/(4πε0), where e is the electron charge, a0 is the Bohr radius, and
ε0 is the vacuum permittivity (data taken from Ref. [29]). Trap loss
rate γi computed from Eq. (9) with Pi � 10−9 mbar, U = 190 μK,
and T = 300 K.

Species i Ci (a.u.) γi (s−1)

Rb-Rb 4430 0.14
Rb-He 36.2 0.08
Rb-H2 140 0.16

by [27–29]

γi � 6.8
Pi

(kBT )2/3

(
Ci

mi

)1/3

(UmRb)−1/6 , (9)

where T � 300 K is the background gas temperature, Pi the
partial pressure of the background species i, and U � 190 μK
the potential height of the dipole trap. With mRb and mi we
indicate the masses of rubidium and of the background species,
i and Ci are the coefficients of the van der Waals interaction
potential −Ci/r6 between the ground-state trapped Rb atoms
and i. Table I gives the value of the Ci coefficients for Rb-Rb,
Rb-He, and Rb-H2 collisions and the corresponding trap loss
rates γi for the parameters of the experiment. The estimated
trap lifetimes 1/γi resulting from the background collisions
are significantly longer than the measured one, allowing us
to conclude that the dominant loss mechanism is not due to
collisions with the background gas.

A further confirmation of the marginality of hot collisions
is obtained by performing a lifetime measurement by turning
on LIAD just after loading the trap. Even though this increases
the residual gas pressure of the cell by one order of magnitude
to P ∼ 10−8 mbar, we notice no difference on the measured
lifetime.

C. Influence of the trap size

The influence of the size of the trap on its lifetime is an
important issue to study before starting the compression of
the cloud. After loading, the atoms are kept in the trap for
20 ms, before linearly reducing the trap size for an additional
20 ms. The end of this stage is used as the initial condition to
measure the lifetime of the cloud. We choose this experimental
procedure since it allows an efficient trap loading and prevents
nontrapped atoms (because of the too small trap volume
compared to the dark MOT volume) from being present in the
imaging region when the trapped atom number is measured
during the first 40 ms. The initial conditions are chosen such
that the initial atomic density is low enough to prevent density
effects in the measurement (small s-wave collision rate).
Note that this experimental procedure does not maintain the
potential height constant, as U ∝ 1/L [see Eq. (4)].

Figure 8 shows that the lifetime of the cloud rapidly
decreases when the size of the trap is reduced. This is consistent
with atom losses occurring when the atoms interact with the
potential barrier. The smaller is the trap, the more frequent are
interactions with the barrier, leading to stronger losses and to
a subsequent lifetime reduction. The reduction of the lifetime

FIG. 8. (Color online) Lifetime of the cloud as a function of
the dipole trap diameter. Parameters: P = 200 mW, � = 40 GHz,
w = 65 μm, and fm = 90 kHz.

with the trap size is an important factor to take into account
for the cloud compression.

D. Influence of the rotation frequency

A first limiting effect gives a lower bound for low rotation
frequencies: if during one period 1/fm, the atoms with velocity
on the order of ∼√

kBT /m move by more than the waist of
the laser w, the atom can escape the trap between successive
arrivals of the laser beam. This condition is written

fm � 1

w

√
kBT

m
� 1 kHz, (10)

for w = 65 μm and T = 40 μK.
In order to study the influence of the rotation frequency

above this limit, we vary the rotation frequency and keep
all other parameters constant. Figure 9(a) shows that the
lifetime increases with increasing rotation frequency without
reaching saturation in the explored frequency range (contrary
to what is observed in Ref. [17]). This can be understood
by noticing that the faster the beam rotates, the better is the
time-averaged-potential approximation. The upper bound for
the rotation frequency is set by the input modulation bandwidth
of the VCOs.

Figure 9(b) shows the cloud temperature after 150 ms of
holding time as a function of the rotation frequency. Below
30 kHz, we observe significant heating which decreases with
increasing rotation frequency. Above 30 kHz, the temperature

FIG. 9. (Color online) (a) Lifetime of the dipole trap as a function
of the rotation frequency. (b) Temperature of the cloud measured
after 150 ms of holding time as a function of the rotation frequency.
The shaded area represents the initial dark MOT temperature before
loading the dipole trap. Parameters: P = 200 mW, � = 40 GHz,
L = 1 mm, and w = 65 μm.
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reaches a plateau which is close to the initial dark MOT
temperature [shaded area in Fig. 9(b)]. We identify this
phenomenon as being due to dipolar heating, i.e., heating due
to the dipole potential fluctuations that atoms experience when
they bounce on the potential barrier because of the rotating
laser. From this measurement, we can get an estimate of the
dipole-induced heating rate, expected to scale as 1/(Lfm),
which can be used for optimizing compression schemes.

After compression, for small trap size in the harmonic
regime, we also require the rotation frequency to be large
compared to the trap frequency ω/(2π ) for the time-averaged
approximation to be valid. The maximum trap frequencies
that can be reached are a few kilohertz. By using a rotation
frequency close to 100 kHz the two previous conditions are
easily satisfied.

It is clear that the trap has better performance when the
rotation frequency is increased. However, there is an intrinsic
limitation that restrains this argument. Indeed, modulatation
of a signal at a frequency fm creates sidebands separated by
fm. These sidebands affect the dipole potential. The limit for
having a nice “continuous trap shape” is to consider that the
distance d between two peaks associated with two sidebands
should be smaller than the laser waist w = 65 μm. The AOM
deflection angle is α = 9.3 × 10−5 rad MHz−1, and after a
distance L = 150 mm (the lens focal length), the distance
between two points is d = αfmL. The condition is then written

fm 	 w

αL
� 5 MHz. (11)

This argument shows that there is an intrinsic limit for the
maximum frequency one can use. However, we are limited
to fm < 100 kHz by the VCOs, so there is still room for
improvement.

In summary, below a modulation frequency of ∼1 kHz, the
atoms are no longer trapped. This regime can be observed in
the two first points of Fig. 9(b). In the intermediate regime
3 < fm < 30 kHz, we observe a reduction of the heating.
This regime is associated with dipolar heating losses due to
the rotating laser. For fm > 30 kHz we observe an increase
of the lifetime and a stabilization of the temperature. These
results justify the choice of a rotation frequency of 90 kHz,
which corresponds to the maximum frequency we can use,
taking into account the 100 kHz input modulation bandwidth
of the VCOs. The performance of the trap might probably
be improved using VCOs with a higher input modulation
bandwidth and a better frequency stability.

E. Influence of the detuning

We study the influence of the detuning on the lifetime and
temperature by changing � and P while maintaining U ∝
P/� constant. The first point on the right side of Fig. 10 is
measured for P = 200 mW and � = 60 GHz, corresponding
to a potential height U = 126 μK.

Figure 10(a) shows that for � < 20 GHz the lifetime
strongly depends on the detuning, and that for � > 20 GHz,
the lifetime becomes constant at ∼280 ms. It is important to
note that the semiconductor laser diodes used in these experi-
ments present, in addition to their main laser mode, a pedestal
which spreads over 40 nm. From the data of Fig. 10(a), we

FIG. 10. (Color online) (a) Lifetime of the dipole trap as a
function of the laser detuning at constant potential height. For this
measurement we adjust the laser power to maintain a constant poten-
tial barrier U ∝ P/� while the detuning is varied. (b) Temperature
of the cloud measured after 150 ms of holding time as a function of
the laser detuning. The shaded area represents the initial dark MOT
temperature before loading the dipole trap. Parameters: L = 1 mm,
w = 65 μm, and fm = 90 kHz.

conclude that above 20 GHz spontaneous emission due to the
main laser mode is not the limiting phenomenon leading to
atom losses. We attribute the limited lifetime above 20 GHz
to heating induced by the amplified spontaneous-emission
pedestal and dipolar heating as discussed in Sec. IV D.

In Fig. 10(b), we notice that the cloud temperature does
not depend on the laser detuning. The temperature is constant,
slightly higher than the dark MOT temperature. After loading
the cloud at the dark MOT temperature spontaneous emission
leads to atom losses without temperature increase (the potential
height is 126 μK). We conclude that the extra heating
due to spontaneous emission is immediately suppressed by
evaporation: the atoms escape from the trap when their total
energy becomes higher than the potential barrier height.

We notice in Fig. 10(a) particularly short trap lifetimes
around � = 50 GHz. In order to study this more quantitatively,
we measure the number of atoms in the dipole trap after 150 ms
of holding time using the same experimental parameters as in
Fig. 10. These data points are shown in Fig. 11 where we
observe a 10 GHz broad resonance centered around 50 GHz
which manifests itself as atom losses. No resonance is seen

FIG. 11. (Color online) Number of atoms in the dipole trap after
150 ms of holding time as a function of the laser detuning at constant
potential height. This curve shows a region where we measure
abnormally low lifetimes, which indicates a resonance whose origin
is unknown. The resonance is centered around 50 GHz and is 10 GHz
broad. Parameters: L = 1 mm, w = 65 μm, and fm = 90 kHz (the
same as those of Fig. 10).
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in the incident laser spectrum and its origin remains elusive.
Possible explanations might involve acoustic modes in the
optical fiber or, more interestingly, molecular resonances.

F. Influence of the laser system spectrum

Assuming thermal equilibrium, the mean photon scattering
rate �sc can be estimated from the temperature by computing
the average potential

〈U 〉 =
∫

dr U (r) exp
[−U (r)+mgz

kBT

]
∫

dr exp
[−U (r)+mgz

kBT

] , (12)

and using the relation h̄�sc = U �/�. For a blue dipole
trap 〈U 〉 and 〈�sc〉 are both increasing functions of the
temperature. For the typical parameters of the experiment,
P = 200 mW, � = 40 GHz, L = 1 mm, w = 65 μm, and
T = 20 μK, evaluation of Eq. (12) gives 〈U 〉 = 2.11 μK and
〈�sc〉 = 41 s−1. This underestimates the photon scattering rate
by not accounting for imperfections of the potential. More
importantly, a major drawback of semiconductor laser systems
is their amplified spontaneous-emission background which
spreads over 40 nm and contains photons resonant with the
atomic lines. These photons contribute to heating, leading to
a potential reduction of the trap lifetime. The spontaneous-
emission background is clearly seen when looking at the laser
system power spectrum shown in Fig. 12(a). It represents 0.9%
of the total laser power. In this section, we investigate two
different approaches to filtering resonant photons using an
etalon or a rubidium cell.

The first method consists in filtering the spontaneous-
emission background using an etalon of finesse F = 60
with free spectral range �νFSR = 210 GHz. Its transmission
exhibits peaks separated by 210 GHz with full with at half
maximum �νFSR/F = 3.5 GHz. For an optical spectrum
analyzer that does not resolve the transmission peaks, the
expected reduction of the spontaneous emission background
is 10 log10 F = 17 dB, which shows good agreement with
the measurements presented in Fig. 12(a). After filtering, the
spontaneous emission background represents only 0.04% of
the total laser power. Due to the poor mode quality of the laser
system, the coupling efficiency through the etalon is weak,
leaving only 70 mW of light available for creating the dipole
trap. In order to maintain a decent trap depth, we reduce the
laser detuning to 24 GHz. The influence of the filtering on the
trap lifetime is shown in Fig. 12(b). The measurement indicates
that the spontaneous-emission background is not the dominant
effect which limits the trap lifetime below 200 ms.

The second method involves using a 7.5-cm-long rubidium
cell to filter photons around the Doppler-broadened lines.
Heating the cell from 22 to 120 ◦C allows the filtering of
photons by increase in the rubidium pressure of several orders
of magnitude. Using heated cells as narrowband absorption
filters to reduce the amplified spontaneous-emission back-
ground of diode laser systems has proven to be an efficient
technique to minimize resonant photon scattering in dipole
traps, hence extending their lifetimes [30–32]. Figure 12(c)
illustrates the filtering efficiency by looking at the transmission
of a weakly saturating probe through the cell. Figure 12(d)
shows the number of atoms in the trap as a function of time with

FIG. 12. (Color online) (a) Power spectrum of the laser system
(blue, broader, curve) and of the laser system plus etalon (red
curve). (b) Number of atoms in the dipole trap as a function of the
holding time without (blue points) and with etalon (red squares). The
lifetimes are 58 and 66 ms, respectively. The laser power is the same
for the two measurements. Parameters: P = 70 mW, � = 24 GHz,
L = 1 mm, w = 65 μm, and fm = 90 kHz. (c) Transmission of a
weakly saturating probe through a 7.5-cm-long rubidium cell at
22 ◦C (blue, upper, curve) and 120 ◦C (red curve). (d) Number of
atoms in the dipole trap as a function of the holding time using
the rubidium cell at 22 ◦C (blue points) and 120 ◦C (red squares).
Parameters: P = 200 mW, � = 43 GHz, L = 1 mm, w = 65 μm,
and fm = 90 kHz.

and without filtering. These curves show a double-exponential
decay. We relate the first decay to losses occurring during the
transient regime and the second one to losses in the quasisteady
regime where the lifetime of the trap is evaluated. Again, below
200 ms we are not able to observe any benefit from resonant
photon filtering. However, for longer trapping times, we notice
lower atom losses, indicating that photon scattering from the
spontaneous-emission background becomes important.

In conclusion, below 200 ms, light scattering from the laser
pedestal does not limit the experiment. Since we are aiming at
fast compression times, we choose not to use any filtering
method in the setup. Nevertheless, our data indicate that
one should definitely consider implementing these techniques
to obtain long trapping times, which might be useful in
applications involving quantum-degenerate gases.

G. Conclusion and final performance

The dipole trap presented in this section allows for trapping
a large number of atoms with an excellent loading efficiency.
Table II summarizes the performance and limitations of the
setup. It helps us find the best compromise for our purposes
with the following parameters that maximize the loading,
the lifetime, and the cloud temperature: P = 200 mW, � =
40 GHz, L = 1 mm, w = 65 μm, and fm = 90 kHz. With
these parameters, the height of the potential barrier is
∼190 μK, the typical lifetime is ∼450 ms, and the temperature
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TABLE II. Summary of the experiments performed on the static dipole trap in the quasisteady regime. For each measurement, we identify
a mechanism leading to losses and/or heating and find the parameters that give the best trap performances.

Experimental parameters Losses and/or heating mechanisms Solutions

Size L Interactions with potential barrier Largest possible size ∼1 mm for better lifetime and loading
Rotation frequency fm Dipolar heating fm > 30 kHz, the largest possible keeping in mind the sideband limit.

Limited by the VCO modulation bandwidth: 90 kHz.
Laser mode detuning � Spontaneous emission � > 20 GHz, ideally the largest possible while keeping a suitable

potential height
Laser system pedestal Spontaneous emission Beam filtering through etalon or rubidium hot cell

of the cloud is constant at ∼25 μK (about the dark MOT
temperature), leading to a factor η = U/(kBT ) � 7.6.

V. COMPRESSION

In this section, we compress the atomic cloud by dy-
namically reducing its size L by means of the blue-detuned
crossed dipole trap. The goal is to quickly compress the
maximum number of atoms N below the strong localization
threshold, qualitatively given by the Ioffe-Regel criterion [13].
As discussed in the Introduction, this threshold corresponds to
atomic densities of n = N/L3 � 1013–1014 cm−3 for rubid-
ium atoms.

A. Principles of the compression scheme

The aim of this section is to understand the relevant
parameters for compressing the cloud. Simple arguments allow
us to qualitatively address important issues, even though they
do not aim at describing the experiment in a rigorous way (in
particular concerning the role of gravity).

1. Maximum compression speed

We are interested in calculating the maximum speed at
which the potential barrier of height U can move before the
atoms are no longer able to follow the motion of the barrier and
consequently jump over it. Let us consider the most pessimistic
case where the potential barrier moves towards the atoms in
the laboratory frame at a speed vpot while the atom moves in
the opposite direction at a speed vatom. In the frame attached
to the potential barrier, the atom has a velocity v = vpot +
vatom and will not jump over the barrier if its kinetic energy is
smaller than the potential height, leading to the criterion vpot <√

2U/m − vatom. Noting that
√

2U/m � vatom, the condition
simplifies to

vpot <

√
2U

m
. (13)

For a 200 μK potential height, we obtain a maximum barrier
velocity of 0.2 m s−1. If the barrier moves by 500 μm, the
minimal time needed to compress the cloud is 2.5 ms. This will
not be a restrictive constraint for the experimental realization
of the compression. Moreover, knowing that the potential
barrier increases during compression [cf. Eq. (4)], Eq. (13)
overestimates the minimum compression time.

2. Heating

For an ideal gas undergoing an adiabatic reversible process
the following equation applies: T V γ−1 = const, where T is
the temperature, V the volume, and γ the adiabatic index.
For a monatomic gas γ = 5/3. When the size of the trap is
reduced to Lf , a cloud of monatomic atoms (e.g., rubidium
atoms) initially at a temperature Ti in a trap of size Li will
reach a temperature Tf given by

Tf

Ti

=
(

Li

Lf

)2

. (14)

Any nonadiabatic reversible compression would lead to higher
final temperatures than the one predicted by Eq. (14).

3. Phase-space density evolution

When the size of the trap is reduced such that a � w, i.e.,
the radius is about equal to the waist, the geometry of the
trap changes from a box with Gaussian walls to a harmonic
potential U = U1 + (1/2)mω2r2 where the analytical expres-
sions for U1 and ω are given in Sec. II A. During an adiabatic
compression, the entropy of the cloud is conserved, implying
phase-space density conservation when the geometry of the
trap does not change. However, when the geometry of the trap
changes from a box to a harmonic potential, the phase-space
density ρ slightly increases. Denoting by ρi ≡ ni�

3
Ti

(where
ni is the density and �Ti

is the initial thermal wavelength)
the initial phase-space density for the atoms in a box, and by
ρf ≡ nf �3

Tf
the final phase-space density for the atoms at

the center of the harmonic trap, one can easily show that the
increase in phase-space density for an adiabatic transformation
is given by2

ρf = e3/2ρi. (15)

This phase space density increase comes from the modification
of the density of states when the trap geometry is modified
[33,34].

4. Potential height evolution

The temperature increase of the cloud resulting from the
compression tends to make the atoms escape from the trap by
jumping over the potential barrier. However, when the trap size

2The following equation is obtain by equating the entropy of an
ideal gas in a box S = NkB{ln[V/N�3

T ] + 5
2 } and its entropy in a

harmonic trap S = NkB{ln[(1/N )(kBT /h̄ω)3] + 4}.
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FIG. 13. (Color online) In situ fluorescence images of the atoms
in the dipole trap taken from the top of the cell. (a) Cloud
before compression, trap size Li = 1 mm. (b) Cloud after a 10 ms
compression, trap size Lf = 300 μm. Parameters: P = 200 mW,
� = 40 GHz, w = 65 μm, and fm = 90 kHz.

is reduced, the potential height increases as well. Equation (4)
shows that a trap with initial size Li and potential height Ui ,
compressed to a final size Lf , has a final potential height
Uf = UiLi/Lf . The temperature of the atoms thus increases
faster than the height of the potential. Using Eq. (14), and
neglecting collisions (evaporation), atoms stay in the trap while
kBTf = Uf , which allows us to estimate the size of the trap
before the atoms escape:

Lf

Li

= kBTi

Ui

. (16)

In the experiment kBTi/Ui ∼ 1/8 so that, starting from a trap
size of 1 mm, we can compress the cloud down to ∼125 μm
before atoms jump over the potential barrier.

5. Lifetime constraint

In addition to the constraints on the minimum compression
time discussed in Sec. V A1, there are also restrictions on the
maximum compression time. We have shown in Sec. IV C that
the trap lifetime strongly depends on its size. This implies
important limitations on the maximum compression time that
should be used. For example, using the data from Fig. 8,
compressing the cloud to a final size of 400 μm should be
done in less than 30 ms (which is the lifetime of the trap for
this diameter) in order not to lose too many atoms during
compression.

B. Experimental realization

After loading the dipole trap (initial size Li = 1 mm) using
the protocol described in Sec. II D, the size of the trap is
kept constant during 20 ms in order for the nontrapped atoms
to escape from the imaging field of view. The size of the
trap is then linearly reduced and the compression time can be
varied. The data presented below are taken for different final
trap sizes Lf , while the compression time is fixed. Figure 13
shows fluorescence images of the cloud viewed from the top
of the cell, before and after compression. Absorption imaging
from the side of the trap is used to perform quantitative
measurements.

Figure 14 shows the density (a) and the temperature (b) of
the cloud as functions of the trap size after compression Lf for
two different compression times: 5 ms (blue points) and 10 ms
(red squares). The blue points correspond to 2 × 107 initially

FIG. 14. (Color online) (a) Density, (b) temperature, and
(c) phase-space density of the cloud as a function of the trap size
after compression Lf . (d) Fraction of the remaining atoms after
compression. The initial trap size is Li = 1 mm. The blue points
correspond to a 5 ms compression and the red squares to a 10 ms
compression. The initial conditions are N = 2 × 107 initially loaded
atoms for the blue points and N = 107 atoms for the red squares. The
dashed curves in (a) correspond to the densities one would obtain if the
trap were uniformly loaded n = N/L3. Parameters: P = 200 mW,
� = 40 GHz, w = 65 μm, and fm = 90 kHz.

loaded atoms and the red squares to 107 atoms. We manage to
increase the density by more than one order of magnitude to
reach 5 × 1012 cm−3, reducing the trap size by a factor of 5.
Figure 14(b) shows strong heating during compression. The
faster the compression, the higher the heating, as expected from
the discussion on adiabatic heating in Sec. V A. In the future, if
the high final temperature is a problem, one can think of adding
an evaporative cooling stage after compression, which would
make the cloud colder and denser. We notice that for small
compression (Lf > 0.6 mm), the density and the temperature
are almost unaffected. This can be understood by looking at
absorption images of the cloud (see Fig. 7) where the atoms do
not occupy the full trap volume because of gravity. The change
of slope that we observe for Lf < 0.6 mm corresponds to the
situation where the cloud starts occupying all the trap volume.
For small trap size we observe a saturation of the cloud density
when the trap reaches the harmonic regime. This might be
due to the the increased sensitivity to instabilities for small
traps. Indeed, in the harmonic regime, the trap frequency is
very sensitive to the trap size. Inelastic (s-wave or/and light-
assisted) collisions can also play a role at high densities and
contribute to the observed fluctuations.

Figure 14(c) shows the phase-space density n�3
T as a

function of the final trap size. As previously discussed, the
phase-space density is conserved for an adiabatic compression
if the trap geometry does not change (the density of states is
conserved). We observe that for a 10 ms compression time,
the phase-space density is conserved but this is no longer the
case when the compression time is 5 ms.
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Figure 14 (d) shows the fraction of remaining atoms after
compression. We manage to keep more than 80% of the atoms,
which is very promising. To do so, we need to compress faster
than any loss mechanism; in particular, faster than the trap
lifetime for the final trap size we are aiming at (see Fig. 8).

1. Maximum density

The experiments performed above are designed to under-
stand how compression works. They are carried out using
a 2.5 s MOT loading time from a low-pressure background
gas, resulting in a modest number of atoms loaded into the
trap, ∼107. Techniques to increase the number of trapped
atoms include making the loading time longer, increasing
the background gas pressure using LIAD, or enlarging the
initial trap volume. The latter is something difficult to achieve
with our current setup. Therefore, a cloud with more atoms
but a larger initial size would not increase significantly the
number of trapped atoms. Improving the dark MOT density (by
further detuned trapping lasers) will be important to increase
the number of trapped atoms well beyond 108.

To test the performance of the trap we simply increase the
MOT loading time to 20 s. We also use a detuning of 20 GHz
(compared to 40 GHz usually) to increase the potential height.
In these conditions, 5 × 107 atoms are loaded into the trap.
After compressing the cloud to a final size of 200 μm in 5 ms,
we measure a density of 1013 cm−3, which corresponds to

kl � 2.8, (17)

compatible with the Ioffe-Regel criterion. This setup thus
proves to be an effective tool to rapidly compress a large
atomic cloud down to the strong-localization threshold, paving
the way for efficient exploration of light-matter interaction in
the dense regime. In the future, the trap performances can
be further improved by having a more precise control of the
trap-size evolution when the trap enters the harmonic regime,
since in this regime the parameters of the trap (e.g., the trap
frequency) vary very quickly with its radius.

C. Collisions and thermalization

When the cloud is compressed, the spatial density and the
temperature rise, which makes the cloud enter into a regime
where collisions are no longer negligible on the time scale of
the experiments [35]. The elastic collision rate is given by

�el = nσ v̄rel, (18)

where n is the cloud density, v̄rel = 4
√

kBT /(πm) is the mean
relative atom velocity, and σ is the total elastic cross section.
If we consider pure s-wave collisions, which in our case is a
strong approximation given the temperature of the gas (where
higher-order collisions, e.g., p-wave collisions, can occur), the
total cross section is given by σ = 8πa2 for identical bosons
(σ = 4πa2 for nonidentical particles), where a is the scattering
length. Elastic s-wave collision rates computed for the data of
the experiments presented in Sec. V B are shown in Fig. 15(a).
During compression, the collision rate increases by almost two
orders of magnitude (from 10 to 103 s−1). In our compressed
trap, s-wave collisions are thus expected to become relevant,
with subsequent thermalization and evaporation.

FIG. 15. (Color online) (a) Elastic s-wave collision rate as a
function of the trap size after compression. The blue points correspond
to a 5 ms compression and 2 × 107 atoms initially loaded. The
red squares correspond to a 10 ms compression and 107 atoms
initially loaded. (b) Temperature as a function of the holding time
for different initial conditions of the atoms in the dipole trap. The
different initial conditions are prepared by compressing the cloud
during 40 ms from an initial size Li = 1 mm to different final
trap sizes after compression, Lf = 0.42 mm (blue points), 0.47 mm
(red squares), 0.52 mm (green diamonds), and 0.57 mm (yellow
triangles). After compression the diameter is kept constant. The state
of the system after compression is used as the initial condition for this
measurement. The smaller is the trap size after compression, the hotter
and denser are the cloud initial conditions. The initial densities and
temperatures are 1.7 × 1011,1.6 × 1011,1.4 × 1011,1.2 × 1011 cm−3

and 101,81,65,53 μK, which correspond to elastic s-wave collision
rates of 27,23,17,14 s−1, respectively. These s-wave collision rates
are compatible with the points showing the temperature reduction.
Parameters: P = 200 mW, � = 40 GHz, w = 65 μm, and fm =
90 kHz.

Figure 15(b) shows the cloud temperature as a function
of the holding time just after compression. The cloud is
compressed during 40 ms and the trap parameters are kept
constant after compression. The state of the system after
compression is the initial condition for this experiment: the
smaller the final trap size, the denser and hotter the cloud,
leading to higher s-wave collision rates. In Fig. 15(b), we
notice that the temperature reduction is faster when the cloud is
initially hotter and denser (i.e., the trap size after compression
is smaller), which strongly hints at thermalization due to
s-wave collisions. The elastic collision rates computed from
Eq. (18) (see the caption of Fig. 15) are compatible with the
time scale of the temperature reduction observed in Fig. 15(b).
Indeed, three or four elastic collisions are needed for the gas
to thermalize [35]. We note that pumping the atoms into
the F = 1 hyperfine level (instead of F = 2 used in this
work) would allow us to avoid unwanted hyperfine-structure-
changing collisions occurring at large densities.

VI. CONCLUSION

We have studied a blue-detuned crossed dipole trap
designed to quickly compress cold atomic clouds to high
densities. Extensive characterization of the system has led
to an understanding of the properties and the dynamics of
this trapping scheme. After a very efficient loading of a large
number of atoms (up to 5 × 107), the cloud is compressed in
5 ms from an initial density of 5 × 1010 cm−3 to a final density
of 1013 cm−3. The cloud density in the final stage is very

053412-11
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close to the Ioffe-Regel criterion, demonstrating the efficiency
and reliability of this technique for studying light-matter
interactions in the dense regime.

Extension of this work includes improving the trap perfor-
mances by optimizing the trap loading (e.g., denser dark MOT,
compensating for gravity, etc.), having a better control of the
final compression state, or using Sisyphus cooling during the
early compression stages. In addition to these modifications
concerning the experimental protocol, improvements of the
setup itself would lead to substantial performance leaps; using,
e.g., a more detuned and powerful laser to reduce spontaneous
emission losses or using VCOs with a higher input modulation
bandwidth and a better frequency stability.

Increasing the trap lifetime would allow use of this setup
for producing quantum-degenerate gases. This kind of com-
pressible dipole trap would make the loading and evaporation

proceed differently from the standard approach to optical
BECs, yielding larger BECs more quickly. It would consist in
reaching a high collision rate during a first compression stage
and then realizing runaway evaporative cooling. To do so, the
trap frequency should be maintained constant by reducing the
trap size when the trap power is reduced. This technique would
not require mobile lenses [23,36], allowing for faster and more
stable operations.
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