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Attosecond electron interferometry for measurement of the quantum phase
of free-electron wave packets
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Single-photon ionization of a hydrogen atom irradiated by two time-delayed isolated attosecond pulses
is theoretically investigated by numerically solving the fully three-dimensional time-dependent Schrödinger
equation. It is demonstrated that the analysis of the angular-resolved electron energy spectrum, showing a
complex interference pattern, allows one to completely retrieve the difference between the energy-dependent
phases of the electron wave packets generated by the two delayed attosecond pulses. Moreover, it is shown that
in the case of a pair of excitation pulses with the same chirp rate, the proposed interferometric technique can be
used to measure the difference between the carrier envelope phase values of two attosecond pulses.
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I. INTRODUCTION

Since the first experimental demonstration of the generation
of attosecond pulses [1,2], various experimental techniques
have been proposed and implemented for the measurement of
the subfemtosecond electron dynamics in atoms, molecules,
and solids [3,4]. Trains of attosecond pulses have been used,
in combination with infrared pulses in pump-probe configura-
tions, to observe the interference of transiently bound electron
wave packets (EWPs) in strongly driven atomic systems [5,6].
Attosecond electron wave packet interferometry, based on the
use of a train of attosecond pulses and an infrared field, which
induces a momentum shear between the consecutive EWPs
generated by each attosecond pulse, has been implemented for
the measurement of the phase variation of EWPs in momentum
space [7]. More recently, isolated attosecond pulses have been
used for the characterization of attosecond EWPs using an
interferometric pump-probe scheme [8]. In this case, a free
EWP, generated in the continuum, was used as a reference
to characterize a bound EWP generated by the excitation of
helium atoms with isolated attosecond pulses. In a different
case, when the photon energy of the attosecond pulses is above
the ionization potential of the target atoms, the spectral phase
of the extreme ultraviolet (XUV) pulses is directly mapped
onto the free EWP [9], so that the chirp of the attosecond
pulse leads to a phase contribution to the EWP, with important
consequences for the analysis of the experimental results
obtained by using the attosecond interferometric techniques.
Note that attosecond pulses present an intrinsic chirp, due to the
harmonic photon emission associated with different electron
excursion times [10,11], which can be compensated for or
adjusted by using various techniques.

In this work, we investigate the photoionization of a
hydrogen atom driven by two isolated attosecond pulses
with variable temporal delay. The photoionization leads to
the generation of two interfering EWPs. The interference
pattern is calculated as a function of the delay between
the two attosecond pulses by numerically solving the fully
three-dimensional time-dependent Schrödinger equation ((3)
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D-TDSE), assuming that the pulses are characterized by
arbitrary chirp rates and a carrier envelope phase (CEP).
Essential features of the interferogram are obtained by a simple
analytical approach. A method is proposed to completely
retrieve the difference between the energy-dependent phases
of the EWP generated by the two XUV pulses. It is also shown
that, in the case of attosecond pulses with the same chirp, the
proposed technique can be used for the measurement of the
difference between the CEP values of two attosecond pulses.

II. THEORETICAL MODEL AND NUMERICAL METHODS

The interaction of XUV attosecond pulses and a hydrogen
atom can be investigated by using the fully 3D-TDSE in the
Cartesian spherical coordinates, given by

i
∂

∂t
ψ(r,t) =

[
− 1

2

1

r2

∂

∂r
r2 ∂

∂r
+ �̂2

2r2
− 1

r
+ VI (r,t)

]
ψ(r,t),

(1)

where �̂2 is the square of the orbit angular momentum operator
and VI (r,t) describes the interaction of the atom with the
applied XUV pulse. Atomic units will be used in the work:
e = h̄ = me = 1, where e and me are the electron charge and
mass, respectively. The vector potential of a chirped Gaussian
attosecond pulse, j , with linear polarization along the z axis
can be written as [12]
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where Ij is the peak intensity, tj is the temporal coordinate,
which corresponds to the peak of the pulse envelope, ωj is the
central carrier frequency at t = tj , ξj is the dimensionless
linear chirp rate, τj is the pulse duration (full width at
half-maximum) for the transform-limited pulse (ξj = 0), and
ϕj is the CEP. The pulse duration of the chirped pulse is

given by τj,chirp = τj

√
1 + ξ 2

j , without any modification of

the pulse spectral profile. The total time-dependent vector
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potential of two chirped and temporally delayed XUV pulses
can be written as A(t) = A1(t) + A2(t). In the length gauge
and in the dipole approximation, the interaction Hamilton in
Eq. (1) can therefore be expressed as VI (r,t) = −r · dA(t)/dt .
A detailed description of the numerical method used to solve
Eq. (1) is reported in Ref. [13]. Upon using the expansion of
the time-dependent wave function ψ(r,t) in a series of partial
waves, Eq. (1) can be reduced to a set of coupled equations
between the different angular quantum numbers for the radial
wave function [14]. The five-point central finite-difference
scheme is employed to discretize the radial equations [15]. The
temporal evolution of the wave function is carried out by the
Arnoldi-Lanczos algorithm. In our calculation, the simulation
parameters are the same as those in Ref. [13], which ensures
that all the results fully converge.

The probability amplitude, a(p), of the continuum electron
wave packet with momentum p = (p,θp,φp) generated by the
XUV pulse is calculated by projecting the final wave function
onto the field-free Coulomb continuum state. For the hydrogen
atom with the Coulomb potential, an analytical formula can
be obtained to calculate a(p,θp,φp) [13]. Because of the axial
symmetry of the wave function, a(p,θp,φp) is independent
of the azimuth angle φp so that the angular-resolved electron
energy spectrum can be described by the double differential
ionization probability (DDIP):

D(E,θp) = ∂2P

∂E sin θp∂θp

= 2π
√

2E |a(
√

2E,θp,0)|2, (3)

where E = p2/2 is the kinetic energy of the photoelectron.

III. RESULTS AND DISCUSSION

A. Interference spectrogram from TDSE calculation

We have first calculated D(E,θp) upon scanning the tempo-
ral delay between the two attosecond pulses. The total electric
field of the XUV pulses is shown in Fig. 1, where both pulses
have the same peak intensity I1 = I2 = 1 × 1012 W/cm2,
central carrier frequency ω1 = ω2 = 36 eV, transform-limited

FIG. 1. (Color online) Electric field of two delayed isolated
attosecond pulses used to photoionize a hydrogen atom. The XUV
pulses have the same peak intensity I1 = I2 = 1 × 1012 W/cm2, cen-
tral carrier frequency ω1 = ω2 = 36 eV, transform-limited duration
τ1 = τ2 = 130 as, and different chirp rates ξ1 = −2, ξ2 = 3 and CEP
values ϕ1 = 0, ϕ2 = π/2. The electric field evolution is reported in
atomic units (a.u.).
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FIG. 2. (Color online) Double differential ionization probability
(DDIP) map (electron spectrogram) for electrons emitted along the
θp = 0 direction as a function of electron energy and temporal delay
between the two attosecond pulses. The parameters of the XUV pulses
are the same as in Fig. 1.

duration τ1 = τ2 = 130 as, and different chirp rates ξ1 = −2,
ξ2 = 3, and CEP values ϕ1 = 0, ϕ2 = π/2. These pulse param-
eters can be achieved experimentally by using, for example,
the polarization gating technique [16]. The temporal delay
between the two pulses is defined as td = t2 − t1, so that in the
case of positive (negative) delay, pulse 1 (2) precedes pulse
2 (1). Figure 2 shows the DDIP D(E,θp) as a function of the
electron energy, E , and of the delay td . Here, θp = 0 is used in
the calculation in order to consider only those electrons emitted
along the laser polarization direction. The spectrogram shows
a series of tilted interference fringes, whose spacing in energy
decreases as the delay increases. It is possible to demonstrate
that important information can be extracted by Fourier analysis
of the delay-dependent spectrogram. Figure 3(a) shows the
spectrogram in the energy-energy representation, obtained
by calculating the Fourier transform of the DDIP at each
electron energy, thus obtaining a two-dimensional function
of the electron energy and the Fourier frequency, ω′. In this
representation, the spectrogram exhibits a linear increase with
ω′. The spectrogram can be also analyzed by using a time-time
representation, as shown in Fig. 3(b). In this case, the Fourier
transform is calculated along the energy axis for each temporal
delay. By using this representation, the spectrogram shows an
X shape and a horizontal linear region with oscillations around
the zero delay.

B. Analytical investigation

To understand the main features of the spectrogram in
the different representations, it is possible to use a simple
analytical model to describe the ionization process induced by
the two attosecond pulses. Assuming that both pulses create
free EWPs, the probability amplitude for the total EWP in the
spectral domain can be expressed as

M(ω) = M1(ω)eiφ1(ω) + M2(ω)eiφ2(ω), (4)

where Mj (ω) and φj (ω) (j = 1,2) are the frequency-
dependent amplitude and phase of the EWP created by the
XUV pulse j . The generated spectrogram, I (ω,td ), which is a
two-dimensional function of electron energy, ω, and delay, td ,
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FIG. 3. (Color online) (a) Energy-energy representation of the
electron spectrogram obtained from Fourier analysis of the map
shown in Fig. 2. The red dashed line was obtained by the analytical
approach described in the text. The energy of the ground state of
the hydrogen atom is given by the intersection of this line with
the oscillation frequency axis. (b) Time-time representation of the
electron spectrogram obtained from Fourier analysis of the map
shown in Fig. 2. The red vertical line indicates the temporal delay
value corresponding to the crossing of the X-shaped region.

is given by

I (ω,td ) = |M(ω)|2 = |M1(ω)|2 + |M2(ω)|2
+ 2|M1(ω)M2(ω)| cos �
(ω,td ), (5)

where �
(ω,td ) = φ2(ω) − φ1(ω) is the phase difference
between the two ionization paths. The spectral phase of the
XUV pulses, obtained by calculating the Fourier transform of
Aj (t), is given by

αj (ωXUV) = ωXUVtj + ξj τ
2
j (ωXUV − ωj )2

8 ln 2

− 1

2
arctan ξj − ϕj − π

2
, (6)

where ωXUV gives the XUV photon energy. We assume that
the photon energy of the XUV pulses is above the ionization
potential of the target atom, so that no resonant state is
populated except for the ground state and the continuum states.
Therefore, the spectral phase of the XUV pulses is directly
mapped onto the free EWP [9], i.e., φj (ω) = αj (ω + Ip), thus
leading to a phase difference �
(ω,td ) given by the following
expression:

�
(ω,td ) = (ω + Ip)td + δζ (ω), (7)

where Ip is the ionization energy of the hydrogen atom
and δζ (ω) is the chirp-dependent component of the phase
difference. In the case of two XUV pulses with the same central
carrier frequency, ω0 ≡ ω1 = ω2, and the same transform-
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FIG. 4. (Color online) Analytical calculation of the interference
fringe position of the electron spectrogram. The XUV pulse parame-
ters are the same as in Fig. 2.

limited duration, τ ≡ τ1 = τ2, δζ (ω) can be written as

δζ (ω) = (ξ2 − ξ1)τ 2

8 ln 2
(ω − ω0 + Ip)2

+ 1

2
(arctan ξ1 − arctan ξ2) + (ϕ1 − ϕ2), (8)

which is a parabolic function of electron energy ω.
Equation (5) shows that the spectrogram I (ω,td ) is charac-
terized by an interference structure with respect to ω and
td . The position of the interference maxima is obtained
from Eq. (7) and is given by (ω + Ip)td + δζ (ω) = 2nπ

(n = 0, ± 1, ± 2, . . .). We have directly solved the analytical
equation to obtain the relationship between td and ω: the result
is shown in Fig. 4. We note that the fringe position predicted by
the analytical model is in excellent agreement with the TDSE
calculation reported in Fig. 2.

In the energy-energy representation, the Fourier frequency
ω′ represents the oscillation frequency of I (ω,td ) at a given
electron energy ω. From Eqs. (5) and (7), we obtain that
ω′ = ω + Ip. This linear relation between ω and ω′ is shown
by the dashed line in Fig. 3(a), which can be seen as a linear
fit of the TDSE numerical result. We note that the energy of
the ground state of the hydrogen atom is directly given by
the intersection of the line with the horizontal zero-energy
line. This provides a method to measure the ground energy
of the atom by the attosecond interference spectrogram. In
the time-time representation, the electron energy ω is Fourier
transformed to its conjugated time variable t . In this case,
it is difficult to analytically investigate the relation between
t and td , since ω is contained in all the terms of Eq. (5),
where both M1(ω) and M2(ω) are unknown. To understand
the effect of the frequency-dependent phase term δζ (ω) on
the spectrogram in the time-time representation, we have
considered the case of equal chirp rates (ξ1 = ξ2 = 3) while
leaving all other parameters identical. In this way, the quadratic
dependence of δζ (ω) with respect to ω is canceled. The
calculated spectrogram in the time-time representation is
shown in Fig. 5 and presents a structure similar to that reported
in Fig. 3(b). The main difference between the two spectrograms
is given by the value of the temporal delay corresponding
to the crossing point of the X-shaped structure, indicated by
the vertical dashed lines in Figs. 3(b) and 5. When the two
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FIG. 5. (Color online) Time-time representation of the electron
spectrogram, calculated for two attosecond pulses with the same chirp
rate ξ1 = ξ2 = 3. All other pulse parameters are the same as in Fig. 2.
The red vertical line indicates the temporal delay value corresponding
to the crossing of the X-shaped region.

attosecond pulses have the same chirp rate, the crossing point
of the X-shaped structure is located in correspondence with
td = 0, whereas different chirp rates for the two pulses produce
a shift of the crossing point: in the case reported in Fig. 3(b),
the corresponding delay is td = 120 as. As a consequence,
the use of two pulses with the same chirp allows one to
calibrate the attosecond interferometer, since the crossing point
identifies the zero-delay position. Hereafter, we can therefore
assume that this position is known.

C. Reconstruction of quantum phase

The chirp-dependent phase term δζ (ω) can be completely
retrieved from the interference pattern shown in Fig. 2.
Figure 6(a) displays the DDIP as a function of the temporal
delay for a particular electron energy value, E0 = 20 eV.
The peak positions correspond to the condition of construc-
tive interference: �
(ω,td ) = 2nπ . We have then randomly
selected five consecutive peaks [dashed rectangular box in
Fig. 6(a)]: the corresponding phase �
(ω,td ), which is
denoted by the squares in Fig. 6(b), increases linearly with
td . Note that a different choice of the consecutive peaks only
leads to a phase shift by an integer multiple of 2π . Considering
the numerical error, a linear fitting of the five squares is
performed to obtain the temporal evolution of �
(ω,td ),
which is shown by the red-dashed line in Fig. 6(b). By
extending this line to the zero-delay position, which is known
in advance, it is possible to directly obtain δζ (ω) at the selected
electron energy E0. Indeed, from Eq. (7), δζ (ω) = �
(ω,0).
Repeating the same procedure and selecting the same branches
of the interference fringes for a series of electron energies,
the phase term δζ (ω) can be obtained as a function of the
electron energy. The retrieved phase values are shown in
Fig. 7, together with the evolution of δζ (ω) calculated by
using Eq. (8). The excellent agreement demonstrates that
this approach successfully reconstructs the quantum phase
δζ (ω). It is worth mentioning that the measurement of δζ (ω)
only depends on the observable interference fringes, without
requiring any prior information about the XUV pulses.

If the two XUV pulses have the same chirp rate, δζ (ω)
does not depend on ω and it is given by δζ (ω) = ϕ1 − ϕ2.

FIG. 6. (Color online) (a) DDIP as a function of the delay between
the two attosecond pulses for a given electron energy E0 = 20 eV,
directly extracted from Fig. 2. The dashed box shows the five peaks
used for the reconstruction of the electron quantum phase as explained
in the text. (b) Phase difference (squares), �
(ω,td ), for the five peaks
inside the dashed box of panel (a), as a function of the delay between
the XUV pulses. The dashed line is the corresponding linear fitting
curve.

Therefore, in this particular case, the measurement of the DDIP
gives a direct method for the measurement of the relative CEP
of two attosecond pulses. To further illustrate this point, we
have calculated the interferogram in the case of two chirp-free
attosecond pulses with three different pairs of CEP values:
ϕ1 = ϕ2 = 0, ϕ1 = 0,ϕ2 = π/2, and ϕ1 = 0,ϕ2 = 3π/2. The
retrieval procedure was then applied to obtain δζ (ω) ≡ δζ .

FIG. 7. Comparison of the phase term δζ (ω) calculated using the
analytical model (dashed line), with the corresponding values (dots)
obtained using the procedure illustrated in the text.
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(a)
(b)
(c)

FIG. 8. (Color online) Difference between the CEP values of
two chirp-free attosecond pulses used for the measurement of the
electron spectrogram, retrieved using the procedure described in
the text, in the case of three different electron energies (E0 = 15,
20, and 25 eV). Pulse parameters: I1 = I2 = 1 × 1012 W/cm2,
transform-limited duration τ1 = τ2 = 130 as (a) ϕ1 = ϕ2 = 0; (b)
ϕ1 = 0,ϕ2 = π/2; and (c) ϕ1 = 0,ϕ2 = 3π/2.

The results are reported in Fig. 8 in the case of three different
electron energies (15, 20, and 25 eV). The retrieved relative
CEP values, defined by the average of the measured δζ =
ϕ1 − ϕ2 values obtained for the different electron energies, are
δζ = 0.047, δζ = −0.483π , and δζ = −1.512π , in excellent
agreement with the expected values.

IV. CONCLUSIONS

We investigated the photoionization of a model hydrogen
atom driven by two delayed attosecond pulses. The angular-
resolved electron energy spectrum was calculated as a function
of the temporal delay between the two pulses by numerically
solving the fully 3D-TDSE. The calculated spectrogram shows
a series of tilted fringes, whose energy spacing decreases
as the delay increases. It was demonstrated that from the
Fourier analysis of the electron spectrogram, it is possible to
obtain the energy of the ground state of the target atom and a
method for the identification of the zero time delay. Moreover,
the intrinsic quantum phase difference of the two ionization
channels involved in the continuum EWP can be completely
retrieved from the measured spectrogram. This technique
might provide promising avenues for complete reconstruction
of the electron wave function of atoms. It was shown that
the proposed interferometric technique allows one to measure
the relative CEP value of two isolated attosecond pulses
with the same chirp.
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F. Lépine, E. Gustafsson, M. Kling, J. Khan, R. López-Martens,
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