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In the framework of the multiconfiguration Dirac-Hartree-Fock method, we investigate the transition properties
of four excited states in the 2p53s configuration of neutral neon. The electron correlation effects are taken into
account systematically by using the active space approach. The effect of higher-order correlation on fine structures
is shown. We also study the influence of the Breit interaction and find that it reduces the oscillator strength of
the 3P o

1 -1S0 transition by 17%. It turns out that the inclusion of the Breit interaction is essential even for such a
light atomic system. Our ab initio calculated line strengths, oscillator strengths, and transition rates are compared
with other theoretical values and experimental measurements. Good agreement is found except for the 3P o

2 -1S0

M2 transition for which discrepancies of around 15% between theories and experiments remain. In addition,
the impact of hyperfine interactions on the lifetimes of the 3P o

0 and 3P o
2 metastable states is investigated for the

21Ne isotope (I = 3/2). We find that hyperfine interactions reduce the lifetimes drastically. For the 3P o
0 state the

lifetime is decreased by a factor of 630.
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I. INTRODUCTION

Lifetimes of states in the first excited configuration 2p53s

for neutral neon are important, not only because of their
potential applications [1–7] relevant to plasma diagnosis,
laser techniques, and the interpretation of astrophysical data,
but also for investigating electron correlation and relativistic
effects or testing many-body theories of atomic physics [8–14].

A great deal of calculations and measurements have been
reported for electric dipole (E1) transition probabilities or
corresponding oscillator strengths (gf ) between the states
of the ground 2p6 and first excited 2p53s configurations of
neutral neon. However, a satisfactory precision has not been
achieved yet. For instance, the gf values of the lower J = 1
level, i.e., 3P o

1 (the LS coupling label is used throughout
this paper for convenience), obtained by the nonrelativistic
wave functions with relativistic corrections in the Breit-Pauli
(BP) approximation range from 0.0102 to 0.0123 [2,5,12,14],
while the relativistic results are larger than 0.0130 [11,13].
Unfortunately, the inconsistency cannot be resolved by the
experimental measurements because of large error bars. The
detailed comparisons have been recently reviewed by Chan
[15], Avgoustoglou [11], Savukov [12], and Zatsarinny [14].

Another appealing subject is the lifetimes of the two
metastable 3P o

2 and 3P o
0 levels in the 2p53s configuration.

For isotopes without nuclear spin I , the magnetic quadrupole
(M2) transition to the ground state is the dominant single-
photon decay channel for the 3P o

2 state, while the 3P o
0 level

can decay through the magnetic dipole (M1) or electric
quadrupole (E2) transition to 3P o

1,2 lower states. In 1972,
Van Dyck, Johnson, and Shugart measured the composite
lifetime of the metastable rare-gas atoms in these two states
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using the time-of-flight technique [16]. The experiment sets
a lower limit for the lifetime, and the value is 0.8 s for Ne.
Recently, Zinner determined the lifetime of the 3P o

2 state by
measuring the decay in fluorescence of an ensemble of 20Ne
atoms trapped in a magneto-optical trap (MOT) [17]. It is
worth noting, however, that the latest experimental result τ =
14.73(14) s considerably differs from the earliest theoretical
results τ = 24.4 s by Small-Warren and Chow Chiu [18] and
τ = 29 s by Fielder, Jr. et al. [8,9]. Also, it does not agree
with recent calculations; that is, 19.8 s by Beck [19] with
relativistic configuration interaction method, 18.9 s obtained
by Desclaux et al. (cited in Ref. [17]) and Dong et al. [13]
using the multiconfiguration Dirac-Hartree-Fock (MCDHF)
method, and 16.9 s by Froese Fischer and Tachiev [5] with the
multiconfiguration Hartree-Fock (MCHF) method including
relativistic corrections in the BP approximation.

On the other hand, for isotopes having a nonzero nuclear
spin, issues become complicated since a new decay channel is
opened by hyperfine interactions. This transition is referred to
as a hyperfine induced transition (HIT) or hyperfine quenching
decay mode [20]. Owing to their peculiarity, HITs have
attracted much attention during the last several years [21–25],
stimulating us to further predict the rates for the 3P o

0 and 3P o
2

metastable states of the 21Ne isotope.
In this work, we perform large-scale calculations of the tran-

sition properties of states in the 2p53s configuration using the
GRASP2K package [26] based on the MCDHF method which al-
lows one to take electron correlation and relativity into account
on the same footing. The active space approach is adopted to
monitor the convergence of the physical quantities concerned.
The importance of the Breit interaction for an accurate
determination of the lifetimes is studied. We report the lifetime
of these states for abundant isotopes with respect to important
decay channels including hyperfine induced transitions.
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II. THEORETICAL METHOD AND COMPUTATIONAL
MODEL

A. MCDHF method

The multiconfiguration Dirac-Hartree-Fock method is writ-
ten up in the monograph by Grant [27] and we here just
give a brief description of the method. Starting from the
Dirac-Coulomb Hamiltonian

HDC =
∑

i

[
c αi · pi + (βi − 1)c2 + V N

i

] +
∑
i>j

1/rij , (1)

where V N is the monopole part of the electron-nucleus
Coulomb interaction, the atomic state functions (ASFs) de-
scribing different fine-structure levels are obtained as linear
combinations of symmetry adapted configuration state func-
tions (CSFs) with same parity P , angular momentum J , and
its MJ component along z direction

�(PJMJ ) =
N∑

j=1

cj�(γjPJMJ ). (2)

In Eq. (2), cj is the mixing coefficient and γj denotes other
appropriate labeling of the configuration state function, for
example, orbital occupation numbers and coupling trees.
The configuration state functions are built from products of
one-electron Dirac orbitals. In the self-consistent field (SCF)
procedure, both the radial parts of the Dirac orbitals and the
expansion coefficients are optimized to minimize the energies
concerned. Calculations can be performed for a single level,
but also for a portion of a spectrum in an extended optimal level
(EOL) scheme where optimization is applied on a weighted
sum of energies. The Breit interaction

Bij = − 1

2rij

[
αi · αj + (αi · ri j )(αj · ri j )

r2
ij

]
(3)

can be further included in subsequent relativistic configuration
interaction (RCI) computations.

Once the atomic state functions have been obtained, atomic
parameters are evaluated in terms of reduced matrix elements
of the corresponding tensor operator

〈�(PJ ) ‖O(λ)‖�(P ′J ′)〉. (4)

For the transition, the tensor operator O(λ) is a multipole
radiation field operator. The superscript designates the type
of multipole: λ = 1 for electric multipoles and λ = 0 for
magnetic multipoles. This expectation value reduces to a sum
over reduced matrix elements between CSFs by substituting
the ASF expansions (2). Using Racah algebra, these reduced
matrix elements, in turn, are expressed as a weighted sum over
radial integrals involving the radial relativistic one-electron
orbitals.

The restriction from Racah algebra that ASFs are built
from the same orthogonal radial orbital set can be relaxed
by the biorthogonal transformation technique [28,29]. As a
result, reduced matrix elements between two atomic state
functions described by independently optimized orbital sets
can be calculated using standard techniques.

B. Computational model

In the framework of the MCDHF method, the building
of the configuration space is pivotal not only for capturing
the electron correlation effect efficiently, but also for
circumventing the convergence problem that one frequently
encounters in SCF calculations. In this work, we use the active
space (AS) approach to generate the configuration list from
the reference configuration set. The reference set is initially
made up of (near-)degenerate reference configurations and
can be augmented by important CSFs for considering the
higher-order correlation effects [30–32]. We name in this paper
the initial set as MR(0) and the latter MR(1). More generally,
the reference set MR can be divided into several subsets for
explaining correlation effects between specific electron pairs.
According to the perturbation theory, the first-order correction
of ASFs is expressed as a linear combination of CSFs that
are obtained by replacing one or two occupied orbitals of the
reference configurations in MR(0) with active orbitals [33].
The set of active orbitals is enlarged systematically, which
makes it possible to monitor the convergence of the physical
quantities under investigation. Higher-order correlation
corrections are more difficult to deal with since the number of
CSFs grows rapidly and easily goes beyond the capability of
even a large computer system. Yet most CSFs actually make
fractional contributions to ASFs. The key point in this step is to
define the MR(1) appropriately. In general, significant CSFs in
first-order correction are added to the MR(0) to form the MR(1)

set. The configuration space is further expanded by single (S)
and double (D) replacements for orbitals of CSFs belonging
to MR(1) with the ones appearing in a given active set.

For the case of neon, Lee et al. pointed out that higher-
order correlations of the L shell are significant for the
ground state [34]. Afterwards, Dong et al. also showed
by MCDHF calculations that CSFs generated from the
2s22p43p2 configuration improve the accuracy of the tran-
sition rates to a great extent [13]. As a result, we choose
{{2s22p6; 2s22p43p2; 2s22p53p}; {1s22s22p6}} as the MR(0)

set for the ground state and {{2s22p53s}; {1s22s22p53s}}
for the four lowest excited states, respectively. The first
subsets in MR(0) aim at accounting for the outer electron
correlations and the second for correlations involving the
1s core. The construction of the configuration space is
presented in Table I. As can be seen from this table, these
correlation models are marked with nlSD where n and l,
if appearing, designate, respectively, the maximum principal
and orbital angular momentum quantum numbers of the
active orbitals. The core correlation involving 1s electrons
(labeled as “CC”) is taken into account by allowing SD
excitations from the 1s core to the largest active set. To
incorporate the residual higher-order correlations of outer
shells, the {2s2p53s3p; 2s22p43d2; 2s2p63s} configurations
are added to the first subset of MR(0) for the ground state
and {2s22p33s3p2; 2s2p53s3d; 2s22p33s3d2; 2s22p43s3p;
2s22p53d} for the excited states to set up MR(1). The SD
excitations up to n = 4 are based on the MR(1) and the CSFs
are appended to the CC model to form the final configuration
spaces (marked with MR). It is worth noting that the addition of
2s22p53p; 2s2p63s; 2s22p43s3p; 2s22p53d configurations in
the reference sets is ascribed to the requirement of closing the
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TABLE I. The number of CSFs in various correlation models. JP are the total angular momentum (J ) and parity (P ) of an atomic state.
MR stands for the reference configuration set, and AO for the set of active orbitals. The number of CSFs without reduction is presented in
parentheses following the number of the reduced configuration space. * indicates that all active orbitals are included.

NCSF
MR AO Model J P = 0e

{2s22p6; 2s22p43p2; 2s22p53p} DF 12(12)
{3s,3p,3d} 3SD 549(728)

{3*,4s,4p,4d ,4f } 4SD 3731(6021)
{3*,4*,5s,5p,5d,5f,5g} 5SD 10 884(19 355)

{3*,4*,5*,6s,6p,6d,6f,6g,6h} 6SD 23 166(43 967)
{3* 4*,5*,6*,7s,7p,7f,7f } 7f SD 35 746(67 433)

{3*,4*,5*,6*,7*,8s,8p,8d,8f } 8f SD 51 122(96 017)
{3*,4*,5*,6*,7*,8*,9s,9p,9d,9f } 9f SD 69 294(129 719)⋃{1s22s22p6} {3s, . . . ,9f } CC 71 406(132 005)⋃{2s2p53s3p; 2s22p43d2; {3s,3p,3d,4s,4p,4d,4f } MR 81 327(143 037)

2s22p53p; 2s2p63s}
J P = 0o J P = 1o J P = 2o

{2s22p53s} DF 1(1) 2(2) 1(1)
{3s,3p,3d} 3SD 86(145) 326(369) 287(431)

{3*,4s,4p,4d,4f } 4SD 444(866) 1942(2279) 1821(2887)
{3*,4*,5s,5p,5d,5f,5g} 5SD 1192(2495) 5500(6734) 5327(9027)

{3*,4*,5*,6s,6p,6d,6f,6g,6h} 6SD 2442(5325) 11 600(14 639) 11 469(20 435)
{3* 4*,5*,6*,7s,7p,7f,7f } 7f SD 3727(8162) 17 846(22 332) 17 611(30 868)

{3*,4*,5*,6*,7*,8s,8p,8d,8f } 8f SD 5289(11 619) 25 468(31 683) 25 100(43 485)
{3*,4*,5*,6*,7*,8*,9s,9p,9d,9f } 9f SD 7128(15 696) 34 466(42 692) 33 936(58 286)⋃{1s22s22p53s} {3s, . . . ,9f } CC 11 744(30 740) 59 320(83 520) 55 901(113 950)⋃{2s22p33s3p2; 2s2p53s3d; {3s,3p,3d,4s,4p,4d,4f } MR 45 368(63 831) 135 830(173 967) 187 309(238 761)

2s22p33s3d2; 2s22p43s3p; 2s22p53d}

CSF space under deexcitation by the biorthogonal transforma-
tion technique [26].

In practice, we further eliminate the CSFs that do not
interact with reference configurations [26,33] in order to
raise the calculation efficiency. As can be seen from Table I,
the number of CSFs of the reduced configuration space is
considerably smaller than the corresponding full one. These
removed CSFs contribute to the atomic properties under
investigation at higher order and the quantitative influence can
be seen in Table II. Using 9 f SD and CC models, we calculate
excitation energies and 3P o

1 -1S0 line strength. It is found that
the impact of removed CSFs on excitation energies between
different configurations or terms is fractional, whereas it is
remarkably large for the fine-structure splitting. For example,
the influence reaches ∼20% for the 3P o

1 -3P o
0 fine structure.

Comparing the E1 line strengths obtained with the two

configuration spaces, we see that the loss of CSFs contributes
to the weak line by 3% but merely 0.2% for the strong line.

C. Breit interaction

Ynnerman et al. have demonstrated that the Breit interac-
tion plays a key role in the spin-forbidden 3P o

1 -1S0 transition
of low-Z Be-like ions [36]. Avgoustoglou et al. have also
illustrated the effect of the Breit interaction on the Ne I
transition energies [10]. In this section, we investigate the
Breit interaction effect on transition energies and on the
3P o

1 -1S0 line strength. It should be emphasized that the full
configuration space must be used because the strategy adopted
for reducing the number of CSFs does not apply to the
Dirac-Breit Hamiltonian. As examples, we present results
with and without the Breit interaction in Table III, which
are obtained using the full DF, 9f SD, and CC configuration

TABLE II. Comparison of transition energies (in cm−1) and E1 line strengths (in a.u.) obtained with reduced (r) and full (f) 9f SD and CC
configuration spaces. B: Babushkin gauge; C: Coulomb gauge. NIST data [35] are presented for reference.

Excitation energy Line strength (3P o
1 -1S0) Line strength (1P o

1 -1S0)

Model 1S0-3P o
1

3P o
1 -1P o

1
3P o

1 -3P o
0

3P o
2 -3P o

0 B C B C

9f SD(r) 134 838 1391.95 475.16 874.87 0.034 17 0.034 19 0.3562 0.3556
9f SD(f) 134 837 1397.68 400.33 835.33 0.035 12 0.035 08 0.3555 0.3550

CC (r) 135 398 1381.44 479.10 880.12 0.034 88 0.034 10 0.3524 0.3440
CC (f) 135 395 1387.28 404.84 840.76 0.035 83 0.034 99 0.3517 0.3435

NIST 134 459 1429.43 359.35 776.80
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TABLE III. Breit interaction effect on the transition energies and
the 3P o

1 -1S0 line strength. The full configuration space is used in these
calculations. B: Babushkin gauge; C: Coulomb gauge. NIST data [35]
are presented for references.

Line strength
Fine structures (in cm−1) (3P o

1 -1S0) (in a.u.)

Model 3P o
1 -1P o

1
3P o

1 -3P o
0

3P o
2 -3P o

0 B C

DF 1400.06 389.16 820.83 0.025 84 0.031 72
DF + Breit 1485.00 347.73 752.63 0.021 84 0.026 84

9f SD 1397.68 400.33 835.33 0.035 12 0.035 08
9f SD + Breit 1381.77 358.59 767.36 0.029 89 0.029 86

CC 1387.28 404.84 840.76 0.035 83 0.034 99
CC + Breit 1370.59 362.71 772.65 0.030 54 0.029 79

NIST 1429.43 359.35 776.80

models. As can be seen from this table, the Breit interaction
substantially affects the physical quantities concerned. For
instance, the impact of the Breit interaction on the line strength
for the 3P o

1 -1S0 transition reaches about 17%.

III. RESULTS AND DISCUSSION

A. Excitation energies

As functions of the computational models described in
Sec. II B, the excitation energies are presented in Table IV.
The reduced configuration space is used at each step except
for the last one, where the Breit interaction is accounted
for with the full configuration list. It is found that the
correlation between outer electrons is saturated in the 9f SD
model. The core correlation and high-order effect make
relatively small contributions, but significant enough to bring
the excitation energies to a satisfactory agreement with the
experimental values [35]. Compared with other theories, the
present excitation energies between ground and excited states

are better than those obtained by Avgoustoglou et al. [10,11]
and by Savukov et al. [12] with many-body perturbation theory
(MBPT), but are not as excellent as the MCDHF data of Dong
et al. [13] and MCHF values of Froese Fischer and Tachiev [5].
It should be pointed out, however, that the core excitations
have been neglected in these two calculations. Moreover, in
the work of Froese Fischer and Tachiev, relativistic effects
were included through the Breit-Pauli Hamiltonian, but the
orbit-orbit interaction, which is part of the Breit interaction,
is ignored. In addition, we noticed that present calculated
fine-structure splittings are consistent with the experimental
values [35], and are better than other calculations as well.

B. The 3,1P o
1 -1S0 E1 transitions

In Table V we report line strengths (S) and corresponding
oscillator strengths (gf ) in Babushkin and Coulomb gauges
for 3,1P o

1 -1S0 transitions. These two gauges are related to the
nonrelativistic length and velocity form of transition operators,
respectively [37]. The convergence of line strengths and
oscillator strengths and the good consistency found between
the two gauges further justify our computational models and
suggest reliable atomic wave functions.

Theoretical and experimental values published during the
last two decades are also displayed in Table V. For the 3P o

1 -1S0

transition, we see excellent agreement with the semiempirical
calculations of Hibbert et al. [2] and of Seaton [4]. The
present gf value differs from MBPT values of Avgoustoglou
et al. [11] and of Savukov et al. [12] by 30% and 18%,
respectively. Such large discrepancies might be attributed to
the Breit interaction that was completely or partly neglected in
MBPT calculations of transition properties. Good agreement
is found with the results obtained by Dong et al. [13]. They
adopted Löwdin’s approach [38] to account for nonorthogonal
orbitals in transitions [39,40] instead of the biorthogonal
transformation technique used in this work. The difference
between the results of Froese Fischer and Tachiev [5] and ours

TABLE IV. Excitation energies (in cm−1) of 2p53s levels for neutral neon.

Model 3P o
2

3P o
1

3P o
0

1P o
1

3P o
1 -1P o

1
3P o

1 -3P o
0

3P o
2 −3P o

0

DF 140 733 141 165 141 554 142 565 1400 389 821
3SD 138 180 138 599 138 986 139 977 1378 387 806
4SD 133 797 134 203 134 652 135 600 1397 449 854
5SD 134 420 134 821 135 288 136 207 1386 468 869
6SD 134 572 134 972 135 446 136 352 1380 474 875
7f SD 134 494 134 894 135 370 136 277 1383 475 876
8f SD 134 462 134 861 135 336 136 253 1392 475 874
9f SD 134 438 134 838 135 313 136 230 1392 475 875
CC 134 997 135 398 135 877 136 780 1382 479 880
MR 134 347 134 783 135 191 136 173 1390 408 845
Breit 134 356 134 765 135 127 136 141 1375 362 771

Others
Avgoustoglou et al. [10] 134 011 134 406 134 757 135 570 1164 351 746
Avgoustoglou et al. [11] 133 770 135 196
Savukov et al. [12] 132 738 134 231
Dong et al. [13] 134 110 134 567 134 940 135 969 1402 373 830
Froese Fischer and Tachiev [5] 134 038 134 452 134 807 135 887 1435 355 769
NIST [35] 134 042 134 459 134 819 135 889 1430 360 777
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TABLE V. The convergence trends of line strengths S (in a.u.) and corresponding oscillator strengths gf for the 1,3P o
1 -1S0 E1 transitions of

neutral neon. B: Babushkin gauge, C: Coulomb gauge.

3P o
1 -1S0

1P o
1 -1S0

S gf S gf

Model B C B C B C B C

DF 0.031 72 0.025 84 0.013 60 0.011 08 0.3428 0.2796 0.1484 0.1211
3SD 0.031 99 0.031 62 0.013 47 0.013 31 0.3528 0.3484 0.1500 0.1482
4SD 0.032 50 0.033 15 0.013 25 0.013 51 0.3474 0.3539 0.1431 0.1458
5SD 0.033 27 0.033 52 0.013 63 0.013 73 0.3469 0.3487 0.1435 0.1443
6SD 0.033 83 0.033 78 0.013 87 0.013 85 0.3485 0.3469 0.1443 0.1437
7f SD 0.033 93 0.033 94 0.013 90 0.013 91 0.3509 0.3501 0.1453 0.1449
8f SD 0.034 15 0.034 19 0.013 99 0.014 01 0.3552 0.3546 0.1470 0.1468
9f SD 0.034 17 0.034 19 0.014 00 0.014 00 0.3562 0.3556 0.1474 0.1472
CC 0.034 88 0.034 10 0.014 35 0.014 02 0.3524 0.3440 0.1464 0.1429
MR 0.035 79 0.035 57 0.014 65 0.014 56 0.3527 0.3504 0.1459 0.1449
Breit 0.030 32 0.030 07 0.012 41 0.012 31 0.3583 0.3556 0.1482 0.1471

Theories
Hibbert et al. [2] 0.0123 0.1607
Seaton [4] 0.0126 0.168
Avgoustoglou et al. [11] 0.0163 0.0156 0.161 0.147
Savukov et al. [12] 0.0102 0.1459
Dong et al. [13] 0.031 75 0.033 09 0.012 98 0.013 53 0.3492 0.3587 0.1442 0.1482
Froese Fischer and Tachiev [5] 0.026 80 0.010 95 0.3668 0.1514
Zatsarinny and Bartschat [14] 0.0118 0.0116 0.159 0.156

Experiments
Chan et al. [15] 0.0118(6) 0.159(8)
Ligtenberg et al. [43] 0.010 17(30) 0.1369(35)
Suzuki et al. [41] 0.0106(14) 0.137(18)
Curtis et al. [42] 0.0084(3) 0.165(11)
Gibason et al. [44] 0.010 95(32) 0.1432(38)
Zhong et al. [45] 0.0124(38) 0.156(9)

is about 12%. Using the similar Breit-Pauli approximation to
Froese Fischer and Tachiev, Zatsarinny and Bartschat recently
calculated the gf values by the B-spline method [14],
whose results approach our calculations. Compared with
experimental measurements, our results perfectly agree with
Zhong et al. and are in good agreement with Chan et al. [15]
and Suzuki et al. [41] with respect to the experimental errors.
It is worth noting that all these experiment measurements in
good agreement with present calculations were obtained by
the electron-energy-loss spectrometer method.

For the 1P o
1 -1S0 transition, the agreement between theories

and experiments is better than for the spin-forbidden transition.
But we find that the semiempirical results of Hibbert et al. [2]
and of Seaton [4] and the B-spline values by Zatsarinny and
Bartschat [14] are larger than other theoretical data. Present
gf is also consistent with all experimental results listed in this
table, except for the value of Curtis et al. [42].

C. The 3P o
2 -1S0 M2 transition

In Table VI we display the 3P o
2 -1S0 M2 transition rates and

corresponding line strengths as functions of the computational
models as well as other theoretical and experimental values
when available. It is found that our results are in good

consistency with the results of Beck [19], Dong et al. [13],
Desclaux et al., [46] and Froese Fischer and Tachiev [5]. How-
ever, all theoretical predictions differ from the experimental
value [17] by amounts ranging from 14% to 40%. To explain
such large discrepancies, further experiments are called for.

D. The 3P o
0 -3P o

1 M1 and 3P o
0 -3P o

2 E2 transitions

Line strengths and rates for 3P o
0 -3P o

1 M1 and 3P o
0 -3P o

2 E2
transitions are presented in Table VII with the corresponding
transition energies. For the M1 transition, we note that the
rate is much more sensitive to the transition energy than to
the line strength that hardly changes with the computational
models. As a result, higher-order electron correlation and the
Breit interaction must be taken into account to achieve high
accuracy for the M1 transition rate due to their considerable
effects on fine structures as discussed in Secs. II B and II C. It is
found from Table VII that our final result is in good agreement
with other theoretical calculations.

For the E2 transition the rate is five orders of magnitude
smaller than the M1 transition, and thus is negligible. However,
we discovered that the transition probabilities in Babushkin
and Coulomb gauges are not consistent with each other even
with large configuration spaces. As can be seen from Table VII,
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TABLE VI. Line strengths S (in a.u.) and rates A (in s−1) for the
3P o

2 -1S0 M2 transition as a function of the active space. Numbers in
square brackets stand for the power of 10, and in parentheses for error
bars.

Model S A

DF 3.766 6.199[−2]
3SD 3.730 5.602[−2]
4SD 3.916 5.006[−2]
5SD 4.031 5.275[−2]
6SD 4.159 5.473[−2]
7f SD 4.228 5.548[−2]
8f SD 4.332 5.678[−2]
9f SD 4.350 5.697[−2]
CC 4.284 5.727[−2]
MR 4.335 5.657[−2]
Breit 4.345 5.672[−2]

Theories
Small-Warren and Chow Chiu [18] 4.10[−2]
Indelicato et al.a 4.55[−2]
Beck [19] 5.05[−2]
Dong et al. [13] 5.29[−2]
Desclaux et al.b 5.29[−2]
Froese Fischer and Tachiev [5] 4.525 5.838[−2]

Experiments
Zinner et al. [17] 0.067 90(64)

aThis value is cited in Ref. [47].
bThis value is cited in Ref. [17].

the inconsistency arises from the deviation of line strengths in
Coulomb gauge from those in Babushkin gauge, although they
converge with the expansion of configuration space. A strong
gauge dependency of transition probabilities has also been
found in the preceding investigation on the spin-forbidden

2s2p 3P o
1 -2s2 1S0 transition of the Be-like C ion [36,48]. Chen

et al. explained that this gauge dependency is caused by
the neglect of the negative-energy state which significantly
influences the velocity-gauge results [49]. Therefore, we argue
that the gauge dependency of the E2 transition rate in the case
of Ne is brought about for the same reason.

E. Hyperfine induced 3P o
0,2-

1S0 E1 transitions

In the presence of hyperfine interactions, the electronic
angular momentum J is coupled with the nuclear angular
momentum I to form the total angular momentum F of
the atomic system and only the latter is the good quantum
number. As a result, new decay channels can be opened by
hyperfine interactions, which affect lifetimes of metastable
states substantially. These transitions, called hyperfine induced
transitions, have been investigated extensively during the
last decade owing to their potential applications in many
fields [20–25]. Neon possesses a stable isotope 21Ne with
nuclear spin I = 3/2, a magnetic dipole moment μI =
−0.661 797 n.m. and with an electric quadrupole moment
Q = 0.103 barns in the nuclear ground state [50]. Two E1
transitions from the metastable states 3P o

0,2 to the ground state
1S0 can be induced by hyperfine interactions in 21Ne isotope. In
this section, we predict the decay rates of these two transitions.

Methods calculating the HIT rate have been reviewed in
Ref. [20]. Based on perturbation theory, the HIT rate of 21Ne
can be estimated by

A = 2.02613 × 1018

3λ3
SHIT, (5)

where λ is the HIT transition wavelength in Å and SHIT is the
corresponding line strength that is expressed as

SHIT = ∣∣h1
〈3
P o

1 ||O(1)||1S0
〉 + h2

〈1
P o

1 ||O(1)||1S0
〉∣∣2

. (6)

TABLE VII. Line strengths S (in a.u.) and rates A (in s−1) together with corresponding transition energies (in cm−1) of the 3P o
0 -3P o

1 M1
and 3P o

0 -3P o
2 E2 transitions for neon. �E represents transition energy. B: Babushkin gauge; C: Coulomb gauge. The number in square brackets

represents the power of 10.

M1 E2

Model �E S A �E SB SC AB AC

DF 389 1.835 2.917[−3] 821 3.91[−1] 1.26 1.63[−8] 5.27[−8]
3SD 387 1.838 2.871[−3] 806 4.21[−1] 1.61[−1] 1.60[−8] 6.14[−9]
4SD 449 1.833 4.462[−3] 854 4.10[−1] 6.61[−2] 2.09[−8] 3.37[−9]
5SD 468 1.829 5.049[−3] 869 4.12[−1] 1.28[−1] 2.28[−8] 7.12[−9]
6SD 474 1.828 5.258[−3] 875 3.90[−1] 1.65[−1] 2.24[−8] 9.48[−9]
7f SD 475 1.828 5.293[−3] 876 3.72[−1] 1.67[−1] 2.15[−8] 9.61[−9]
8f SD 475 1.830 5.279[−3] 874 3.20[−1] 2.94[−2] 1.82[−8] 1.68[−9]
9f SD 475 1.830 5.296[−3] 875 3.09[−1] 1.14[−2] 1.77[−8] 6.53[−10]
CC 479 1.825 5.414[−3] 880 3.14[−1] 3.83[−4] 1.86[−8] 2.27[−11]
MR 408 1.821 3.348[−3] 845 3.15[−1] 1.47[−3] 1.51[−8] 7.08[−11]
Breit 362 1.849 2.358[−3] 771 3.14[−1] 1.90[−3] 9.61[−9] 5.81[−11]
NIST 359 777

Theory
Small-Warren et al. [18] 2.33[−3]
Dong et al. [13] 2.308[−3]
Froese Fischer and Tachiev [5] 355 1.864 2.240[−3]
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TABLE VIII. Hyperfine induced 3P o
0 -1S0 E1 transition rates A (in s−1) for 21Ne together with off-diagonal hyperfine

interaction matrix elements W in (a.u.) and hyperfine mixing coefficients as functions of computational models. The
number in square brackets represents the power of 10.

(3P o
1 , 3P o

0 ) (1P o
1 , 3P o

0 )

Model W1 h1 W2 h2 A

DF −1.4241[−7] −8.032[−5] −1.2290[−7] 2.668[−5] 1.716
3SD −1.3692[−7] −7.767[−5] −1.2325[−7] 2.730[−5] 1.644
4SD −1.1001[−7] −5.383[−5] −1.3080[−7] 3.028[−5] 1.252
5SD −1.1566[−7] −5.427[−5] −1.2899[−7] 3.082[−5] 1.316
6SD −1.1210[−7] −5.188[−5] −1.2951[−7] 3.140[−5] 1.323
7f SD −1.1343[−7] −5.238[−5] −1.2918[−7] 3.124[−5] 1.328
8f SD −1.1288[−7] −5.219[−5] −1.2870[−7] 3.079[−5] 1.312
9f SD −1.1297[−7] −5.218[−5] −1.2878[−7] 3.083[−5] 1.316
CC −1.3475[−7] −6.173[−5] −1.2337[−7] 3.000[−5] 1.458
MR −1.3162[−7] −7.072[−5] −1.2411[−7] 2.776[−5] 1.488
Breit −1.3438[−7] −8.156[−5] −1.2072[−7] 2.614[−5] 1.484

For the latter equation, we only take into account the effect of
the adjacent 3P o

1 and 1P o
1 perturbative states. The two reduced

matrix elements appearing in Eq. (6) are the square roots of line
strength S presented in Table V. h1 and h2 in Eq. (6) stand for
the hyperfine mixing coefficient that can be estimated from the
ratio of the off-diagonal hyperfine interaction matrix element
and the energy difference between the interactive states.

Using the computational model described in Sec. II B, we
calculate the hyperfine induced 3P o

0,2-1S0 E1 transition rates
and present the results in Tables VIII and IX. Additionally, the
off-diagonal hyperfine interaction matrix elements (W ) and the
hyperfine mixing coefficients are displayed as well. It is found
from Table VIII that the off-diagonal hyperfine interaction
matrix elements are well converged with the expansion of
the configuration space, while relatively large changes in the
hyperfine mixing coefficients between CC, MR, and Breit
models are mainly attributed to the energy separations involved
that are sensitive to the higher-order correlation and the Breit
interaction effects as discussed in Secs. II B and II C. As can
be seen, the final hyperfine induced transition rate is three
orders of magnitude larger than the M1 transition presented
in Sec. III D and thus reduces the lifetime of the states by a
factor of 630. Therefore, for 21Ne the HIT is a dominant decay
channel from the 3P o

0 state.
For the other hyperfine induced transition from the 3P o

2
state to the ground state, the mechanism is a little more
complex since the excited level possesses several hyperfine
sublevels with F = 1/2,3/2,5/2,7/2 for the 21Ne isotope.
Out of them only the F = 1/2,3/2,5/2 states can decay

TABLE IX. F -dependent hyperfine induced 3P o
2 -1S0 transition

rates A (in s−1) together with associated hyperfine mixing coefficients
h1 and h2 for 21Ne by using the “Breit” model. The number in square
brackets represents the power of 10.

F h1 h2 A

1/2 −4.946[−7] 5.089[−7] 2.500[−4]
3/2 5.779[−6] 1.351[−6] 6.395[−5]
5/2 1.935[−5] 2.390[−6] 6.153[−3]

to the ground state. In Table IX we present the transition
rates and corresponding hyperfine mixing coefficients for
these hyperfine states using the Breit model. As can be seen
from this table, the HIT rates are somewhat smaller than
the M2 transition probability discussed in Sec. III C but still
significantly affect the level lifetime.

F. Level lifetimes in 2s22 p53s configuration

Using the data presented in Tables V–IX, we obtain the life-
times of states in 2p53s configuration for 20,21Ne isotopes by

τk = 1∑
i Aki

, (7)

where the summation is made over the main decay channels.
For the 3P o

2 state of 21Ne isotope, the weighted average

lifetime (τ =
∑

i (2Fi+1)τi∑
i (2Fi+1) ) is calculated. The results are

reported in Table X. It can be seen that the lifetimes of
those two metastable states are apparently different owing
to the impact of hyperfine interactions, especially for the
3P o

0 state. We should emphasize that the interference effect
between the main decay channels is neglected in Eq. (7), which
brings about an observable variation in lifetimes if transition
probabilities have similar orders of magnitude. As discussed in
Sec. III E the hyperfine induced transition rate of the 3P o

2 state
for 21Ne has the same order of magnitude as the M2 transition,
and strong interference may occur. This also influences the
radiative emission distribution, which is useful for anisotropy
plasma diagnosis [51]. Further studies are ongoing.

TABLE X. Lifetimes (in s) of levels in 2p53s configuration for
20,21Ne isotopes. The relevant nuclear parameters are taken from
Ref. [50]. The number in square brackets represents the power of
10.

Isotope 3P o
2

3P o
1

3P o
0

1P o
1

20Ne 17.63 1.995[−8] 424.1 1.638[−9]
21Ne 17.10 1.995[−8] 0.6728 1.638[−9]
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G. Estimation of uncertainties

For light atoms such as neon, the main uncertainties in cal-
culations of physical quantities arise from electron correlation
effects. In this work, large-scale configuration spaces are used
to account for these correlation effects in the case of neutral
neon, even partly including higher-order correlation among
2s,2p valence electrons. The residual higher-order valence
correlations and the higher-order correlations between 1s core
electrons and between core and valence electrons, which
are not taken into account, contribute to the uncertainties.
By monitoring the convergence of physical quantities under
investigation as the active set is enlarged as well as monitoring
the changes as the correlation models are defined by including
higher-order correlation effects, we estimate that the errors in
present calculations are about 2%. This observation is further
strengthened by the excellent agreement between E1 rates in
the length and velocity gauges. The hyperfine induced 3P o

2 -1S0

E1 transition rate is an exception. This transition is sensitive
to higher-order correlation effects not included or saturated
in our calculations. Moreover, the counteraction between off-
diagonal magnetic dipole and electric quadrupole interactions
contributes to the uncertainties in this rate. Approximately,
these bring about 10%–20% error for this transition rate. Other
physical effects neglected in this work such as frequency-
dependent Breit interactions and quantum electrodynamical
corrections are indeed fractional for neutral neon, as discussed
by Avgoustoglou et al. [10].

IV. CONCLUSION

In this work we investigate the transition properties of the
main one-photon decay channels for the 2p53s configuration
of Ne isotopes using the MCDHF method. The electron
correlation effects are taken into account systematically with
the active space approach. Detailed comparisons are made
with measurements and with other calculations. The effects
of Breit interaction on fine structures and transition properties
are discussed. It is found that the Breit interaction changes
the line strength of the 3P o

1 -1S0 transition by around 17%.
Present calculations do not resolve the discrepancies in the
3P o

2 -1S0 M2 transition rates between theories and experiments.
Further measurement is therefore called for. The hyperfine
induced 3P o

0,2-1S0 E1 transition rates for the 21Ne isotope are
calculated as well. We discovered that the hyperfine interac-
tions drastically affect the lifetime of the metastable states,
especially for the 3P o

0 state. The lifetime of states in 2p53s

configuration are predicted for both 20Ne and 21Ne isotopes.
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