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The extreme-ultraviolet (XUV) and strong-field valence ionization of cytosine and uracil is considered. We
examine some simple estimates of the relative yields of the cation states populated following ionization and
compare these to the results of a recently developed ab initio–type numerical model designed to compute
strong-field ionization of molecules, the so-called time-dependent resolution in ionic states (TD-RIS) method. In
analogy with one-photon XUV ionization, where the photoionization matrix elements can be related to the Dyson
orbitals, we construct estimates for the yield of strong-field ionization (SFI) to different cation states based on the
Dyson orbital norms and the Keldysh tunneling ionization rate. In the case of XUV ionization, the Dyson norms
are shown to be good predictors of the relative cation yields when compared with the TD-RIS yields. The Dyson-
and Keldysh-based models underestimate the yield to excited cation states in the case of SFI. The increased
yield to the excited cation states in the TD-RIS results is attributed to the inclusion of multielectron effects and
continuum structure not present in the simple models. The molecular Ammosov-Delone-Krainov (MO-ADK)
method of calculating SFI is also considered. This later method is seen to agree more closely with the Dyson-
and Keldysh-based estimates as it also fails to capture the multielectron effects and continuum structure included
in the TD-RIS approach.
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I. INTRODUCTION

The emergence of attosecond science [1], driven largely by
advances in strong-field and recollision physics [2] that lead to
high-order-harmonic generation (HHG) and the realization of
attosecond XUV pulses, has stimulated an interest in accurate
descriptions of molecular strong-field ionization (SFI) and
attosecond XUV ionization. Pump-probe spectroscopies using
attosecond XUV pulses would likely involve attosecond XUV
ionization as the probing step [3], and attosecond probing
techniques [4] that rely directly on the process of HHG
necessarily involve strong-field ionization as the first step in
HHG. In addition to these attosecond techniques, strong-field
ionization itself is being explored as a probe of electronic [5]
and nuclear [6] dynamics in molecules.

In this study, we consider both attosecond XUV ionization
and SFI of ground and excited states of cytosine and uracil. The
valence excited states of these molecules have been studied
extensively in the past, as they play an important role in the
interaction of DNA and RNA with UV radiation. Some of
the techniques used for elucidating the excited-state dynamics
include pump-probe techniques, with SFI as a probe. Even
though this is not the focus of this paper, the findings of our
work may prove helpful in interpreting these experiments.
Both cytosine and uracil are heterocyclic organic molecules
and have multiple excited states in the UV energy range. The
first excited state (S1) in cytosine is a bright ππ∗ state, whereas
in uracil S1 is a dark nπ∗ state and the second excited state (S2)
is a bright ππ∗. So, in our calculations we include ionization
from S1 for cytosine and from S1 and S2 for uracil. The orbitals
involved in the excitation and the electronic configurations are
shown in Appendix D.

The process of gas-phase molecular photoionization by
ultrafast pulses of radiation would, of course, be most
accurately described by a full-dimensionality solution of

the time-dependent Schrödinger equation. However, such a
full-dimensionality solution is typically impossible due to
the exponential increase of the computation complexity with
increasing dimensionality. Furthermore, even if such a solution
was routinely available, the desire for physically intuitive
approximations that offer satisfying conceptual frameworks
for thinking about the problem would remain. Since the
earliest days of quantum mechanics, a particularly useful
picture of one-photon XUV and x-ray photoionization follows
from Koopmans’ theorem [7]. Designed to predict ionization
energies, Koopmans’ theorem (i) assumes a Hartree-Fock
molecular-orbital description of the multielectronic states of
the neutral and cation species and (ii) ignores orbital relaxation
in the cation following photoionization. The photoionization
process is then seen as the removal of an electron from
specific single-particle orbitals of the neutral. Predicting the
relative probabilities of photoionization to different cation
states often requires going one step beyond the Koopmans’
picture. Standard approximations developed for XUV and
x-ray photoionization that do not rely on the assumption in-
herent in Koopmans’ theorem, like the sudden approximation
and/or one-photon perturbation theory, lead to the concept
of Dyson orbitals [8,9]. Dyson orbitals represent overlaps
between the neutral and cation multielectron wave functions
and are routinely used in theoretical studies of XUV ionization
in the perturbative regime [10]. The norms of the Dyson
orbitals then become good predictors of the relative yields
of the possible ionizing transitions.

In this paper, we explore the strong-field ionization of
the polyatomic molecules cytosine and uracil and attempt
to answer the question whether Dyson orbitals and Dyson
norms alone can qualitatively capture the behavior of SFI. In
parallel, we consider the XUV ionization of the same species
in order to provide a guiding example of the utility of Dyson

053406-11050-2947/2012/86(5)/053406(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.053406


MICHAEL SPANNER et al. PHYSICAL REVIEW A 86, 053406 (2012)

orbitals for one-photon ionization. Since our main interest is
in SFI, we consider ionization from the outer valence shell
only—the dominant channel for SFI. We first outline the key
analytical approximations that relate one-photon ionization
and SFI to the Dyson orbitals: the sudden approximation and
one-photon perturbation theory for XUV ionization, and the
strong-field approximation (SFA) for SFI. We then present the
results of our numerical calculations for the XUV ionization
and SFI of these molecules using the recently developed
time-dependent ionization formalism of Ref. [11], herein
called the time-dependent resolution in ionic states (TD-RIS)
method. We compare the results of the TD-RIS computations
with predictions based on the simple analytical treatments
related to the Dyson norms, as well as to predictions from
the molecular Ammosov-Delone-Krainov (MO-ADK) theory
[12,13], a popular quasistatic theory of molecular ionization
based on semiclassical tunneling models. As expected, the
Dyson norms are seen to be adequate predictors of total
ionization yields in the case of one-photon XUV ionization.
Analogous simple analytical treatments involving the Dyson
norms do not ultimately offer a quantitatively accurate picture
of SFI. Although Dyson norms alone do not fully capture the
behavior of SFI, the analysis of where, and why, these ideas
break down provides a clear framework for discussing and
understanding non-Dyson effects in molecular SFI.

II. ANALYTICAL CONSIDERATIONS AND MOTIVATION

A. Dyson orbitals

Given the neutral state |Nm〉 and ionic states |Il〉, a set of
single-particle orbitals arises naturally for the present problem,
called Dyson orbitals [8,9], defined as the overlap between the
neutral and ionic states:∣∣φD

lm

〉 = √
n〈Il|Nm〉. (1)

The integral implied by the brackets in Eq. (1) is taken over
the (n − 1) ionic electrons, and the Dyson orbitals are thus
one-electron functions. Unlike atomic or molecular orbitals
typically used in electronic structure theories, the Dyson
orbitals do not in general have unit norms. It is then convenient
to write the Dyson orbitals as∣∣φD

lm

〉 = ηlm

∣∣φ̃D
lm

〉
, (2)

where ∣∣φ̃D
lm

〉 =
∣∣φD

lm

〉√〈
φD

lm

∣∣φD
lm

〉 (3)

are normalized Dyson orbitals, and the amplitudes ηlm are
given by

ηlm = 〈
φ̃D

lm

∣∣φD
lm

〉
. (4)

The Dyson norms are defined as

GD
lm = |ηlm|2 = 〈

φD
lm

∣∣φD
lm

〉
. (5)

B. Continuum functions

A number of different assumptions can be made for the
continuum states. We work with multielectron continuum-ion

wave functions that, in principle, have the form

|Mm〉 = Â |Im(x1, . . . ,xn−1)〉∣∣φ�k
m(xn)

〉
, (6)

where |φ�k
m(xn)〉 is a continuum state with momentum �k, and

Â is the appropriate antisymmetrizer [14]. At this stage, the
continuum function |φ�k

m(xn)〉 could be either a plane wave or
a distorted wave that takes effects of the ionic core on the
continuum into account. In the following, which function is
being used for |φ�k

m(xn)〉 is specified when the particular form of
the continuum matters. Although the states |Mm〉 each include
only a single cation configuration, they can be used to construct
multiconfigurational continuum-ion states

|Mj 〉 =
∑
m

|Mm〉 =
∑
m

Â |Im〉∣∣φ�k
m

〉
. (7)

Note that in Eq. (7) the |φ�k
m〉 need not be normalized to 1.

Rather, the weight of each ionic channel is carried by the
normalization of the populated continuum functions |φ�k

m〉.

C. XUV ionization

1. Sudden approximation

As a starting point for the discussion, consider two simple
treatments of relative yields of one-photon XUV ionization [8].
The first treatment is offered by the sudden approximation as
applied to the Hamiltonian [8], which proceeds as follows.
Before the ionization event, all electrons interact and the rele-
vant multielectron Hamiltonian contains all electron-electron
interaction terms. After the ionization, one electron is free
and no longer interacts with the remaining bound electrons.
The multielectron states then have the form of the |Mm〉 states.
Projecting the initial state of the system onto the final state then
gives an estimate of the transition probability for ionization:

wsud
lm (�k) = |〈Ml|Nm〉|2 = ∣∣(〈φ�k

l

∣∣〈Il |Â
)|Nm〉∣∣2 = ∣∣〈φ�k

m

∣∣φD
lm

〉∣∣2
.

(8)

In the notation of the normalized Dyson orbitals, wsud
lm becomes

wsud
lm (�k) = ∣∣〈φ�k

m

∣∣φ̃D
lm

〉∣∣2
GD

lm, (9)

and integrating over all �k gives the total yield

W sud
lm =

∫
d�k wsud

lm (�k) =
( ∫

d�k ∣∣〈φ�k
m

∣∣φ̃D
lm

〉∣∣2
)

GD
lm. (10)

Equations (9) and (10) show that, when little continuum
structure is expected (i.e.,

∫
d�k |〈φ�k

m|φ̃D
lm〉|2 ≈ const), W sud

lm is
expected to be proportional to the norm of the Dyson orbitals,
GD

lm.

2. One-photon perturbation theory

A second (and more accurate) treatment of XUV ioniza-
tion uses first-order time-dependent perturbation theory to
calculate the one-photon ionization probability. The first-order
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ionization probability is given by

w1st
lm (�k) = |F(ωk)|2|〈Ml|

∑
j

�εF · �rj |Nm〉|2

= |F(ωk)|2∣∣〈φ�k
l

∣∣�εF · �rn

∣∣φD
lm

〉 + 〈
φ

�k
l

∣∣φC
lm

〉∣∣2
, (11)

where F(ω) is the frequency spectrum of the laser pulse,

F(ω) = 1√
2π

∫
dt eiωtF (t), (12)

ωk = |�k|2/2 + EI − EN
m is the energy of the photon absorbed

in order to eject an electron with momentum �k, and the orbitals
|φC

lm〉 are given by

∣∣φC
lm

〉 = 〈Im|
n−1∑
j=1

�εF · �rj |Nm〉. (13)

Within the assumption of strong orthogonality, where the
continuum functions |φ�k

l 〉 are assumed to be orthogonal to

all the bound orbitals contained in |Nm〉 and |Im〉, the 〈φ�k
l |φC

lm〉
term would be zero, and w1st

lm (�k) becomes [8]

w1st
lm (�k) = |F(ωk)|2∣∣〈φ�k

l

∣∣�εF · �rn

∣∣φ̃D
lm

〉∣∣2
GD

lm, (14)

and the total yield becomes

W 1st
lm =

(∫
d�k |F(ωk)|2∣∣〈φ�k

l

∣∣�εF · �rn

∣∣φ̃D
lm

〉∣∣2)
GD

lm. (15)

These terms are kept in the time-dependent numerical simula-
tions presented below. Equations (14) and (15) show that the
Dyson norms GD

lm again appear in the first-order expression
for the transition probability, and one could still expect that
the GD

lm could act as rough predictors of the relative ionization
probability to the available ionic states, with the assumption
that the matrix elements |〈φ�k

l |�εF · �rn|φ̃D
lm〉|2 are slowly varying

and carry little structure.

D. Strong-field ionization

Consider now low-frequency SFI. The standard model of
SFI is the SFA, which calculates the ionization amplitudes
within an S-matrix formalism. The continuum states are taken
as free-electron solutions in the laser field alone, ignoring the
effects of the ionic electrostatic potential on these states. This
treatment of the continuum is qualitatively similar to the first
Born approximation of scattering states with the addition that
the action of the laser is taken fully into account. Allowing the
laser field to act on one electron only (the single-active electron
approximation, almost universally invoked in SFA treatments
of strong-field effects), the SFA probability for ionization of
a multielectron target, leading to a continuum electron with
momentum �k, can be written as

wSFA
lm (�k) = ∣∣〈φ�k

l

∣∣USFA
∣∣φ̃D

lm

〉∣∣2
GD

lm, (16)

where the SFA propagator is given by

USFA = −i

∫
dt ′

∫
d�k ∣∣φ�k

l

〉
exp

[
− i

2

∫ t

t ′
|�k + �A(τ )|2dτ

]
× eiIp,lmt ′ 〈φ�k

l

∣∣V (t ′) (17)

where

V (t) =
n∑

j=1

F (t) �εF · �rj , (18)

F (t) is the time-dependent electric field of the laser, �εF is the
polarization direction, and Ip,lm = El

I − Em
N is the ionization

potential. The integral in Eq. (17) can be solved using
approaches based on stationary phase and/or semiclassical
approximations [15–17]. Following integration, the total yield
can be written as

W SFA
lm = Clm K(Ip,lm,F0) GD

lm, (19)

where

K(Ip,lm,F0) = exp

[
− 2

3

(2Ip,lm)3/2

|F0|
]

(20)

is the dominant exponential factor of the Keldysh tunnel
ionization rate [15]. The prefactor Clm depends weakly (i.e.,
not exponentially) on F0 and Ip,lm as well as on the specific
state (or Dyson orbital) being ionized.

In analogy with the above arguments for one-photon XUV
ionization, which showed that the Dyson norms GD

lm could
be used as rough approximations to the relative ionization
probabilities, Eq. (19) suggests that a good predictor of SFI
probabilities might be given by

WDK
lm = K(Ip,lm,F0) GD

lm, (21)

where only the exponential Keldysh rate is retained. This ap-
proximation, which we call the Dyson-Keldysh (DK) estimate,
assumes that the Clm factors do not greatly affect the relative
ionization probabilities, in analogy with the assumption that
the |〈φ�k

l |φ̃D
lm〉|2 and |〈φ�k

l |�εF · �rn|φ̃D
lm〉|2 can be neglected for

one-photon XUV ionization.

E. TD-RIS

The construction and final equations of the TD-RIS
formalism are outlined in the Appendixes. The two central
approximations are that the continuum electron is not antisym-
metrized with the remaining bound electrons upon ionization,
and only a finite number of cationic states are included.
The method includes a number of effects typically neglected
in semianalytical approaches to strong-field ionization like
Keldysh- or SFA-based methods, including the MO-ADK
approach considered below. For example, TD-RIS includes
the effects of the ionic binding potential on the continuum
wave packet during ionization and also includes correctly the
influence of orbital symmetries and structure of the initial
Dyson orbital. Furthermore, TD-RIS includes multichannel
coupling where ionic transitions are possible during the ion-
ization event due to Coulomb interaction between the outgoing
electron and the ionic core—the outgoing electron can cause
transition in the ionic core due to Coulomb interactions. The
Coulomb interactions are found to be important in the context
of low-frequency strong-field ionization and are discussed
further in Sec. III B. In principle, effects of laser-driven dipole
coupling between the neutral and ionic states could also be
included. These latter couplings are neglected in the present
study. However, we do briefly consider their potential influence
in the Appendixes.
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FIG. 1. (Color online) Comparison of the Dyson norms (left)
with the TD-RIS XUV ionization yields (right) for ionization from
the lowest two singlet states of cytosine (top, S0; bottom, S1).

III. COMPUTATIONAL RESULTS

A. One-photon XUV ionization

The connection between the Dyson norms and the one-
photon XUV ionization yields is computationally demon-
strated in Figs. 1 and 2, which show the Dyson norms (left
columns) and TD-RIS ionization yields (right columns) for
the lowest few neutral states of cytosine and uracil. The
numerical XUV ionization yields were calculated using the
TD-RIS method. The XUV pulse had the form

F (t) = F0f (t) sin[ωX(t − τon)] (22)

with a sin2 envelope

f (t) =

⎧⎪⎨⎪⎩
0, t < 0,

sin2
(

πt
2τon

)
, 0 � t � 2τon,

0, t > (2τon).

(23)

The frequency and pulse width were ωX = 4 atomic units (a.u.)
(108.8 eV) and τon = 20 a.u. (0.48 fs), respectively. The peak
electric field strength was F0 = 0.0378 a.u. (I0 = 5 × 1013

W/cm2) for cytosine, and F0 = 0.0293 a.u. (I0 = 3 × 1013

W/cm2) for uracil. Although these intensities are quite high,
the ionization response is still within the perturbative one-
photon regime at XUV frequencies.

Comparing the Dyson norms with the corresponding
numerical ionization yields for Figs. 1 and 2 shows that
the Dyson norms GD

lm are indeed good predictors of the
relative probabilities of one-photon XUV ionization. Although
the GD

lm are not strictly quantitative predictors of the relative
ionization yields to the various cation states, the patterns
of ionic-channel-resolved ionization probabilities seen in the
right-hand columns is clearly reflected in the Dyson norms
in the left-hand columns. Differences between the GD

lm and
the numerically calculated ionization probabilities are due to
the presence of

∫
d�k |〈φ�k

l |φ̃D
lm〉|2 and

∫
d�k |F(ωk)|2|〈φ�k

l |�εF ·
�rn|φ̃D

lm〉|2 in the expressions for W sud
lm and W 1st

lm , as well as
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FIG. 2. (Color online) Comparison of the Dyson norms (left)
with the TD-RIS XUV ionization yields (right) for ionization from
the lowest three singlet states of uracil (top, S0; middle, S1; bottom,
S2).

the |φC
lm〉 term used in the numerical simulations. However,

these differences are relatively small and the general behavior
of the ionic-channel-resolved yields are well characterized by
the GD

lm alone.

B. Strong-field ionization

In order to test Eq. (21), we calculated the strong-field
ionization probability for the lowest few states of cytosine
and uracil, integrating the time-dependent equations of motion
over one half cycle of an 800-nm driving laser field. The
peak electric field strength was again F0 = 0.0378 a.u.
(I0 = 5 × 1013 W/cm2) for cytosine, and F0 = 0.0293 a.u.
(I0 = 3 × 1013 W/cm2) for uracil. Unlike the XUV case, at
800 nm such intensities induce a strong nonlinear ionization
response, and low-order perturbation theory is no longer
applicable. Possible concerns regarding the use of a half-
cycle pulse for low-frequency ionization are addressed in the
Appendixes. The results of both the Dyson-Keldysh estimate
and the numerical yields are shown in Figs. 3 and 4. In contrast
to the comparison between the Dyson norms and the XUV
ionization yields, here we see that the Dyson-Keldysh estimate,
which takes into account the dominant exponential dependence
of SFI and the Dyson norms, is no longer a good predictor
of the relative probabilities of SFI to different cation states.
The numerical simulations show much more population in
excited cation states than would be expected from Eq. (21), the
latter showing a very strong suppression of the excited cation
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FIG. 3. (Color online) Comparison of the Dyson-Keldysh esti-
mate (left) with the half-cycle strong-field ionization yields (right)
for ionization from the lowest two singlet states of cytosine (top, S0;
bottom, S1).

populations, particularly for ionization from excited states.
The failure of the Dyson-Keldysh estimate as compared to the
numerical results has two main sources: omission of the Clm

preexponential factor, and Coulomb-mediated interchannel
coupling.

1. Preexponential factor Clm

Unlike the case for one-photon XUV ionization, where
the matrix elements |〈φ�k

l |φ̃D
lm〉|2 and |〈φ�k

l |�ε · �rn|φ̃D
lm〉|2 could

be neglected without detrimental effects, the factor Clm is
no longer weakly dependent on the final ionic state being
populated. This difference between XUV and low-frequency
ionization can be qualitatively understood as follows. In XUV
ionization, the liberated electron makes a transition from the
neutral directly to a high-lying continuum state. In the absence
of strong continuum resonances, the high-lying continuum
states depend weakly on the ionic core. Furthermore, the
bound-continuum matrix elements |〈φ�k

l |φ̃D
lm〉|2 and |〈φ�k

l |�ε ·
�rn|φ̃D

lm(xn)〉|2 from XUV ionization in a sense “pick out” the
large-momentum Fourier components from the Dyson orbitals.
For large momentum, the Fourier spectrum of the different
Dyson orbitals is smooth and shows little structure. In SFI, the
continuum electron first slowly leaks out of the neutral into a
low-lying continuum state and is then accelerated away from
the core by the laser field once in the continuum. In this case,
the process qualitatively involves a transition from the initial
Dyson orbital into a low-lying field-distorted continuum state.
This is the part of the process captured by the factor Clm.
Low-lying continuum states depend strongly on the structure
of the ionic core, and thus on the particular final ion state
accessed following ionization, leading to a large dependence
of Clm on the final ion state. This strong dependence, entering
SFI qualitatively through the initial population of low-lying
continuum states, is the main reason for the poor predictive
power of Eq. (21).
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FIG. 4. (Color online) Comparison of the Dyson-Keldysh esti-
mate (left) with the half-cycle strong-field ionization yields (right)
for ionization from the lowest three singlet states of uracil (top, S0;
middle, S1; bottom, S2).

2. Coulomb-mediated interchannel coupling

The SFA model introduced above is a single-active-electron
(SAE) model. Although this is a standard assumption in strong-
field literature, it is of course not strictly valid. In fact, it is only
very recently that theoretical efforts within the strong-field
community have been focused on exploring non-SAE effects
within the context of SFA models [18–20]. The computational
model of Ref. [11], which we use for the numerical ionization
yields, allows us to go beyond the SAE approximation. Of
interest to the present discussion is the effect of the Coulomb
force exerted by the continuum electron on the remaining
bound ionic electrons: as the liberated electron is released
and accelerated away from the parent molecule it can cause
transitions in the ionic core through Coulomb interaction with
the bound ionic electrons. Qualitatively, these are the same
couplings responsible for autoionizing states. The couplings
can be turned on or off at will in the simulations. Thus far,
all simulations in Figs. 1–4 have left the couplings turned on.
Figure 5 shows the effect of turning off the couplings in the
XUV (left) and strong-field ionization (right), using the S1

state of cytosine as an example. The interchannel coupling
has very little effect in the XUV ionization. In this case,
the liberated electron is ejected directly into a high-lying
continuum state and quickly moves away from the parent,
leaving little time for the Coulomb interaction to accumulate an
appreciable effect [21]. In SFI, where the electron more slowly
leaks out of the parent to be subsequently accelerated in the
field, there is now comparatively more time for the Coulomb
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FIG. 5. (Color online) Comparison of the ionization calculations
with (open circles) and without (solid circles) the Coulomb-mediated
interchannel couplings for ionization from the S1 of cytosine.

interactions to influence the ionization dynamics [19], and a
sizable change in the ionization yields with and without the
interchannel coupling is now seen for SFI, with the yield of
states D1 and D2 increasing by almost a factor of 2.

3. MO-ADK

As a final consideration, we explore the results of the
MO-ADK approach [12,13]. The MO-ADK method is used
for calculating strong-field ionization rates of molecules based
on quasistatic and semiclassical tunneling formulas. It has
become a popular technique in studies of small molecules,
largely due to the ease of computation of the final formulas.
Building on previous results of Keldysh [15] and ADK
[17] approaches, the MO-ADK method first decomposes
the ionizing orbitals (in our case the Dyson orbital) into
a spherical harmonic expansion at a large radius. It then
applies the known tunneling formulas to each of the spherical
components, within the approximation that the tunneling
occurs through a long-range Coulomb barrier. Thus, the
detailed structure of the nuclear binding potential is neglected
for the ionization step. The MO-ADK method is intrinsically
a single-active-electron method—ionization for each ionic
channel is computed independently. Multielectron effects,
such as the Coulomb-mediated interchannel couplings, are not
included in the existing formulations. Figure 6 compares the
MO-ADK ionization rates with the Dyson-Keldysh estimates
for the case of uracil. We applied the spherical expansion at
a radius of 9 a.u. about the center of mass of the molecules.
Note that while the MO-ADK method calculates ionization
rates, for short pulses and in the absence of complete neutral
depletion the rates are proportional to the ionization yields. It is
seen that the MO-ADK method mirrors the predictions of the
Dyson-Keldysh estimates. Due to the fact that the MO-ADK
method is not expected to be as rigorous a method as the
TD-RIS method, we do not investigate further the detailed
behavior of the MO-ADK results.

IV. DISCUSSION AND SUMMARY

In this study, we investigated one-photon XUV and strong-
field IR ionization of cytosine and uracil, with emphasis on
which final valence cation states are populated following the
ionization. One-photon XUV ionization is well understood [8],
and it is included in the present study as a background upon
which we can discuss the strong-field ionization. Dyson norms
are confirmed to act as good predictors of the population dis-
tribution across the valence cation states for XUV ionization.
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FIG. 6. (Color online) Ionic-state-resolved ionization rates for
cytosine and uracil computed using the MO-ADK [12,13] method.

The analogous predictor for strong-field ionization, namely
the Dyson-Keldysh estimate, is shown to be inadequate;
the Dyson-Keldysh estimate consistently underestimates the
ionization yield to excited cation states when compared against
the more elaborate TD-RIS results. In addition, we have also
evaluated the MO-ADK ionization theory for comparison.
The MO-ADK method largely mirrors the results of the
Dyson-Keldysh estimate.

Two sources of the breakdown of the Dyson-Keldysh
estimate are captured and highlighted by the TD-RIS calcula-
tions. The first is the fact that the strong-field IR ionization
couples initially to near-threshold continuum states where
much continuum structure exists. Therefore, approximations
that ignore low-lying continuum structure perform poorly. The
second cause is the Coulomb-mediated interchannel coupling.
It accounts for the Coulomb interaction between the excited
(continuum) electron and the ionic core, which is again
neglected in simple estimates such as the Dyson-Keldysh and
the MO-ADK method. Not considered in the present study are
the effects of laser-driven coupling of the neutral and/or the
ionic bound states, which can lead to further deviations from
the Dyson-Keldysh picture. Bound-state dynamics are briefly
considered in the Appendixes, and those results suggest that
while laser-driven coupling between the neutral bound states
is not important in cytosine and uracil at the intensities used in
the calculations, laser-driven coupling between ionic states can
play a role in cytosine. Certainly any laser-driven resonances
between the bound states will alter the yields, and furthermore,
off-resonant nonadiabatic excitations can become important
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in polyatomic molecules [5,22] at intensities typical of many
strong-field experiments.

ACKNOWLEDGMENTS

We gratefully acknowledge the support from the US De-
partment of Energy under Grants No. DE-FG02-08ER15983
and No. DE-PS02-08ER08-01.

APPENDIX A: HAMILTONIANS AND STATES

Within the nonrelativistic regime, the neutral HN and ionic
HI Hamiltonians are

HN = −
n∑

j=1

∇2

2
+

n∑
j=1

Vnuc(�rj ) +
n∑

j=1

n∑
k=j+1

1

|�rj − �rk| (A1)

and

HI = −
n−1∑
j=1

∇2

2
+

n−1∑
j=1

Vnuc(�rj ) +
n−1∑
j=1

n−1∑
k=j+1

1

|�rj − �rk| , (A2)

where Vnuc(�r) is the electrostatic potential of the nuclei. Hartree
atomic units (h̄ = me = e = 1) are used throughout. These
Hamiltonians give a set of neutral |Nj 〉 and ionic |Ij 〉 states

HN |Nj 〉 = EN
j |Nj 〉, (A3a)

HI |Ij 〉 = EI
j |Ij 〉. (A3b)

The laser-matter interaction is included in the (length gauge)
dipole approximation,

HF (t) = HN + V (t), (A4)

where

V (t) =
n∑

j=1

F (t) �εF · �rj , (A5)

F (t) is the time-dependent electric field of the laser, and �εF is
the polarization direction.

APPENDIX B: TIME-DEPENDENT RESOLUTION IN IONIC
STATES (TD-RIS) APPROACH

In the numerical approach of Ref. [11], referred to herein as
the TD-RIS approach, the wave-function ansatz uses a time-
dependent unsymmetrized version of |Mj 〉 to represent the
continuum-ion space,

|M′(t)〉 =
∑
m

|Xm(t)〉, (B1)

where

|Xm(t)〉 = |Im〉|χm(t)〉, (B2)

and the |χm(t)〉 are time-dependent continuum wave packets
(i.e., not continuum energy eigenstates). Neglecting Â is
presently necessary in the numerical simulations in order to
yield equations of motion that can be numerically solved
in a reasonable time. Although antisymmetrization is not
fully included in the numerical codes, we can still use the
simulations to investigate a number of effects not uniquely
related to antisymmetrization.

The TD-RIS method of Ref. [11] proceeds to derive the
equations of motion for the |χm(t)〉 states coupled to a neutral

initial state |Nj 〉. To this end, a set of “Dyson-ion” states |Slm〉
are introduced:

|Slm〉 = ∣∣φ̃D
lm

〉|Ilm〉. (B3)

Next we introduce the component of the neutral ground state
that is orthogonal to the set of |Slm〉 states,

|Ñm〉 = NÑ

(
Î −

∑
l

|Slm〉〈Slm|
)

|Nm〉

= Nm

[
|Nm〉 −

∑
l

ηlm|Slm〉
]
, (B4)

where Nm is the normalization factor of the state |Ñm〉. The
full ansatz underlying the method of Ref. [11] can now be
written as

|	(t)〉 = b(t)|Ñm〉 +
∑

l

[al(t)|Slm〉 + |Xl(t)〉], (B5)

where al(t) and b(t) are presently unknown time-dependent
amplitudes of the |Slm〉 and |Ñm〉 states. By inserting this ansatz
into the Schrödinger equation (where ∂t = ∂/∂t)

i∂t |	(t)〉 = HF (t)|	(t)〉, (B6)

a coupled set of Schrödinger equations for al(t), b(t), and
|χlm(t)〉 is obtained:

i∂tb(t) = 〈Ñ |HF (t)|Ñ〉b(t) +
∑

k

〈Ñ |HF (t)|Sk〉ak(t)

+
∑

k

〈Ñ |HF (t)|Xk(t)〉,

i∂tam(t) = 〈Sm|HF (t)|Ñ〉b(t) +
∑

k

〈Sm|HF (t)|Sk〉ak(t)

+
∑

k

〈Sm|HF (t)|Xk(t)〉, (B7)

i∂t |χm(t)〉 = R̂S
m〈Im|HF (t)|Ñ〉b(t)

+
∑

k

R̂S
m〈Im|HF (t)|Sk〉ak(t)

+
∑

k

R̂S
m〈Im|HF (t)|Xk(t)〉,

where R̂S
m = (1 − |φ̃S

m〉〈φ̃S
m|). All the required matrix elements

of HF (t) are given in the appendix of Ref. [11]. This is the set of
coupled equations that our computational method implements.

APPENDIX C: DETAILS OF IMPLEMENTATION

In the numerical TD-RIS results, Eqs. (B7) are numerically
integrated in time using the leapfrog algorithm, which is
low -order but easily parallelizable. The continuum functions
|χm(t)〉 are represented on Cartesian grids with a grid-point
spacing of 0.2 a.u. The grids extended to ±15 a.u. in all three
spatial directions. The time step was dt = 0.0026666 a.u.;
such a small time step is required for the leapfrog algorithm to
ensure numerical stability. Absorbing boundaries [23] of width
4.5 a.u. are used at the grid edges to absorb the outgoing free-
electron flux, and the total ionization yields were calculated
by monitoring the absorbed flux. Angular averaging over the
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relative angle between the molecular axis and the polarization
direction of the laser is carried out using Lebedev angular grids
of the ninth order [24], which can accurately represent angular
structures up to about the fifth-order spherical harmonics.

The ionization calculations are carried out at the neutral
ground-state (S0) geometry, calculated in previous studies [6].
For the present study, the low-lying neutral and cation states
(S0–S1 and D0–D6 for cytosine, S0–S2 and D0–D7 for uracil)
were calculated at the multiconfiguration self-consistent field
calculation (MCSCF) level using GAMESS-US [25]. The neutral
(cation) active space included 14 (13) electrons in 10 orbitals,
and the aug-cc-pVDZ basis set (as implemented in GAMESS-
US) was used. The MCSCF calculations used state averaging
over the neutral and cation states independently.

APPENDIX D: ELECTRONIC CONFIGURATIONS AND
MOLECULAR ORBITALS

Figure 7 shows the dominant electronic configurations
and participating orbitals for the neutral and ionic states of

FIG. 7. (Color online) Dominant electronic configurations for
relevant states of the neutral and the ion for cytosine (top) and uracil
(bottom). The participating orbitals are shown as well. Whenever
there is an approximately equal contribution from more than one
configuration, both of them are shown in the figure. The orbitals
shown are taken from the MCSCF calculation on the neutral molecule
and are only qualitative for the ions.

uracil and cytosine. These configurations illustrate why there
is a large Dyson norm between the bright excited states of
cytosine and uracil (S1 and S2, respectively) and their ground
ionic states (D0), while the Dyson norms for these neutral
states and the first few ionic states (D1–D3) are very low.
The configuration for the ground ionic states differs from the
excited neutral state configurations only by the removal of one
electron, whereas the exited ionic states involve removal of an
electron in conjunction with further rearrangement.

APPENDIX E: BOUND-STATE DYNAMICS

In order to estimate the importance of laser-driven coupling
between the neutral or cation bound states, we performed
explicit calculations of the laser-coupled bound-state systems.
In these calculations, all population was initialized in the
corresponding ground state (S0 for the neutrals, D0 for the
cations). We then solved the time-dependent Schrödinger
matrix equation in the basis of bound states, in the absence
of ionization:

i
∂

∂t

⎡⎢⎢⎢⎢⎣
cI

0(t)

cI
1(t)

cI
2(t)
...

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
E0 + μI

00(t) μI
01(t)

μI
10(t) E1 + μI

11(t) · · ·
...

. . .

⎤⎥⎥⎦

×

⎡⎢⎢⎢⎢⎣
cI

0(t)

cI
1(t)

cI
2(t)
...

⎤⎥⎥⎥⎥⎦ , (E1)

where En are the field-free energies of the bound states, the
cI
m(t) are the amplitudes of the bound states, and the μI

nm(t) =
�F (t) · 〈	n|

∑
i �ri |	m〉 account for the laser interaction with
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FIG. 8. (Color online) Nonadiabatic bound-state dynamics.
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the permanent and transition dipoles of the field-free states.
We solve the matrix equation for the system of bound states
interacting with a 30-fs sin2 pulse at 800 nm, where we
take 30 fs to be a typical ultrafast pulse duration. The final
populations of the bound states are shown in Fig. 8. For most
cases, there is no significant postpulse population left in any
excited bound states for intensities below 1 × 1014 W/cm2,
indicating that nonadiabatic laser-driven coupling between
the bound states is not significant at these intensities, thus
justifying the exclusion of the laser-driven coupling in the
TD-RIS calculations. The case of the cytosine cation shows
a lower intensity threshold than the other cases for the laser-
driven coupling. Investigation of the effects of laser-driven
coupling on the TD-RIS calculations is left for future studies.

APPENDIX F: HALF CYCLE VERSUS FULL PULSE

Strong-field ionization for the low-frequency regime is
calculated using a half-cycle pulse. This is done due to the
computational workload involved with the TD-RIS method.
It is simply not feasible with present implementations to
calculate the range of results covered in this paper using a full
pulse at 800 nm wavelength. Since the XUV pulse is much
shorter in total duration, full-pulse calculations are feasible
for the attosecond XUV pulses.

At first glance, this may cause some concern, since a half-
cycle pulse is not consistent with the free-space Maxwell wave
equations. Here we justify the use of the half-cycle pulse.
First, it should be noted that, for low-frequency fields, the
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FIG. 9. (Color online) Ionization of the S2 state of uracil for a full
pulse (4.8-fs FWHM envelope) and a half-cycle pulse.

tunneling process occurs largely by quasistatic tunneling
ionization in the combined potential of the cation plus the laser
field; the strong laser tilts the binding potential of the cation and
the liberated electron escapes through the suppressed barrier.
Indeed, traditional analytical treatments of low-frequency
ionization, like the ADK theory [17], calculate the static-field
ionization rate and then average the static-field result over
the single cycle. In addition to analogy with the traditional
analytical treatments, we included a single test case where we
compare the half-cycle pulse against a full pulse [4.8 fs full
width at half maximum (FWHM)] for the IR ionization, shown
in Fig. 9. As can be seen, there are small variations between the
two results, but qualitatively the half-cycle pulse captures the
general features of the full-pulse simulation. Importantly,
the failure of the Dyson-Keldysh estimate is not caused by
half-cycle artifacts.
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