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A nonperturbative approach to the solution of the time-dependent, two-center Dirac equation is presented with
a special emphasis on the proper treatment of the potential of the nuclei. In order to account for the full multipole
expansion of this potential, we express eigenfunctions of the two-center Hamiltonian in terms of well-known
solutions of the “monopole” problem that employ solely the spherically symmetric part of the interaction. When
combined with the coupled-channel method, such a wave-function–expansion technique allows for an accurate
description of the electron dynamics in the field of moving ions for a wide range of internuclear distances. To
illustrate the applicability of the proposed approach, the probabilities of the K- as well as L-shell ionization of
hydrogen-like ions in the course of nuclear α decay and slow ion-ion collisions have been calculated.
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I. INTRODUCTION

Recent developments in accelerator and storage ring tech-
nologies have made it possible to perform a new generation of
experiments on collisions between heavy, highly charged ions.
Of special interest in these studies are the low-energy collisions
leading to the formation of short-lived quasimolecular systems
in which electrons move in the Coulomb field of two (or more)
nuclei. Analysis of the excitation, ionization, charge-transfer,
and pair-production processes in such a low-energy domain
may reveal important information about the properties and
behavior of few-electron systems and even of the quantum
vacuum in the presence of extremely strong electromagnetic
fields. To achieve and exploit the strong-field regime, a
broad research program is planned to be undertaken at the
future Facility for Antiproton and Ion Research (FAIR) in
Darmstadt, where ions up to bare uranium will be produced
and decelerated to required energies [1,2].

In order to better understand the basic atomic processes
accompanying slow-ion collisions, the experimental findings
have to be supplemented by a detailed theoretical analysis. In
the simplest case of the collision between bare and hydrogen-
like heavy ions, such an analysis can be traced back to the
single-electron two-center Dirac problem. For small relative
velocities and comparable charges of the nuclei, Z1 � Z2,
the nonperturbative treatment of such a problem is usually
required and can be performed by using various coupled-
channel techniques. Along this line, the time-dependent
electron wave packet is expanded in terms of eigensolutions of
the stationary Dirac equation, which describes the two-center
system at a fixed internuclear distance R. The performance
of the coupled-channel methods depends, therefore, on the
efficiency of the spectrum generation of the time-independent
Hamiltonian at each required R.

An accurate solution of the static two-center problem
is in general a rather sophisticated task which can benefit
from a proper choice of coordinate system. During the last
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two decades in particular, a number of theoretical methods
have been developed which make use of Cassini [3–5] and
prolate spheroidal [6,7] coordinate systems. Even though these
(nonspherical) coordinates are very practical for the compu-
tation of quasimolecular spectra at an arbitrary internuclear
distance R, their employment may be hampered by the lack
of established numerical techniques for the evaluation of two-
center matrix elements. Consequently, retention of standard
spherical coordinates for the treatment of ion-ion (or ion-
atom) collisions still attracts much current attention. The use
of these essentially one-center coordinates for the description
of the two-center problem also requires the development of
various approximate methods. Within the linear combination
of atomic orbitals (LCAO) approaches [8–12], for example,
quasimolecular wave functions are constructed from sets of
atomic orbitals centered on each nucleus. Yet another and
very promising method relies on the direct solution of the
two-center Dirac problem. Such a solution is rather straight-
forward and well elaborated if the electron-nuclei potential
is approximated by its spherically symmetrical part [13–17].
This so-called monopole approximation is successfully used
for the description of strong-field phenomena in close-ion
collisions, but performs poorly when the Coulomb centers
are far from each other. The extension of the multipole theory
towards accounting for higher terms in the decomposition of
the two-center potential is crucial, therefore, for the proper
treatment of heavy-ion collisions in spherical coordinates.

A number of efforts have been focused in the past on a
straightforward solution of the (radial) Dirac equation for the
complete two-center potential [18,19]. In these studies, the
components of the quasimolecular wave functions were found
upon integration of an infinite system of coupled differential
equations which account for all terms of multipole expansion.
An alternative and computationally very efficient approach to
the two-center problem in spherical coordinates is proposed
in the present work. We show that solutions of the stationary
Dirac equation can be constructed for each internuclear dis-
tance R by means of a two-step procedure. As will be discussed
in Sec. II A, the use of the dual kinetically balanced (DKB)
B-spline basis-set method [20] for finding eigenfunctions of
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the monopole Hamiltonian constitutes the first step of the
procedure. Based on the “monopole” basis set, which is,
thanks to the DKB algorithm, free of spurious nonphysical
solutions, we generate then, in the second step, the two-center
wave functions for any required number of multipoles in the
potential expansion. Since the effective solution of the sta-
tionary two-center problem is, by itself, only an intermediate
stage in the treatment of the time-dependent Dirac equation,
the evaluation of the wave packet describing the electron
dynamics in the field of moving nuclei will be discussed in
Sec. II B. In particular, we obtain the decomposition of such a
packet in terms of (stationary) two-center wave functions and
determine the expansion coefficients. Although the developed
approach can be applied to any collision between bare and
hydrogen-like ions, independent of their charges and impact
parameter, here we restrict our analysis to two case studies
of the electron loss in the course of (i) nuclear α decay and
(ii) charge-symmetric ion-ion scattering at zero impact param-
eter. The first of these processes may be understood reasonably
well within the framework of the first-order perturbation theory
[21–24] which will be employed in Sec. IV A for testing the
accuracy of our (nonperturbative) calculations. In contrast, the
ionization accompanying slow collisions between two heavy
ions provides an example of a purely nonperturbative problem.
To demonstrate the potential of the proposed method for
tackling this problem, we present in Sec. IV B predictions for
the K-shell ionization in the U91+-U92+ scattering. Based on
the calculations conducted, we confirm a good performance of
our time-dependent nonperturbative approach, provided that
the full multipole expansion of the electron-nuclei interaction
is taken into account. A summary of our results and a brief
outlook will be given in Sec. V.

Natural units (h̄ = me = c = 1) are used throughout the
paper.

II. THEORETICAL BACKGROUND

The electron dynamics in the Coulomb field of two nuclei
is described by the time-dependent Dirac equation:

i
∂

∂t
�(r,t) = ĤT C�(r,t), (1)

where the Hamiltonian reads in spherical coordinates as

ĤT C = α · p + V (Z1,|r − R1|) + V (Z2,|r − R2|) + β.

(2)
In this expression, p = −i∇ is the electron momentum oper-
ator, β and α = {αx,αy,αz} are the standard Dirac matrices,
and the potential generated by the ith nucleus,

V (Zi,|r − Ri |) = α

∫ ∞

0
dr ′ ρ(r ′,Zi)

max(r,Ri)
, (3)

is a function of its charge density distribution ρ(r,Zi) and
charge Zi . Moreover, R1 and R2 describe positions of the
nuclei with respect to the center of mass of the system:

R1 = M2

M1 + M2
R, R2 = − M1

M1 + M2
R, (4)

where the internuclear vector R ≡ R(t) varies over time.
In what follows, we shall discuss the solution of the time-

dependent Dirac equation (1)–(3) for relative ion velocities

that are much smaller than the bound electron velocity v ≈
αZi . For such a slow-collision regime, the adiabatic approach
is justified and requires first the treatment of the static two-
center problem. In the next subsection, therefore, we will show
how the eigensolutions of the time-independent (two-center)
Hamiltonian can be efficiently generated for any internuclear
distance.

A. Stationary two-center Dirac problem

For each (instantaneous) position of the nuclei, the spectrum
of the two-center system can be obtained by solving the time-
independent Dirac equation

ĤT C�(r) = E�(r), (5)

where E is the total energy and the Hamiltonian ĤT C is
given by Eq. (2). Analysis of such an eigenproblem can be
significantly simplified by the proper choice of the quantization
(z) axis. For example, by setting this axis along the internuclear
vector R, we can write the multipole expansion of the two-
center potential from Eq. (2) in the form

VT C(r,R) = V (Z1,|r − R1|) + V (Z2,|r − R2|)

=
∞∑
l=0

Vl(r,R)Pl(cos θ ), (6)

where Pl is the Legendre polynomial, θ is the polar angle of
the vector r , and the expansion coefficients Vl are given by

Vl(r,R) = 2l + 1

2

∫ π

0
sin θdθ [V (Z1,|r − R1|)

+V (Z2,|r − R2|)]Pl(cos θ ). (7)

Moreover, if summation over l in Eq. (7) is restricted to the
zeroth term, l = 0, the electron-nuclear interaction is governed
by the spherically symmetric potential VT C(r,R) = V0(r,R).
The solution of the Dirac equation within such a monopole
approximation is well elaborated and has been discussed in
a number of works [13–17]. In particular, the eigenfunctions
of the monopole Hamiltonian Ĥ

(0)
T C = α · p + V0(r,R) + β can

be found in the form

φκμ(r) = 1

r

(
Gκ (r)χκμ(r̂)

iFκ (r)χ−κμ(r̂)

)
, (8)

where χκμ is the standard Dirac spinor and the radial
components satisfy the equation[

V0 + 1 − d
dr

+ κ
r

d
dr

+ κ
r

V0 − 1

] (
Gκ (r)
Fκ (r)

)
= ε

(
Gκ (r)
Fκ (r)

)
. (9)

In order to solve this radial eigenproblem, we use the dual
kinetically balanced (DKB) B-spline basis-set method [20].
Since such a DKB approach has been widely applied in
the past for the treatment of spherically symmetric Dirac
problems, we will not discuss its details here. Instead, we
just mention that the DKB method allows one to avoid the
spurious (nonphysical) solutions of Ĥ

(0)
T C and to generate a

quasicomplete set of wave functions {φn
κμ(r)}, n = 1, . . . ,N

for each value of the Dirac angular quantum number κ . These
functions describe the electron states with the energy εnκ in
the spherically symmetric potential V0(r,R), and their overall
number N depends on the size of the basis set.
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The sets of eigenfunctions φn
κμ(r), derived for the spher-

ically symmetric problem can be employed to describe the
electron dynamics for relatively small distances between
colliding nuclei. If R increases, the monopole approximation
is no longer valid and one has to account for the full
two-center potential (6) when solving the time-independent
Dirac equation (5). In the present work, we propose to present
solutions of such an exact eigenproblem in terms of the
monopole functions

�μ(r) =
N∑

n=1

K∑
κ=−K

Cκ
nμφn

κμ(r), (10)

where K is a parameter limiting the number of partial waves
in the sum. The expansion coefficients Cκ

nμ can be determined
then based on the principle of least action, δS = 0, where the
action is defined as

S = 〈�μ|ĤT C − E|�μ〉. (11)

By inserting the wave function (10) into this expression and
by evaluating the variation δS with respect to the change of
expansion coefficients Cκ

nμ, we obtain a system of differential
equations

∂S
∂Cκ

nμ

= 0, (12)

which can be rewritten in matrix form as follows:

Ĥ 	C = E 	C. (13)

Upon evaluation of the elements of the matrix Ĥ,

Hi,k = εkδi,k + 〈φi |
2K∑
l=1

Vl(r,R)Pl(cos θ )|φk〉, (14)

Eq. (13) allows one to determine the vector 	C =
{C1,C2, . . . ,CNmax}. Here, for the sake of brevity, we use
short-hand notations Cj ≡ Cκ

nμ, φj ≡ φn
κμ, and εj = εnκ .

As seen from the discussion above, the spectrum of the
time-independent Hamiltonian (2) for each fixed internuclear
distance R can be generated by means of the two-step
procedure. In the first step, we employ the DKB finite-basis-
set approach to find solutions {εnκ,φ

n
κμ} of the monopole

Hamiltonian. These solutions are used then in the second step
to solve the generalized eigenvalue problem (13) and to obtain
both the expansion coefficients Cκ

nμ of the wave functions
�kμ(r) and the energies Ekμ of the electron states in the full
two-center potential (6). In the next section, such a new set
of eigenstates {Ekμ,�kμ} will be employed for solving the
nonstationary Dirac problem.

B. Time-dependent two-center Dirac problem

Having generated a (quasi) complete set of eigenstates of
the two-center Hamiltonian (2) at each internuclear distance
R, we are ready now to solve the time-dependent equation (1)
using the coupled channel method. Within this approach, the
electron wave packet �(r,t) is expanded as

�(r,t) =
∑
kμ

akμ(t)�kμ(r,t) (15)

in terms of the functions �kμ which parametrically depend
on the internuclear distance and, hence, on time t . In
Eq. (15), moreover, akμ(t) are the time-dependent expansion
coefficients whose squares |akμ(t)|2 provide the occupation
probabilities of the states |�kμ〉 at a particular instant in time.
In order to find these coefficients, we substitute the expansion
(15) into the Dirac equation (1) and derive the system of
coupled channel equations:

i
d

dt
akμ(t)

= Ekμ(t)akμ(t) − i
∑

n
=k,μ′
anμ′(t)

〈
�kμ(t)

∣∣∣∣∂�nμ′(t)

∂t

〉
. (16)

Any further analysis of this system requires the knowledge of
how the electron-nuclei potential (6) varies with time. Since
the time-dependence enters into the problem solely through
the internuclear distance R, the equation of motion of colliding
nuclei must be established. In the present work we consider
the simplest case of motion along the Rutherford trajectories.
In this case the time, the internuclear distance and the tilt
angle of the molecular axis can be expressed in terms of the
dimensionless parameter ξ as follows:

t = a

v∞
(ε sinh ξ + ξ ), R = a(ε cosh ξ + 1),

θ = 2 arctan

( √
ε2 − 1 [tanh (ξ/2) + 1]

ε + 1 − (ε − 1) tanh (ξ/2)

)
. (17)

Here the following notations are introduced:

a = αZ1Z2

M12v2∞
, ε =

(
1 + b2

a2

)1/2

, (18)

with b denoting the impact parameter, v∞ the asymptotic value
of the relative velocity of two particles at t = ∞, and M12

denoting the reduced mass. By inserting Eq. (17) into the
system of coupled channel equations (16) and rewriting it in
terms of the parameter ξ , we derive

i
d

dξ
akμ(ξ ) =

(
∂t

∂ξ

)
Ekμ(ξ )akμ(ξ ) − i

∑
n,μ′

anμ′(ξ )

×
(

δ̄k,n

〈�kμ(ξ )| ∂R
∂ξ

∂
∂R

V (r,R,ξ )|�nμ′(ξ )〉
Enμ′(ξ ) − Ekμ(ξ )

− i
dθ

dξ
〈�kμ(ξ )|jy |�nμ′(ξ )〉

)
, (19)

where we used the relation

〈�kμ|�̇nμ′ 〉 = δ̄k,n

〈�kμ|Ṙ ∂VT C

∂R
|�nμ′ 〉

(Enμ′ − Ekμ)
− i

dθ

dt
〈�kμ|jy |�nμ′ 〉,

(20)

which is valid if the collision occurs in XZ plane. Here jy is
the y component of the total momentum projection operator
and δ̄k,n is the anti-Kronecker delta. The parametrization of t ,
R, and θ in terms of ξ is most natural since the differential
equation governing the time evolution of R is autonomous [i.e.,
an exact solution is possible only for t(R) and not, as required,
for R(t)].
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In order to solve the system of coupled channel equations
and, hence, to find the expansion coefficients ak , it is
convenient to rewrite Eq. (19) in matrix form:

i
∂

∂ξ
	a(ξ ) = M(ξ )	a(ξ ), (21)

where 	a = {a1,a2, . . .}, and the individual elements of Mk,n(ξ )
are given by

Mkμ,nμ′(ξ ) = ∂t

∂ξ
Ekμδk,nδμμ′

− i
〈�kμ| ∂R

∂ξ
∂

∂R
ĤT C |�nμ′ 〉

Enμ′ − Ekμ

δ̄k,nδμμ′

− dθ

dξ
〈�kμ|jy |�nμ′ 〉. (22)

The matrix equation (21) can be integrated numerically on a
grid of spacing �ξ according to

	a(ξ + �ξ ) = e−iM(ξ+ �ξ

2 )�ξ 	a(ξ ) + O(�ξ 3), (23)

and determines the vector 	a(ξ + �ξ ) at the “time” ξ + �ξ

provided that the expansion coefficients coefficients akμ at the
earlier moment ξ are known. Since the matrix exponential on
the right-hand side of Eq. (23) is unitary, the norm of the vector
	a will be preserved at each iteration.

The iteration scheme (23) represents the final step in the
numerical treatment of the time-dependent two-center Dirac
equation (1). In Sec. IV, we will use this scheme in order to
investigate the electron ionization induced by the nuclear α

decay as well as the slow ion-ion collisions. In the present
calculations, we shall restrict ourselves to the simplest case of
zero-impact-parameter picture, b = 0. Within this framework,
the last term in Eqs. (19) and (20) vanishes and, hence, the
matrix elements of the evolution matrix (22) are diagonal
in μ.

III. DETAILS OF COMPUTATIONS

Having discussed the nonperturbative approach to the
solution of the two-center Dirac problem, we are ready now
to investigate the electron emission accompanying both, the α

decay of heavy nuclei, and the slow ion-ion collisions. Before
starting with the presentation and analysis of the numerical
results, let us briefly summarize the most important details
of our calculations which, as mentioned in Sec. II, can be
split into three stages. In the first step of this procedure, the
eigenfunctions of the spherically symmetric Hamiltonian Ĥ

(0)
T C

are obtained by the DKB B-spline basis-set method which
guarantees the absence of the nonphysical spurious states in
the spectrum [20]. In the present work, we used about 200
B-splines of eighth order defined in a box of size L � 105 fm
in order to construct “monopole” wave functions φn

κμ(r) with
energies in the range 0 � εnκ � 10mc2. Based on the detailed
numerical analysis, we argue that such a truncated basis set
allows one to achieve ∼5%–10% accuracy in the prediction
of the ionization cross sections. As the second step of the
nonperturbative treatment, the solutions of the full two-center
Hamiltonian (2) are expanded in terms of φn

κμ(r) [cf. Eq. (10)].
Along this line, we obtain about 300 functions �kμ(r; R) and

corresponding energies Ek for each internuclear distance R
or, equivalently, dimensionless parameter ξ (17). It is worth
mentioning that the solutions of eigenproblem (13) and, hence,
�kμ(r) are defined up to an arbitrary sign. In our calculations,
this sign is chosen for all �kμ(r) from the requirement that their
large radial components, calculated for two successive steps
over ξ , behave similarly near the origin of the coordinates (i.e.,
for r = 0 . . . 500 fm).

With the help of generated basis sets {�kμ(r; R(ξ ))}k=1,...,N

we are finally able to perform the time propagation of the
electron wave packet in the field of moving nuclei. Prior
to starting this propagation, one has to define the electron
wave function in the initial moment of time. Indeed, the
initial conditions depend on the particular process under
consideration. For the nuclear α decay, for example, we assume
that the electron is originally in the ground 1s1/2 state of
the united nucleus of charge Z. Since the time-propagation
begins from the moment when the α particle leaves the
potential barrier at the distance R0 ∼ 10 fm from the daughter
nucleus, we project, at ξ = 0 (corresponding to t = 0), the
wave function ψ1s1/2 (r; Z) onto the basis set of eigenfunctions
of Hamiltonian (2) describing system of two Coulomb centers
with charges Z1 = 2 and Z2 = Z − 2, placed at distances R1

and R2 with respect to their center of mass [see Eq. (4)]. Such
a projection procedure allows us to account for the shake-off
effect and to obtain the first set of expansion parameters
{akμ(ξ = 0)}k=1,...,N which are used then to find the electron
wave packet in subsequent time steps [cf. Eq. (23)]. In order to
produce results, presented in the Sec. IV A, time propagation
was carried out for about 750 such steps of �ξ = 0.01; this
corresponds to the retreat of the α particle to a distance of
about 104 fm.

In contrast to the α decay, the time propagation of the
electron wave packet in the field of two colliding uranium
ions, studied in Sec. IV B, was started from the moment
when the ions are separated from each other by the distance
R = 5 × 103 fm. In this initial moment, the electron finds
itself in the ground 1s1/2 state of one of the projectiles. The
wave function of such a state is given by the sum of the
lowest-lying gerade and ungerade solutions of the (stationary)
two-center Hamiltonian, ψ1s1/2 (ri ; Z = 92) ≈ 1/

√
2(�1σg

+
�1σu

); an approximation whose quality increases with the
number of partial waves in the expansion (10). In the calcula-
tions bellow all partial waves with the Dirac angular quantum
number in the range κ = −10, . . . , +10 are employed leading
to about 10% accuracy of the presented results.

IV. RESULTS AND DISCUSSION

A. Ionization following α decay of heavy nuclei

The nonperturbative approach presented in Sec. II can be
used to study basic atomic processes accompanying slow
collisions of two ions independent of their nuclear charges
Z1 and Z2. In this section, we employ it to reanalyze the
nuclear α decay, which is an example of a (charge-) asymmetric
collision, Z1  Z2, with zero impact parameter and which
can be treated also within first-order perturbation theory. As
mentioned already, such a perturbative treatment has been
successfully applied over the last decades in a large number
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FIG. 1. K-shell ionization probability of hydrogen-like xenon
(top panel), gadolinium (middle panel), and polonium (bottom panel)
ions following the α decay. Nonperturbative calculations were carried
out within the monopole approximation (dashed line) and by taking
the full two-center potential into account (solid line). The probability
is scaled ×105.

of studies [22–25]. In order to compare predictions of the
nonperturbative and perturbative theories, we consider the
decay of α-active 110Xe, 148Gd, and 210Po isotopes. For these
zero-nuclear-spin nuclei, calculations have been performed for
the ionization probability PK of an electron from the ground
1s1/2 state of an initially hydrogen-like system. In Fig. 1 we
display the nonperturbative results for the PK as a function
of the internuclear distance. To deduce this probability, we
have evaluated the electron wave function �(r,t) at each
step of the time propagation [see Eqs. (15)–(23) and related
discussion] and projected it onto the positive-energy solutions
of the two-center Dirac equation for the instantaneous distance
R = R(t):

PK (R(t)) =
∑

Ek>mc2

|〈�kμ(r)|�(r,t)〉|2 =
∑

Ek>mc2

|akμ(t)|2.

(24)

Calculations have been performed both within the monopole
approximation, in which summation over l in Eq. (6) is
restricted to the zeroth term, and by taking the full two-center
potential VT C(r,R) into account. As was expected, these
two approaches agree only for relatively small internuclear
distances. If R becomes greater than 500 fm, the monopole
approximation can significantly underestimate the ionization

TABLE I. K-shell ionization probability of hydrogen-like
xenon, gadolinium, and polonium ions following the α decay.
The nonperturbative calculations, performed for R → ∞ by using
the monopole as well as exact approximations to the two-center
potential, are compared with the first-order perturbation results
and predictions by Law [22] and Fischbeck and Freedman [26].
The asymptotic kinetic energy of α particle Tkin = Mαv

2
∞/2 from

Ref. [27] is given in the second column. All probabilities are of the
order of ×106.

Tkin Nonperturbative

Ion (MeV) Perturbative Monopole Exact

110Xe+53 3.7 3.61 2.6 3.2
148Gd+63 3.1 2.15 1.6 2.3
210Po+83 5.4 2.00 1.4 2.1

1.81a

2.03b

aLaw [22].
bFischbeck and Freedman [26].

probability; an effect which becomes most pronounced for the
heavy nuclei.

Figure 1 shows that, at very large distances, R > 8000 fm,
the ionization probability PK converges to some final value
which depends only on the charge of the mother nucleus
and the initial velocity of the α particle. This “asymptotic”
value of PK is displayed in Table I for xenon, gadolinium,
and polonium ions and is compared with the results of our
first-order perturbation calculations (see Ref. [24] for further
details). Moreover, the previous (perturbative) predictions of
Law [22] and Fischbeck and Freedman [26] obtained for the
decay of polonium are given in the third column. As seen
from the table, the nonperturbative treatment, based on the full
multipole expansion of the two-center potential, reproduces
well the ionization probabilities for all three ions. In particular,
both perturbative and nonperturbative theories yield results
that agree to within 5% if applied to the exploration of the α

decay of polonium ions. If, however, the potential VT C(r,R)
is approximated in Eq. (2) by the single monopole term, the
nonperturbative calculations may result in approximately a
30% misestimation of PK .

Until now we have discussed the α-decay-induced ioniza-
tion of hydrogen-like ions that have been prepared initially in
the ground 1s1/2 state. In order to verify the performance of the
nonperturbative technique based on the multipole expansion
of the two-center interaction operator, it is also worth con-
sidering the electron emission from the various L subshells.
Although experimental observation of the L-shell ionization
of hydrogen-like systems might be hampered by the short
lifetimes of excited ionic states, it can be measured for neutral
atoms. Theoretically, such an atomic inner-shell ionization
can be well described by using the developed approach if the
proper screening potential is used in Eq. (3). The analysis of
the screening effects in α-decay-induced processes in neutral
systems is, however, out of the scope of the present work.
Instead, we just employ the L-shell ionization of hydrogen-like
ions as a testing ground for the nonperturbative theory from
Sec. II. The internuclear-distance-dependent probabilities for
the ionization of 2s1/2 (top panel), 2p1/2 (middle panel),
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FIG. 2. Ionization probability of the 2s1/2 (top panel), 2p1/2 (mid-
dle panel), and 2p3/2 (bottom panel) states of hydrogen-like polonium
210Po+83 following the α decay. Nonperturbative calculations were
carried out within the monopole approximation (dashed line) and
by taking the full two-center potential into account (solid line). The
probability is scaled ×105.

and 2p3/2 (bottom panel) states of hydrogen-like polonium
are evaluated based on this theory and are presented in
Fig. 2. Similar to before, calculations have been performed by
accounting for the full multipole expansion of the two-center
potential (solid line) and by restricting this summation to
the monopole term only (dashed line). Agreement between
these two approaches can be observed again only for small
internuclear distances, while for R > 600 fm the monopole
calculations underestimate the ionization probabilities by more
than 25%. Moreover, the monopole approximation fails to
reproduce P2p3/2 for the entire range of R.

The asymptotic values of P2s1/2 , P2p1/2 , and P2p3/2 calculated
for large distances R are presented in Table II and compared
with the predictions of first-order perturbation theory [24] and
data by Law [22]. As in the case of K-shell ionization, the
full account of the electron-nuclei interaction VT C(r,R) in
Eq. (2) leads here to approximately 5% agreement between
the predictions of perturbative and nonperturbative theories
for the entire L shell. In contrast, the time propagation of the
electron wave packet in the spherically symmetric potential
V0(r,R) yields the probabilities PL that are 30% smaller
compared with the perturbative results. Again, these findings
stress the importance of the higher multipole contributions to
the electron-nuclei interaction for the time-dependent analysis
(23) of the electron dynamics accompanying ion collisions.

TABLE II. L-subshell ionization probabilities of hydrogen-like
polonium 210Po+83 following the α decay. The nonperturbative
calculations, performed for R → ∞ by using the monopole as well
as exact approximations to the two-center potential, are compared
with the first-order perturbation results and predictions by Law [22].
Probabilities given in units ×105 and for the kinetic energy of the
emerged α particle Tkin = 5.4 MeV [27].

Nonperturbative

State Perturbative Monopole Exact

2s1/2 4.80 4.0 4.96
4.75a

2p1/2 0.54 0.30 0.64
0.50a

2p3/2 0.61 0.04 0.61
0.60a

aLaw [22].

B. Ionization in U91+-U92+ collisions

So far, we have shown that the time-dependent method (19),
based on the expansion of the basis wave functions in terms of
monopole solutions, can be successfully utilized to study the α-
decay-induced ionization. Besides this—purely perturbative—
problem, the performance of the developed approach has
also been examined for slow collisions between two high-Z
ions. In contrast to the α decay, theoretical analysis of such
collisions usually cannot be carried out within the framework
of the perturbation theory and demands the application of
nonperturbative techniques. Along this line we have focused,
in particular, on the K-shell ionization in U91+-U92+ collisions
at zero impact parameter. The ionization probability PK has
been calculated based on Eq. (24), where the electron wave
packet �(r,t) was propagated from a time when the ions were
at a distance R = 5 × 103 fm, through the closest approach
R0 ≈ 50 fm, to a moment when the internuclear distance
increased again to R = 5 × 103 fm. In Fig. 3, for example,
PK is displayed as a function of the distance R and for the
(relative) collision energies Tp = 1.8, 2.0, and 2.2 MeV/u. As
seen from the figure, the steep rise of the ionization probability
appears immediately after the point of closest approach R0 at
which the (relative) ionic motion is suddenly reversed and
the electron can be “shaken off” into the continuum. Such a
behavior of the PK as well as its further damped oscillations
have been predicted previously in Ref. [13] based on the
monopole approximation and now is confirmed by our theory
that accounts for the multipole expansion of the electron-nuclei
interaction. Moreover, our calculations clearly indicate a rise
of the ionization probability with the collision energy. For
example, the asymptotic value of the PK is increased by
almost factor of three if the initial (relative) energy changes
from 1.8 to 2.2 MeV/u. Further significant enhancement of
the PK is predicted for higher energies at which the “diving”
of the ground quasimolecular state into the Dirac’s negative
continuum takes place [13]. However, since the analysis of
such strong-field phenomena is out of scope of the present
paper, we restrict here our calculations to the “undercritical”
energy range, Tp � 2.3 MeV/u.
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FIG. 3. Ionization probability of the 1s1/2 state of hydrogen-like
uranium colliding with a bare U92+ ion. Nonperturbative calculations,
based on the multipole expansion of the electron-nuclear interaction
operator, were carried out for zero impact parameter and for the
initial relative kinetic energy of ions Tp = 1.8 MeV/u (solid line),
2.0 MeV/u (dashed line), and 2.2 MeV/u (dash-dotted line). The
negative and positive values of R correspond to the times when ions
approach and move away from each other, respectively.

V. SUMMARY AND OUTLOOK

In summary, we have laid out a theoretical approach to
the time-dependent two-center Dirac problem. Within such
an approach, the wave functions describing the (single)
electron dynamics in the field of two moving nuclei are
expanded in terms of solutions of the stationary Dirac equation
(5). We have argued that these stationary solutions can be
efficiently constructed in spherical coordinates and for each
internuclear distance R by means of the two-step procedure.
The first step of the procedure consists of employing the
dual kinetically balanced (DKB) B-spline basis-set method to
find eigenfunctions of the Hamiltonian Ĥ0, which accounts
for the spherically symmetric part of the electron-nuclei
interaction. On the basis of these functions we generate in the
second step the required solutions of the stationary two-center
problem.

The developed time-dependent approach can help to
explore various atomic processes accompanying slow-ion
collisions. In the present work, for example, we used this
theory to calculate the electron-loss probabilities for the
(i) α decay of hydrogen-like xenon, gadolinium, and polonium
ions, and (ii) U91+-U92+ scattering at zero impact parameter. α

decay, being an example of charge-asymmetric collisions, can
be described sufficiently well within the framework of first-
order perturbation theory. Calculations based on this theory
have been used to prove the accuracy of our nonperturbative
approach. For the K- and L-shell α-decay-induced ionization,
predictions of both perturbative and nonperturbative methods
were found to agree to within about 5% if the multipole
expansion of the two-center potential is taken into account
in the time-dependent Hamiltonian (2). If, in contrast, this
potential is approximated by its monopole term, our cal-
culations may underestimate the ionization probabilities by
more than 30%; this failure of the monopole approximation
becomes most pronounced for large internuclear distances.
Based on these findings we stressed the vital importance of
the proper treatment of the electron-nuclei interaction for the
accurate description of slow ion-ion collisions. The rigorous
“multipole” approach has been employed then to explore
the K-shell ionization accompanying U91+-U92+ collisions.
For this—purely nonperturbative—process, we qualitatively
confirmed the impact-parameter behavior of the ionization
probability, which was predicted previously by Betz and
coauthors [13] within the monopole theory.

Both the α decay of hydrogen-like heavy ions and the
U91+-U92+ scattering have been explored in the present work
for the case of zero impact parameter. Of course, the developed
nonperturbative method is not limited to such a simple
geometry and can be applied to analyze heavy-ion collisions
at b 
= 0. For these collisions, the last term of Eqs. (19)
and (20), which accounts for the rotation of the internuclear
distance, does not vanish and makes the elements of the
evolution matrix (22) nondiagonal in μ. The impact-parameter
dependence of the electron loss as well as the excitation and the
charge-transfer processes will be discussed in a forthcoming
presentation and will help in planning future experiments
on slow collisions between two high-Z projectiles. These
experiments are likely to be carried out at the Facility for
Antiproton and Ion Research (FAIR) in Darmstadt and are
expected to reveal unique information about the quantum
electrodynamics of extremely strong fields.
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