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Asymptotic exchange energies for H2
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An analytical approximation of the asymptotic exchange energy of two interacting hydrogen atoms is obtained.
This approximation depends only on functions of the internuclear distance R, which remain bounded as R → ∞
and is derived using the Herring-Holstein surface-integral technique. It is found that, for large R, the exchange
energy is O(R3 exp(−2R)) in contrast to earlier approximations of O(R2.5 exp(−2R)). Our result is similar to
the classic Heitler-London expression without the unphysical term O(R3 ln(R) exp(−2R)).
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I. INTRODUCTION

In a recent paper [1], we examined the problem of the
calculation of exchange energies for composite systems with
two well-separated nuclei and with a single valence electron.
The simplest well-studied case is H2

+ at a large value of the
internuclear distance R. The other cases treated were alkali-
metal ions where most of the electrons were modeled as core
atomic systems, and again, we considered one valence orbital.
The main aim was to find an approximate analytical formula
for the exchange energy in terms of R.

The success of these calculations leads to optimism that the
same theoretical structures could be used to deal with situations
where the exchange involved two or more electrons. In such
cases, it is necessary to invoke the Pauli principle, and in
this paper, we perform a preliminary analysis of the problems
involved by studying the interaction of two hydrogen atoms
(A and B) separated by a large internuclear distance R. The
nonrelativistic Schrödinger equation is, in atomic units,

Hψ =
(

−1

2
∇2 − 1

r1a

− 1

r1b

− 1

r2a

− 1

r2b

+ 1

r12
+ 1

R

)
ψ

= Eψ, ∇2 = ∇2
1 + ∇2

2 . (1)

We may write

ψ = φa(1)φb(2)f (1,2), E = E − 1

R
, (2)

where the subscripts a and b denote that these functions are
centered on atoms A and B, respectively, and φa is defined by(

−1

2
∇2 − 1

r1a

− 1

r1b

)
φa =

(
−1

2
∇2

1 − 1

r1a

− 1

r1b

)
φa

= εaφa, (3)

and, similarly, for φb for electron 2. From symmetry, εa =
εb = ε, and the resulting equation for f is

−1

2
∇2f + 1

r12
f − ∇f · φb∇1φa + φa∇2φb

φaφb

= (E − 2ε)f,

(4)
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where ∇j is the gradient operator for coordinates j and
∇ = ∇1 + ∇2. This is an exact result, but combinations of the
solutions ψ(1,2) and ψ(2,1) are required in order to satisfy
the Pauli principle. Here, we consider both the ground-state
singlet function with energy E+, where ψ+ is symmetric
in the interchange of electrons 1 and 2 and the triplet with
energy E− where ψ− is antisymmetric in the interchange of
the two electrons. The usual approximate solution for this
problem is obtained variationally, and the classic Heitler-
London calculation [2] leads to an asymptotic approximation
of the exchange energy given by
1
2 (E+ − E−) = − (

28
45 − 2

15 [ln(R) + γ ]
)
R3 exp(−2R)

+O(R2 exp(−2R))

= −0.622R3 exp(−2R)[1−0.214 28(γ+ ln(R)]

+O(R2 exp(−2R)), (5)

where γ is Euler’s constant. This is obtained using a trial func-
tion constructed as a product of the two lowest s-state atomic
hydrogen wave functions φ0

a,φ
0
b and gives approximations of

the states in the form ψ± = φ0
a(1)φ0

b(2) ± φ0
a(2)φ0

b(1). The
approximation is physically acceptable for some intervals of R,
but eventually, the term in ln(R) dominates the approximation
reversing the sign so that the estimate of the triplet energy is
lower than that of the singlet. Here, we construct asymptotic
wave functions from a consideration of the large R behavior
of the Schrödinger equation and obtain an equation similar to
Eq. (5) but without the unphysical term.

II. APPROXIMATIONS FOR LARGE R

We form the approximate wave functions by considering
the equations for φa, φb, and f as R → ∞. It is convenient to
use spheroidal coordinates. With the definition,

p1 = r1a + r1b

R
, q1 = r1a − r1b

R
, φa = X(p1)Y (q1), (6)

Eq. (3) is replaced by the pair of equations,

d

dp1

{(
p2

1 − 1
) dX

dp1

}
+ [−C − λ2

(
p2

1 − 1
) + 2Rp1

]
X = 0,

(7)
d

dq1

{(
1 − q2

1

) dY

dq1

}
+ [

C − λ2
(
1 − q2

1

)]
Y = 0 (8)
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for 1 � p1 < ∞, −1 � q1 � 1, where C is the separation
constant and

λ = R

√−ε

2
= Rα. (9)

Since we are interested in ground-state calculations, we choose
the azimuthal quantum numbers in φa and φb to be zero. In
Eq. (7), we use x = 2λ(p1 − 1) and write X = exp(−x/2)�
to obtain

L(	,1,x)� = −ηxL(s,2,x)�,
(10)

L(a,b,x) ≡ xD2 + (b − x)D − a,

D = d

dx
, η = 1

4λ
, 	 = ηC − 1

2α
+ 1

2
, s = 1 − 1

α
.

(11)

This is a form suitable for perturbation theory with parameter
η. When η is small, the atoms are well separated, and for η = 0,
we recover one of the separated spheroidal ground-state wave
functions for hydrogen. The perturbed wave functions and
energies depend on the separation parameter C. In Eq. (8),
we perform a similar analysis taking y = 2λ(1 + q1) and Y =
exp(−y/2)�, leading to

L(δ,1,y)� = ηyL(1,2,y)�, D = d

dy
, δ = −ηC + 1

2
.

(12)

In this case, letting η → 0 leads to the other spheroidal
equation for the isolated atomic hydrogen function centered
on atom A. Note that the sign of η differs on the right-hand
side of the two perturbation equations, and from this pair
of equations, we calculate two expansions for the separation
constant in terms of η. Equating the two expansions gives
an estimate of α and, hence, all the parameters in the wave
function φa . A brief account of the perturbation procedure is
given in the Appendix, and further details may be found in
Ref. [1]. The analysis of φb is carried out in the same way
defining

p2 = r2a + r2b

R
, q2 = r2a − r2b

R
, φb = X̂(p2)Ŷ (q2),

(13)

and the analogous transformations are carried out, except
that now, y = 2λ(1 − q2), corresponding to a zero-order
situation where electron 2 is associated with the isolated
atom B. The resulting approximation for φa takes the
form

φa = Na exp[−αR(p1 − 1)] exp[−αR(1 + q1)]ψ̂a

= Na exp(−2αr1a)ψ̂a (14)

expressed in either spheroidal or radial coordinates where ψ̂a

is a polynomial in 1/R and the variables (p1,q1) or (r1a,r1b)
such that ψ̂a → 1 as R → ∞; similarly for φb using (p2,q2)
or (r2a,r2b). In the regions where either electron 1 or electron 2
is far from both nuclei, these wave functions are equivalent to
those used in the treatment of H2

+ in Ref. [1] so that, asymptot-
ically, when E ≈ 2ε, f is independent of these coordinates and
approaches unity. In the nonasymptotic variational treatments

of this system, the nonorthogonal coordinates generally used
are the spheroidal coordinates defined above together with
r12 and angular coordinate ω = ω1 + ω2 where (ω1,ω2) are
the angular coordinates of the separate spheroidal systems.
For ground-state calculations, we take the azimuthal quantum
numbers to be zero and do not need to include this dependence.
(See, for example, James and Coolidge [3].) Consequently,
we use symmetric and antisymmetric combinations of
the asymptotic forms ψA = φa(p1,q1)φb(p2,q2)f (r12) and
ψB = φa(p2,q2)φb(p1,q1)f (r12) to form singlet and triplet
approximations, satisfying the Pauli principle. Use of these
constructions implies that products of functions centered on
the same atom may be ignored. This is equivalent to neglecting
any contributions from the ionic structures H+H−,H−H+.
The energies of these ionic functions are much higher than
those of the atomic functions used, but this is counteracted
by the Coulomb repulsion as R decreases (Pauling and
Wilson [4]). However, here, we are considering large R, and
these structures can be ignored.

The required approximation for f is found by a procedure
similar to that used by Patil et al. [5]. For large R, we have,
from Eq. (14),

∇1φa ∼ −2αφa r̂1a, (15)

where r̂1a is the unit vector and the remaining terms in ∇1φa are
of higher order in 1

R
. A similar calculation may be performed

for ∇2φb, and we have

∇f (φb∇1φa + φa∇2φb) ∼ −2αR∇f · (r̂1a + r̂2b)φaφb. (16)

The forms of both φa and φb [see Eq. (14)] show that
they are strongly polarized near the internuclear axis where
p1 = p2 = 1, and we have

r1a = a1i + a2j + R

2
(1 + q1p1)k,

(17)

r2b = b1i + b2j − R

2
(1 − q2p2)k,

where, in the region p1 ≈ 1 ≈ p2, the aj and bj are small.
These vectors are predominantly in the directions ±k, that is,
along the internuclear axis. Patil et al. [5] use this result to
approximate the scalar products so that

r̂12 · r̂1a = −1, r̂21 · r̂2b = −1, ∇f = ∂f

∂r12
r̂12 = ∂f

∂r21
r̂21,

(18)

and, for large R, we have E ≈ 2ε since the energy approaches
the sum of energies of the isolated systems. Thus, the equation
for f may be approximated in the form

−1

2
∇2f + 1

r12
f − 4α

∂f

∂r12
= 0. (19)

Writing r12 = r , we have

− 1
2∇2

1f = − 1
2∇2

2f, (20)

and, consequently,

[rD2 + (2 + 4αr)D − 1]f = 0, D = d

dr
. (21)
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Changing variables to w = −4αr leads to the standard
Kummer equation [6],

L

(
w,2,− 1

4α

)
f =

[
wD2

w + (2 − w)Dw + 1

4α

]
f = 0.

(22)

Since we require the solution to be finite at r = 0, we have the
solution in terms of the Kummer M function,

f = M

(−1

4α
,2,−4αr

)
= 1 + 1

2
r + · · · . (23)

In the analysis considered here, we require that the variables
lie on a surface and are related by q1 = q2, and in this case,

r12 = −r1a + Rk + r2b

= (b1 − a1)i + (b2 − a2)j + q(p2 − p1)k, (24)

where q is the common value of q1 and q2 so that all
the elements will be small and the component along the
internuclear axis will not necessarily be dominant. However,
this does indicate that, in the dominant region, r12 is small so
that an expansion in powers of r12 are a suitable approximation.
From such an expansion of the full equation for f [Eq. (4)], we
obtain the same first two terms as from the Kummer equation,
namely,

f = 1 + 1
2 r12 + · · · , f > 1. (25)

This result is independent of the values of E, r̂12 · r̂1a , and
r̂12 · r̂2b so that, as a first approximation in the most significant
region on the surface where p1 and p2 are close to unity, we
may take f ≈ 1.

III. ESTIMATING THE EXCHANGE ENERGY USING
THE HERRING-HOLSTEIN PROCEDURE

In order to use the Herring-Holstein [7,8] result, we write

ψ± = 1√
2

(ψA ± ψB), (26)

and we need to choose a surface in the six-dimensional
space and the conventional one is z1 = z2. Here, because the
calculations are in spheroidals, we choose q1 = q2. Changing
the coordinates to 2u = q1 − q2, 2v = q1 + q2, the surface
S may be described as u = 0. Furthermore, since q1 = u +
v, q2 = v − u, then, on S, we have

ψA = Nab exp[−αR(p1 − 1)] exp[−αR(p2 − 1)]

× exp(−2αR) exp(−2αRu)ψ̂Af (r12), (27)

and ψ̂A is a polynomial in v,u,p1 − 1,p2 − 1, symmetric in p1

and p2. We note that α = 1
2 + O(R−1), and r12 is symmetric in

the interchange of q1,q2 and, hence, even in u. Consequently,
we may deduce{

∂r12

∂u

}
u=0

= 0 ⇒
{

∂f

∂u

}
u=0

= 0. (28)

(See details in the Appendix.)

The analogous result for ψB is

ψB = Nab exp[−αR(p1 − 1)] exp[−αR(p2 − 1)]

× exp(−2αR) exp(2αRu)ψ̂Bf (r12), (29)

and ψ̂B is identical with ψ̂A, except that u is replaced by −u.
Thus, we may deduce that, on S,

ψA = ψB,
∂ψA

∂u
= −∂ψB

∂u
⇒ ∇ψA · eu = −∇ψB · eu,

(30)

where eu is the unit vector normal to S in the direction of
increasing u. The symmetric and antisymmetric states satisfy(− 1

2∇2 + V̂
)
ψ± = E±ψ±. (31)

We may now consider the hypervolume V = {u < 0} and may
derive
1

2

∫
V

(ψ+∇2ψ− − ψ−∇2ψ+)dV = (E+ − E−)
∫

V

ψ+ψ−dV.

(32)

Substituting for ψA,ψB , we may deduce that∫
V

(ψB∇2ψA − ψA∇2ψB)dV = (E+ − E−)
∫

V

(
ψ2

A − ψ2
B

)
dV.

(33)

We may then deduce∫
V

∇(ψB∇ψA − ψA∇ψB)dV

= (E+ − E−)
∫

V

(
ψ2

A − ψ2
B

)
dV, (34)

and using Green’s theorem,∫
S

(ψB∇ψA − ψA∇ψB) · dS = (E+ − E−)
∫

V

(
ψ2

A −ψ2
B

)
dV,

(35)

which, by using Eq. (30), reduces to

2
∫

S

ψA∇ψA · dS = (E+ − E−)
∫

V

(
ψ2

A − ψ2
B

)
dV

≈ (E+ − E−)
∫

V

ψ2
AdV, (36)

since only ψ2
A is significant within V . The scale factors for the

six-dimensional coordinates p1,p2,u,v,ω1,ω2 are given in the
Appendix, but on S, we have hu = hv , and since

∇ψA · eu = 1

hu

∂ψA

∂u
, (37)

the surface integral on the left-hand side of Eq. (34) becomes

(π )2 R4

2

∫
u=0

�A

∂ψA

∂u

√(
p2

1 − v2
)(

p2
2 − v2

)
× (1 − v2)dp1dp2dv, (38)

where we have integrated over the angles ωj . This integral
can be expanded in inverse powers of R, using MAPLE; the
details of this calculation are given in the Appendix. Here,
we examine the form of the leading term in the exchange
interaction. Since we require ψA to approach the product of
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the wave functions of two isolated hydrogen atoms for large
R, we have Nab = 1

π
and since f does not contribute to the

derivative [see Eq. (28)], we can take a mean value of f̄ ≈ 1.
The form of ψ̂A is F (u,v)F (−u,v)H (p1)H (p2) so that it is
even in u and, consequently,

{
∂ψ̂A

∂u

}
u=0

= 0. (39)

Thus, we have

∂ψA

∂u
= −2RαψA, (40)

and using α ≈ 1
2 (α = 1

2 corresponds to unpolarized func-
tions), we may approximate Eq. (38) by

−R5

2
f̄ 2 exp(−2R)

∫
u=0

exp[−R(p1 − 1)] exp[−R(p2 − 1)]

×G(p1,p2,v)dp1dp2dv, (41)

where G is a polynomial in the variables p1,p2,v. Now, since∫ ∞

p=1
exp[−R(p − 1)](p − 1)mdp = m!

Rm+1
(42)

for any non-negative integer m, the leading term of Eq. (41) is
given by setting p1 = p2 = 1 in G. From this, we obtain

−R5

2
f̄ 2 exp(−2R)

∫
u=0

exp[−R(p1 − 1)] exp[−R(p2 − 1)]G(1,1,v)dp1dp2dv

= −KR5 exp(−2R)
∫ ∞

p1=1

∫ ∞

p2=1
exp[−R(p1 − 1)] exp[−R(p2 − 1)]dp1dp2 = −KR3 exp(−2R) (43)

for some constant K . This is the same leading asymptotic form
as in the Heitler-London result [Eq. (5)]. It is also the same
order as obtained by Tang et al. [9] in calculations for lower
values of R using the Herring-Holstein technique with the
lowest 1s-state atomic wave functions. The analysis of Eq. (38)
in the Appendix gives the explicit asymptotic approximation,

1

2
(E+ − E−)

= −R3 exp(−2R)

(
0.150 836 + 1.227 85

R
+ · · ·

)
= O(R3 exp(−2R)), (44)

where, from Eq. (24), taking that r12 is small in the dominant
region into account, we use f̄ = 1. Equation (44) is obtained
by expressing the parameter α as an expansion in inverse
powers of R, and the terms from the perturbation of φa and
φb can be obtained from a higher order. In addition, the
volume integral has been estimated using ψA ≈ φaφb with
this value of α rather than the localized 1s ground-state wave
functions for the isolated atoms. The functions φa,φb are
also localized about atoms A and B, respectively, so that the
effect of r12 is negligible, but they are polarized functions that
take the presence of the other atom into account. We note
that, on the surface u = 0, at points such that p1 = p2 = 1
where the contribution of φaφb is greatest, we have r12 = 0.
The exponential form of the integrand in the surface integral
implies that it is dominated by the integral over the restricted
region described by 1 � p1 � ρ, 1 � p2 � ρ, and we may
choose ρ so that ρ → 0 as R → ∞ in any manner. Since

lim
ρ→0

r12(u = 0) = 0 ⇒ lim
ρ→0

f = 1, (45)

we may deduce that the lowest term in Eq. (44) is valid.
The main advantage of Eq. (44) is that it does not contain

the unphysical term in ln(R), which has a major effect for very
large R. Herring and Flicker [2] give an alternative asymptotic
approximation with a leading term of different order, but their

estimate agrees with the Heitler-London estimates in the range
of R for which the splitting is on the order of hundredths to
millionths of an electron volt. The result in Ref. [2] is obtained
by using an analogous form of an asymptotic approximation
to Eq. (2), but instead of φa,φb used here, they use φ0

a,φ
0
b ,

which are the ground-state 1s wave functions for the isolated
hydrogen systems. The corresponding function f is found by
writing it in the form f = exp(−B), substituting into Eq. (4)
(with the 1s functions rather than the polarized functions
considered here), and neglecting the terms,

κ = 1
2 (∇2B − |∇B|2). (46)

This is corrected perturbatively, and the authors consider
a restricted region ρ1,ρ2 � R1/2, where ρ1 and ρ2 are the
distances of electrons 1 and 2 from the internuclear axis. They
show that the correction to κ is O(r−2

12 ) and argue that the
effect on the perturbation equation for B is less than O(r−1

12 )
for most of the restricted region, although they point out that
the corrected terms are wrong in the region of small r12. We
have found that the most significant contribution to the surface
integral for the exchange energy arises from the subregion
where ρ1 ≈ ρ2 ≈ 0. In this subregion, on both the surface used
by Herring and Flicker (z1 = z2) and the surface used here
(q1 = q2), we have r12 ≈ 0. Thus, the order of the correction
to B derived by Herring and Flicker will be large and cannot
be justifiably neglected. The result obtained by Herring and
Flicker takes the form

1
2 (E+ − E−) = −0.821R2.5 exp(−2R) + O(R2 exp(−2R)),

(47)

so that, even though it gives the same order of magnitude
as for the Heitler-London result for some intervals of large
R, it is at odds with the asymptotic leading term of both the
Heitler-London result and the approximation obtained here. In
Figs. 1 and 2, we illustrate the differences between the three
formulas. In Fig. 1, we plot the three formulas in the range of
90 < R < 100; the upper curve is the Heitler-London formula,
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FIG. 1. (Color online) The exchange energy �E = 1
2 (E+ − E−)

is plotted for the three formulas in the range of 90 < R < 100.
The upper curve is the Heitler-London formula, the middle curve is the
Herring-Flicker formula, and the lower curve is obtained from the
formula derived here [Eq. (44)] (energies and separations in a.u.).

the lower curve is our formula, and the middle curve is the
Herring-Flicker result. For this range of very large values of
R, we see that, although our formula gives larger magnitudes,
it is fairly consistent with the Herring-Flicker formula; the
Heitler-London formula has the wrong sign. In Fig. 2, the
formulas are plotted in the range of 10 < R < 12, and the
two lower graphs, which correspond to our formula and to
the Herring-Flicker formula, are almost coincident. The upper
graph is also close in this range so that all three approximately
give the same exchange energies. This indicates that our
approximation f ≈ 1 is not only valid asymptotically, but also
gives results consistent with the Heitler-London treatment for
smaller values of R where the variational approach is expected
to be more accurate.

This is supported by the paper of Tang et al. [9] who do not
consider the effect of r12 but use unpolarized atomic orbitals for
hydrogen to compare with exact ab initio calculations [10,11]
and show that their results are in line with the Heitler-London
calculations. In Table I, we compare the results in Refs. [10,11]
with the results in Ref. [9] and with calculations from our
Eq. (44). Generally, our values are closer to the ab initio values
[10,11], even though Eq. (44) is just the first two terms of an
expansion in powers of R−1, which may be expected to be more
accurate asymptotically; for small R, the ionic terms may be
more important, and the error in the perturbation expansion
may be larger. The main advantage of our result is that we
use polarized orbitals, and it is well known from calculations
on H2

+ that it is essential that polarized orbitals are used in
order to obtain accurate results. The range of R in Table I is
1 � R � 12, whereas, our analysis indicates that the effect of
the nonphysical term in the Heitler-London formula is only
substantial for much larger R’s.

1.0

2.0

3.0

4.0

5.0

FIG. 2. (Color online) The exchange energy �E = 1
2 (E+ − E−)

is plotted for the three formulas in the range of 10 < R < 12.
The upper curve is the Heitler-London formula, the middle curve is the
Herring-Flicker formula, and the lower curve is obtained from the
formula derived here [Eq. (44)] (energies and separations in a.u.).

From Eq. (25), by using the approximation f ≈ 1 + 1
2 r12,

we may neglect the last term in Eq. (4), and consequently, the
equation for φaφb is(

−1

2
∇2 − 1

r1a

− 1

r1b

− 1

r2a

− 1

r2b

)
φaφb = 2εφaφb, (48)

and any approximation of the solution of this equation does
not involve integrals over 1

r12
. The nonphysical term in the

Heitler-London result is obtained from the integral,∫
φa(1)φa(2)φb(1)φb(2)

r12
dV, (49)

TABLE I. Comparison of the results from Ref. [9] and the
calculations from our Eq. (44) with the exact results from
Refs. [10,11].

R Ref. [9] Eq. (44) Exact

1 −2.709 × 10−1(0.93) −1.866 × 10−1(1.35) −2.515 × 10−1

1.4 −1.938 × 10−1(1.01) −1.715 × 10−1(1.14) −1.952 × 10−1

2 −1.081 × 10−1(1.12) −1.121 × 10−1(1.08) −1.206 × 10−1

3 −3.462 × 10−2(1.23) −3.749 × 10−2(1.14) −4.265 × 10−2

4 −9.355 × 10−3(1.23) −9.829 × 10−3(1.17) −1.150 × 10−2

5 −2.275 × 10−3(1.12) −2.250 × 10−3(1.13) −2.550 × 10−3

6 −5.010 × 10−4(1.02) −4.718 × 10−4(1.08) −5.105 × 10−4

7 −1.030 × 10−4(0.94) −9.305 × 10−5(1.04) −9.680 × 10−5

8 −2.012 × 10−5(0.88) −1.753 × 10−5(1.01) −1.765 × 10−5

9 −3.773 × 10−6(0.83) −3.189 × 10−6(0.98) −3.120 × 10−6

10 −6.855 × 10−7(0.78) −5.640 × 10−7(0.95) −5.375 × 10−7

11 −1.212 × 10−7(0.75) −9.745 × 10−8(0.93) −9.100 × 10−8

12 −2.097 × 10−8(0.76) −1.651 × 10−8(0.97) −1.600 × 10−8
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and, consequently, does not arise if Eq. (48) is used. The
approximation for f is suitable for a calculation using the
Herring-Holstein technique since the most significant region
is near the midpoint of the internuclear line where r12 ≈ 0, but
for a variational calculation over all spaces, the effect of the
dependence on r12 may be expected to be more important. The
values in the brackets are the ratios of the results from Ref. [9]
or Eq. (44) to the exact values in Refs. [10,11].

IV. CONCLUDING REMARKS

The main purpose of this paper was to develop techniques
that can be used to treat asymptotic valence interactions
involving two electrons, extending our earlier paper on
exchange calculations. The example of H2 for large R is a
prototype for such work, and we have developed formulas
similar to those in our previous paper, taking the dependence
on r12 and the Pauli principle into account. We found that
our approximate formulas gave similar results to those found
by the standard Heitler-London variational calculations but
without the unphysical term for larger R’s that it contained.
The formula that we obtained gave comparable results to the
formula derived by Herring and Flicker, but the behaviour for
large R differed.
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APPENDIX: SOME DETAILS

1. Algebraic perturbation theory

We begin with a realization of the SO(2,1) Lie algebra
generators given by

J− = xD2 + D, J0 = xD + 1
2 , J+ = x, (A1)

where D = d
dx

and Eq. (10) of the text may be expressed in
terms of these operators,(

J− − J0 − (
γ − 1

2

))
�

= −η
(
J0 − 1

2 + J+
(
J− − J0 + 1

2 − s
))

�. (A2)

Using a similarity transformation, exp(J−) transforms the
operators to

J0 → J0 + J−, J+ → J+ + 2J0 + J−, (A3)

and the equation to

(h0 + ηh1)�̂ = γ �̂, h0 = 1
2 − J0,

h1 = (J+ + 2J0 + J−)(b + h0) + J− − h0, (A4)

where b = 1
α

− 1. Perturbation theory is then used in powers of
η. From the algebraic structure of this perturbation equation, it
is convenient to express the operators in terms of their matrix
representations in the basis {xn, n = 0,1,2, . . .} so that we
obtain a matrix perturbation equation of the form

H0x = (	 − ηH1)x, (A5)

with the zero order 	0 = 0, xT
0 = (1,0,0, . . .), corresponding

to the appropriate equation for the isolated hydrogen. The

higher-order values of 	 and the wave function are obtained by
ensuring consistency of the equations and choosing the higher-
order wave functions to have no component in the zero-order
function. An essentially equivalent procedure is carried out
for Eq. (12), and the separation constant can be expressed in
terms of 	 from Eq. (11) (for all orders) and δ from Eq. (12).
Equating the expressions for C gives a nonlinear equation in
R and α. To obtain an approximate asymptotic wave function
in terms of R, it is necessary to express α in terms of R. This
was performed by solving the nonlinear equation for α for a
set of values of R and expressing α as a polynomial in 1

R
; we

used a fitting at R = 80,90,100 to obtain

α = 0.5 + 0.5

R
− 0.241

R2
. (A6)

The estimates from this formula were found to be accurate for
a wide range of values of R from 8 to 100, but for more precise
calculations in the ranges of R in this interval, the fitting points
can be varied. Given expression (A6) for α, the perturbed wave
functions are obtained in terms of R using MAPLE.

2. The derivative of r12

The surface u = 0 divides the six-dimensional space into
two parts with atom A on one side and atom B on the
other symmetrically. The Cartesian coordinates in the six-
dimensional space can be written in terms of two sets of
spheroidal coordinates (one set for each of the two electrons),
and we perform the further transformations used in the main
text: q1 = u + v, q2 = v − u. In this section, we take origin
O to be the same for both sets of spheroidal coordinates and
choose p1 = p2 = 1, v = u = 0. Thus, we have

x1 = R

2

√
p2

1 − 1
√

1 − (u + v)2 cos(ω1),

x2 = R

2

√
p2

2 − 1
√

1 − (v − u)2 cos(ω2),

y1 = R

2

√
p2

1 − 1
√

1 − (u + v)2 sin(ω1), (A7)

y2 = R

2

√
p2

2 − 1
√

1 − (v − u)2 sin(ω2),

z1 = R

2
p1(v + u), z2 = R

2
p2(v − u).

Forming

r12(p1,p2,u,v,ω1,ω2)

=
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (A8)

we can use MAPLE to simplify the expression and to observe
that r12 is even in u so that{

∂r12

∂u

}
u=0

= 0. (A9)

For origin O, because of the singular nature of the derivative
of the square root at 0, it is necessary to interpret Eq. (A9) as

lim
P→O

{
∂r12

∂u

}
u=0

= 0 (A10)

for points P ( 
=O). This is completely analogous to the
interpretation of the following one-dimensional derivative
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calculation when a = 0:

lim
a→0

{
d

dx

√
a2 + x2

}
x=0

= 0 
=
{

d

dx

{
lim
a→0

√
a2 + x2

}}
x=0

.

(A11)

3. Scale factors for the surface integration

The analysis here is based on considering a general vector
r expressed in terms of a set of orthogonal coordinates in any
number of dimensions. Moving along one of these coordinates
η, say we have

∂r
∂η

= hηeη, (A12)

where eη is the coordinate-dependent unit vector along the η

curve with all other variables held fixed. Thus,∣∣∣∣ ∂r
∂η

∣∣∣∣ = hη, (A13)

and this makes a contribution hηdη to the volume element.
Additionally, we require

∇ · eη = 1

hη

∂

∂η
, (A14)

since

∇ =
∑

η

eη

1

hη

∂

∂η
. (A15)

We need two sets of spheroidal coordinates
{(p1,q1,ω1),(p2,q2,ω2)}. But we want these on the surface
q1 = q2 so that, using the transformed coordinates, the general
six-dimensional vector rT = (r1a,r2b)T can be written

rT = R

2

(√(
p2

1 − 1
)
[1 − (u + v)2] cos(ω1),√(

p2
1 − 1

)
[1 − (u + v)2] sin(ω1),p1(u + v) + 1,√(

p2
2 − 1

)
[1 − (v − u)2] cos(ω2),√(

p2
2 − 1

)
[1 − (v − u)2] sin(ω2),p2(v − u) − 1

)
.

(A16)

All the necessary partial derivatives can be calculated from
(A16). For example,

∂rT

∂p1
= R

2

⎛
⎝ p1√

p2
1 − 1

√
1 − (u + v)2 cos(ω1),

p1√
p2

1 − 1

√
1 − (u + v)2 sin(ω1),(u + v),0,0,0

⎞
⎠ ,

(A17)

so that, on u = 0, we have∣∣∣∣∂rT

∂p1

∣∣∣∣
2

= R2

4

[
p2

1

p2
1 − 1

(1 − v2) + v2

]
, (A18)

which leads to

hp1 = R

2

1√
p2

1 − 1

√
p2

1 − v2. (A19)

The calculation of hp2 is similar. There are a few sign
differences, but finally,

hp2 = R

2

1√
p2

2 − 1

√
p2

2 − v2. (A20)

Using the same technique,

∂rT

∂ω1
= R

2

{√
p2

1 − 1
√

1 − (u + v)2[− sin(ω1)],√
p2

1 − 1
√

1 − (u + v)2 cos(ω1),0,0,0,0
}
, (A21)

leading to

hω1 = R

2

√
p2

1 − 1
√

1 − v2, (A22)

and similarly for hω2 with p2 replacing p1. The more
complicated calculation is

∂rT

∂u
= R

2

⎛
⎝−

√
p2

1 − 1 cos(ω1)(u + v)√
1 − (u + v)2

,

−
√

p2
1 − 1 sin(ω1)(u + v)√

1 − (u + v)2
,p1,

−
√

p2
2 − 1 cos(ω2)(v − u)√

1 − (v − u)2
,

−
√

p2
2 − 1 sin(ω2)(v − u)√

1 − (v − u)2
,−p2

⎞
⎠ . (A23)

The analogous calculation above of hu gives

hu = R

2

√
p2

1 + p2
2 − 2v2

√
1 − v2

. (A24)

The calculation for hv again involves some differences in signs
but is finally the same. That is, at u = 0, hu = hv . For the
Herring-Holstein result, we need∫

u=0
hp1hp2hω1hω2hv�A∇�A · eudS. (A25)

Now,

∇�A · eu = 1

hu

∂�A

∂u
, (A26)

where it is understood that, throughout, we have u = 0. But
we know that, at u = 0, we may use the identity hu = hv

with the appropriate limits and so, integrating over the angles
gives

4(π )2
∫ ∞

1

∫ ∞

1

∫ 1

−1
�A

∂�A

∂u
hp1hp2hω1hω2dp1dp2dv. (A27)
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The product of the scale factors is

hp1hp2hω1hω2 = R4

16

√
p2

1 − v2
√

p2
2 − v2(1 − v2). (A28)

To evaluate the integral, we expand

√
p2

1 − v2 = p1

√
1 −

(
v

p1

)2

, (A29)

first, in terms of v
p1

with p1 � 1, |v| � 1 and then, in terms of
powers of (p1 − 1). The form of the approximate wave func-
tion is a product of exponentials in p1,p2 times polynomials in
(p1 − 1),(p2 − 1),v with coefficients depending on 1

R
so that

the integration over p1 may then be carried out analytically
term by term. A similar analysis may be performed for p2

so that the final integral is a simple polynomial over v. This

was carried out using MAPLE, but in order to obtain the final
result in terms of R, it was necessary to express the exponent
α in terms of R, and we used the expansion in Eq. (A6). To
obtain formulas for the exchange in different ranges of R, it
is possible to change the fitting points used in deriving this
expansion, but we need R to be large for the validity of the
process. The exponent α also has a significant effect on the
volume integral. If the 1s functions are used instead of φa,φb,
then this can be evaluated as 1 + O( exp(−2R)), but in our
case, 1 is replaced by the form

1 + c1

R
+ c2

R2
+ · · · . (A30)

The calculation of the volume integral is carried out straight-
forwardly in MAPLE using two sets of spheroidal coordinates
and, again, making use of the expansion of α in terms of R.
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