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Exact dispersion-force potentials: Interaction of an atom with a conductor-patched dielectric surface
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We study the interaction between a neutral atom or molecule and a conductor-patched dielectric surface. We
model this system by a perfectly reflecting disk lying atop a nondispersive dielectric half-space, both interacting
with the neutral atom or molecule. We assume the interaction to be nonretarded and at zero temperature. We
find an exact solution to this problem. In addition, we generate a number of other useful results. For the case of
no substrate, we obtain the exact formula for the van der Waals interaction energy of an atom near a perfectly
conducting disk. We show that the force acting on an atom that is polarized in the direction normal to the surface of
the disk displays intricate behavior. This part of our results is directly relevant to recent matter-wave experiments
in which cold molecules are scattered by a radially symmetric object in order to study interference patterns and
the so-called Poisson spot. Furthermore, we give an exact expression for the nonretarded limit of the dispersion
force potential between an atom and a perfectly conducting bowl.
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I. INTRODUCTION

The importance of electromagnetic dispersion forces [1]
in cold-atom physics is by now a well-established fact and
the theory of atom-surface interactions is well developed.
There are theoretical tools available, both numerical [3] and
analytical [4,5], for calculating dispersion forces between
atoms and polarizable objects for arbitrary geometries and a
variety of optical properties of the surfaces. However, practical
calculations of such dispersion forces tend to be complicated
because, in one way or another, they require solutions to
complex electromagnetic scattering problems. In order to
make calculations manageable and render final results to be
of practical use, simplifying assumptions of some sort need
to be introduced. One possibility is to focus attention on the
so-called nonretarded regime of the dispersion interaction, also
called the van der Waals regime. In this regime, one assumes
the speed of light to be infinite and therefore any scattering
problems whose solutions are required for the computation
of the force become essentially electrostatic problems. This
regime is applicable to atoms or molecules whose distance
to the surface is much smaller than the wavelength of their
dominant dipole transition. Although going to the nonretarded
regime somewhat restricts the applicability of the final results,
the benefits are enormous; electrostatics is considerably sim-
pler than electrodynamics plus there are numerous scenarios
where the nonretarded calculations are adequate and provide
accurate estimates of the dispersion forces. For example, the
spacings between molecular energy levels are relatively close,
so that the wavelengths of dominant dipole transitions in
molecules tend to be relatively large. Thus, the interaction
between cold molecules and surfaces often falls into the
nonretarded regime. Since the mathematical framework of
electrostatics is very well investigated, one is able to obtain
exact analytic solutions for some nontrivial geometries that
bear more resemblance to realistic experimental setups than
the oversimplified geometries often studied in the literature.

In this paper, we respond to the growing need of ex-
perimental physicists for simple and easy-to-use expressions
enabling efficient calculations of the dispersion forces in
realistic geometries that tend to arise in modern experiments.
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The question that we think requires urgent attention is this:
What is the interaction of an atom with a dielectric surface onto
which some conducting structures have been deposited? This
is a very common experimental scenario, e.g., with atom chips.
Inspired by recent progress in graphene technologies [6], one
might even imagine an atom interacting with graphene flake
or ribbon supported by a dielectric substrate. Such structures
are now routinely made and it is just a matter of time until they
find their way into cold-atom physics.

With this motivation in mind, we model a conductor-
patched dielectric surface interacting with a neutral atom
or molecule by a perfectly reflecting disk supported by a
nondispersive dielectric half-space interacting with a neutral
localized quantum system, represented by a fluctuating electric
dipole moment. We assume the interaction to be nonretarded
and at zero temperature.

In the following, we shall find an exact solution to the
problem of a perfectly reflecting disk atop a nondispersive
dielectric, which we think is a quite remarkable result. In
addition, we generate a number of other useful results. Most
notably, we obtain an exact formula for the van der Waals
interaction energy of an atom near a perfectly conducting disk.
We anticipate that this result will prove useful for current
matter-wave experiments where cold molecules are scattered
on radially symmetric objects in order to study the interference
patterns and in particular the so-called Poisson spot, which is
a phenomenon that is well known from standard optics. We
also derive an expression for the dispersion force acting on an
atom close to the edge of a conducting half-plane deposited on
a dielectric substrate. This formula can be applied to the case
of an atom near the edge of a conducting ribbon. Furthermore,
in the Appendix, we give an exact expression for the dispersion
interaction between an atom and a perfectly conducting bowl.

II. NONRETARDED DISPERSION-FORCE POTENTIAL

At close range, the dispersion interaction between a neutral
atom and a perfectly reflecting material structure is nonre-
tarded and can be worked out by methods of electrostatics.
Taking the atom to be a pointlike electric dipole located at ry,
one can show that the interaction energy with a nearby surface
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can, in rectangular coordinates, be written as [7]
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where Gy (r,r’) is the homogeneous part of the Green’s
function, to be explained further below. The sum runs over
the three components of the electric dipole moment operator
w;. The complete Green’s function G(r,r’) is the electrostatic
potential at r due to a unit point charge at r’ and satisfies
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with appropriate boundary conditions. For a perfect reflector,
the boundary conditions on G(r,r’) are for it to vanish
for any r on the surface of the reflector. For dielectric
surfaces, Maxwell’s equations imply continuity conditions
on the gradient of G(r,r’). The component of VG(r,r’) that
is parallel to the surface of the dielectric is required to
be continuous across the interface, whereas the component
normal to the surface of the dielectric is continuous when
multiplied by the respective dielectric constant €(r) on either
side of the interface. The homogeneous part of the potential
is the difference between the Green’s function G(r,r’) and
its free-space equivalent, i.e., the potential of the same point
charge in free space,
1
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So far, the problem is entirely classical and does not involve
quantum electrodynamics. The quantum properties of the atom
are accounted for in the expectation values of the electric dipole
moment operator ( ,uf) = (j| M,-2| J), where | j) denotes the state
of the atom, not necessarily its ground state. The difficulty of
determining the energy shift (1) lies in calculating the Green’s
function G(r,r’) for the geometry of interest.

III. CONDUCTING HALF-PLANE ON A DIELECTRIC
SUBSTRATE

A. Green’s function

In this section, we derive the Green’s function of the Poisson
equation for a semi-infinite conducting half-plane lying on
top of a dielectric substrate, as depicted in Fig. 1. We work
in cylindrical coordinates r = (p,¢,z) and place the origin
of the coordinate system on the edge of the conducting half-
plane, which is described by ¢ = 0. The plane ¢ = 7 describes
the surface of the polarizable body that is not coated by the
conductor. We require the electrostatic potential G(r,r’) to
vanish on the surface of the conducting half-plane, that is,

G(r,r') =0 for ¢ = {0,277} 4)

Across the half-plane described by ¢ = 7, we impose standard
dielectric continuity conditions,

a
e(¢)£G(r,r’) continuous.  (5)
To find the solution of Eq. (2) that satisfies the boundary
and continuity conditions described above, we work with
the eigenfunctions W,(p,¢,z) of the Laplace operator in
cylindrical coordinates and construct the Green’s function in
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FIG. 1. (Color online) A point charge at r' = (p/,¢',z") near a
perfectly reflecting half-plane lying on top of a dielectric half-space,
with constant and frequency-independent dielectric function € = n?
that generates the potential given in Eq. (10). Also shown are lines of
constant potential.

terms of an eigenfunction expansion (cf. Sec. III of Ref. [7]).
In the region 0 < ¢ < m, eigenfunctions that are regular for
small p and that vanish on the half-plane ¢ = 0 are

; 1
V(p,9,2) = e’”Jg(kp)—n sin (m—¢> (6)

1
N2 JT 2
In the region 7 < ¢ < 27, those that are regular for small p
and vanish on the half-plane ¢ = 27 are
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The parameters «, k, and m in Eqs. (6) and (7) would not a
priori need to be the same, but the requirement of continuity
of the p and z derivatives, according to Eq. (5), forces them
to be the same. In order to satisfy the simultaneous continuity
condition on €(¢)0W¥,(p,¢,z)/d¢, one needs to have either

sin (m_(l))‘ =0
2 p=r

d . [(mo m meo

—sin | — = —cos|—

o¢ 2 2 2
In the first case, m must therefore be an even integer, and
in the second, an odd integer. Putting the parts below and
above ¢ = 7 together with the appropriate relative factors
so as to satisfy the continuity conditions at ¢ = m, and

then normalizing each eigenfunction, one can proceed to
assembling the Green’s function from these eigenfunctions

or

¢=n d=m
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and obtain, in the region 0 < ¢ < w and 0 < ¢’ < 7,
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and in the region 7 < ¢ <27 and 0 < ¢’ < 7,
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Carrying out the integrations, as explained in detail in Sec. IV
of Ref. [7], one then finds for the Green’s function in the case
of the source being above the material, that is, for ¢" € (0,7),
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and
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Di=p2+p?—2pp'cos(p £¢) +(z—2)2,  (12)
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B. Energy shift

With the Green’s function (10) determined, the calculation
of the energy shift is now straightforward. We subtract the
free-space Green’s function from Eq. (10) and plug the result
into formula (1). For an atom located at (p,¢,z) (cf. Fig. 1),
we find that the nonretarded energy shift in the atom may be
expressed as

1

AE=————
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with the abbreviations
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In this form, the expression for the energy shift facilitates
a clear-cut comparison with the result obtained in Ref. [7]
for the case of the atom interacting with a half-plane alone,
i.e., without any substrate present. However, for practical
purposes, it is much more convenient to express the shift in
terms of Cartesian coordinates where the directions of the
unit vectors, in terms of which the dipole matrix elements
(u?) are expressed, are position independent. We set up the
Cartesian coordinate system in such a way that the z direction
is perpendicular to the surface and the x axis runs along
the edge of the conducting sheet. Mathematically, we set
pcos¢p =y, psing =z, z = x in Eq. (10) and calculate the
energy shift again by using (1). We obtain
1

272(n2 + 1)eg

with the abbreviations
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For an atom with isotropic polarizability, which is

the most common case, we get Ex(uf()—l—Ey(,ui)—i-

—

E.(u?) = Eio(i?), with
1 y
8(y2 +22)%2  422(y* +2?)
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which is a remarkably simple end result. It is straightforward to
visualize the result by plotting the direction of the dispersion
force, which is done in Fig. 2. As one would expect from
physical intuition, there is a lateral component of the force
due to the presence of the conducting coating. One can easily
convince oneself, analytically or numerically, that the lateral
component of the force pulling the atom towards the edge of
the half-plane is dominated by the normal component of the
force, even for relatively low values of the index of refraction n.

=
~iso

, (18)
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FIG. 2. (Color online) Direction of the dispersion force acting on
a neutral atom with isotropic polarizability placed near a conducting
half-plane lying on a dielectric substrate with refractive indexn = 1.5
(blue arrows). The approximately horizontal lines are contours of
constant van der Waals energy.

IV. KELVIN INVERSION

The Kelvin inversion [8] is a nonlinear coordinate transfor-
mation, i.e., a reflection of space in a sphere of radius S and
centered at s. It is defined as follows:

2

TIr] = (r—s)+s. (19)

Ir—s|?
Reference [9] gives a very clear overview of the geometrical
properties of this transformation. It is of interest here because
it preserves solutions of boundary-value problems of the
Poisson equation, as we shall explain further below. The
Green’s function of the Poisson equation G(r,r’) is a function
of two variables: the observation point r and the source
point ¥'. To apply the transformation (19) to the Green’s
function G(r,r’), one applies it to both of its arguments. The
so-transformed Green’s function is, when multiplied by an
appropriate prefactor, a solution to the Poisson equation in the
transformed geometry because one has [10,11]

2
_vz[“_sfmc(ﬂr],ﬂr/])} =69 -r). (20

Therefore, the transformation
2

G(r,r) = G(Tr,TI¥D) = Gr,r) (1)

[r —s||r' —s|
generates a new Green’s function of the Poisson equation
G(r,r') in a new geometry from an already known Green’s
function G(r,r’) in a geometry that is related to the new
one by a Kelvin transformation. It generates a new solution
to a boundary-value problem in a new geometry from the
known solution in the original geometry because if the
Green’s function G(r,r’) vanishes on some surface o, then
the transformed Green’s function G(r,r’) vanishes on the
transformed surface &. In this way, Green’s functions for
perfect reflectors of various shapes can be obtained from
known Green’s functions by various Kelvin transformations,
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i.e., by adjusting the position and the radius of the inversion
sphere [12,13].

For the present purposes, it is important to note that, in
general, the Kelvin transformation does not preserve dielectric
boundary conditions, which is why it is normally thought to be
useful only for problems involving just perfect reflectors. The
most obvious example of a case in which the Kelvin inversion
does not preserve the solution of the Poisson equation is that of
adielectric sphere, in contrast to the potential of a point charge
near a perfectly conducting sphere, which may be obtained by
applying the Kelvin inversion to the potential near the perfectly
reflecting flat mirror. The potential near a flat mirror, perfectly
reflecting or dielectric, is a sum of a free-space potential and
its image in the mirror. The potential near a perfectly reflecting
sphere also has the same structure, and the image charge and
its location can be obtained from the flat-mirror solution by
a Kelvin transformation. However, the potential of a point
charge near a dielectric sphere cannot be written down as a
sum of a free-space potential plus an image potential from
just a single point image charge. The exact solution in this
geometry is more complicated and involves a point image
charge and an additional continuous line of image charges
inside the sphere [14]. Therefore, the solutions in those two
geometries, for the dielectric half-space and for the dielectric
sphere, cannot be connected by the Kelvin transformation (19).
It is easy to understand why this is the case: a dielectric surface
enforces different continuity conditions on the gradients of
the potential normal and parallel to it, but in general Kelvin
transformations distort geometries and hence do not preserve
normal and parallel directions. However, there are some special
circumstances under which the Kelvin inversion does, in
fact, preserve normal and parallel directions at a surface, for
example, for a cone whose tip is the center of the inversion.
This transformation is trivial as it maps a dielectric cone into
itself but, as we shall see in the next section, it is nevertheless
very useful as it can be applied to cones with conducting
coatings. Note that a plane is a cone with 180° opening angle,
and thus the geometry of Fig. 2, for which the Green’s function
is given by Eq. (10), is a special case of such a cone.

V. CONDUCTING DISK ON A DIELECTRIC SURFACE

A. Green’s function

In this section, we are going to derive the Green’s function
of the Poisson equation for the geometry of the conducting disk
lying on top of a dielectric substrate; cf. Fig 3. We take the
perfectly reflecting disk of diameter d to lie in the z = 0 plane,
centered at the origin. The electrostatic potential is required to
vanish on the surface of the disk, i.e.,

d2
G,r)=0 for z=0 N x*+y>< 7 (22)

where x,y are the coordinates in the plane of the disk. In the
plane z = 0 outside the disk, we require that G(r,r’) satisfies
dielectric boundary conditions, that is, we require that

ad ad ad
—Grr), —Gr), ez)—Gr)
ax ay 0z

are continuous for z =0 N x? + y > d?/4. Obtaining the
Green’s function with the above boundary and continuity
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FIG. 3. A conducting disk lying on top of a dielectric substrate,

which is a dielectric half-space with dielectric constant € = n?.

conditions by standard methods, such as an eigenfunction
expansion, would be a formidable, if not impossible, task.
Instead, we are going to derive the required Green’s function
by means of a Kelvin inversion, as described in the previous
section, starting from the Green’s function (10) obtained
in Sec. Il A for a half-space covered with a conducting
half-plane. As explained at the end of Sec. IV, a Kelvin
transformation preserves the correct continuity conditions on
the surface of the dielectric provided that the center of the
inversion sphere is placed somewhere on the surface of the
dielectric substrate. We place the center of the inversion sphere
at s = (—d,0,0) and set its radius S = d. For this particular
choice of s and S, the transformation leaves the dielectric
substrate unchanged, while mapping the conducting half-
plane 0 = {re R3: y =0 N x > 0} (cf. Fig. 4, left) into a
disk6 ={reR3:y=0nN (x +d/2)* + 2> < (d/2)*} (cf.
Fig. 4, right). This ensures the correct boundary and continuity
conditions across the whole surface, y = 0.

To simplify the notation, we wish to center the coordinate
system on the disk and orient the z axis perpendicular to the
sheet, as shown in Fig. 3. Thus we shift and rotate the axes
accordingtox — y —d/2, y — z, z — x. We are interested
in the disk-geometry Green’s function for the case 7,7’ > 0,
so that we need the Green’s function (10) for the case ¢,¢’ €
(0,7). In that case, Eq. (12) reads

n- =1, ny =sgnlsin(¢ + ¢")]. (23)
It is advantageous to further rewrite 7. in terms of
sin(¢ + ¢") = sin(¢) cos(¢’) + cos(¢) sin(¢p’), as this facili-
tates the straightforward application of the Kelvin inversion.
The procedure described above then yields the transformed
Green’s function in the same form as in Eq. (10), but

FIG. 4. Green’s function (10) applies to the geometry of a
conducting half-plane on a dielectric substrate where the perfect
reflector occupies the y =0 N x > 0 plane (left). Application of
a Kelvin inversion (19) with s = (—d,0,0) and S = d yields the
Green’s function for a conducting disk on a dielectric substrate (right).
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ny = sgnlz(d*/4 — p* — 2*) + Z(d*/4 — p* — )], (26)

and, of course, n_ = 1. We emphasize that this result, i.e.,
Eq. (10) with the insertions (24)—(26), is valid for z,z’ > 0
when the source and observation points are both in the empty
space above the substrate; cf. Fig 3. The Green’s function
for the case of the source in vacuum but the observation
point inside the material can also be obtained quite easily
by considering 5y in Eq. (12) and making appropriate
amendments.

B. Energy shift

Knowing the Green’s function, we can now calculate the
energy shift. We subtract the free-space potential from the
result for the Green’s function that we obtained in Sec. V B and
substitute it into formula (1). For an atom located at (0,¢,z)
(cf. Fig. 3), we find that the nonretarded energy shift may be
expressed as

1

AF=——7——
8712(n? + 1)eo

[Eolks) + Bolug) + Eelusc)].

with the abbreviations
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d (& )\ 2p?(, , &
”_R1R3<Z_p>+R1R4(p te _T)

2dp? d*\?
+ =2 <,02+22——)

R3R® 4
1 d2 4 — 2 _ .2
+ @{ arctan (%) + %nz

dz [ , , d*
_RiR“_<p T 4)
d2 2 2 g 2 .2
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FIG. 5. (Color online) Direction of the dispersion force acting on
a neutral atom with isotropic polarizability placed near a conducting
disk lying atop a dielectric substrate of refractive index n = 1.2. The
approximately horizontal lines are contours of constant van der Waals
energy.
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where we have defined Ry = /(p £ d/2)? + z2. The result
(27) together with Eqgs. (28)—(30) is, as far as electrostatics is
concerned, exact. It applies to atoms whose distance from
the surface is much smaller than the wavelength of their
dominant dipole transition, so that the effects of retardation
are unimportant. The simplicity of the analytic expressions
in Eqs. (28)—-(30) makes it easy to evaluate and plot the
nonretarded dispersion force felt by an atom due to the
presence of a dielectric substrate with a conducting circular
patch. In Fig. 5, we show the direction of the force acting on
an atom with isotropic polarizability. As expected, there is a
lateral component in the force that drags the atom towards the
conducting patch.

Furthermore, it is interesting to consider an atom polarized
in the z direction interacting with just a disk, i.e., without any
substrate. To this end, we take (Mf)) = (Mi) = 01in Eq. (27) so
that the whole of the energy shift comes from the function E,,
and take the limit of no substrate, » — 1. For such an atom
that is polarized in the z direction, the energy shift vanishes
in the plane of the disk, and similarly to the interaction of
an atom with a conducting sheet with a circular hole, as
studied in Ref. [15], we expect some intricate behavior of
the dispersion force in this case. Since our results are exact,
we can easily visualize the force in such a situation, which is
what we do in Fig. 6. We note that along the edge of the disk,
there is a region where the component of the force normal
to the surface of the disk points away from the disk. This
unusual behavior of the dispersion force may potentially have
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FIG. 6. Direction of the dispersion force acting on a neutral atom
placed near a conducting disk. The atom is polarized in the direction
perpendicular to the surface of the disk.

an impact on matter-wave experiments, which are sensitive to
van der Waals interactions. For example, Ref. [16] studies the
interference patterns (Poisson spot) from molecules scattered
by a disk. The theoretical calculations used in conjunction
with such matter-wave experiments tend to rely on rather
oversimplified expressions for the atom-obstacle dispersive
interactions [17]. As we can see in Fig. 6, the dispersion
interaction for a polarized molecule near a disk exhibits
a complicated pattern, so that theoretical predictions using
simplistic models may potentially differ appreciably from
the true values that can be calculated on the basis of the
exact results derived here, especially for beams of polarized
molecules. Although Egs. (28)—(30) may seem complicated
at first glance, they are expressed in terms of only elementary
functions and can thus be evaluated numerically without much
effort.

VI. CONCLUSIONS

We have fulfilled our aim of calculating the exact
dispersion-force potential for a neutral atom interacting with
a conducting disk supported by a dielectric half-space. To
obtain the exact solution for this complicated but practically
very relevant geometry, we first solved the Poisson equation
for the geometry of a conducting half-plane that is supported
by a dielectric half-space; cf. Sec IIT A. Then, in Sec. V A, we
applied a Kelvin inversion to obtain the Green’s function for
a conducting circular disk on a dielectric substrate. The result
for this Green’s function is exact. It can be used to calculate
static electric fields near dielectric surfaces with conducting
coatings or patches; cf. Fig 7. The main goal of this paper was
to determine the energy-level shift (van der Waals energy) for
an atom in close proximity to such a structure. The remarkably
simple result for the shift given by Eq. (27) and Egs. (28)—(30)
allows one to estimate the dispersion interaction for atoms near
dielectric substrates with conducting structures on top. One
could imagine an electroplated and partially etched surface or
a graphene flake on a SiO, substrate or a graphene quantum
dot. In the limit of no substrate, our result reduces to that
for a flat disk. Detailed analysis of the atom-disk interaction
reveals the intricate behavior of the dispersion force acting
on atoms or molecules polarized in the direction normal to
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FIG. 7. (Color online) Contours of constant electrostatic potential
¢(r) for a point charge above a dielectric half-space with a perfectly
conducting disk on top. The index of refraction of the substrate is
n=2.

the surface of the disk; cf. Fig. 6. This, as we pointed out at
the end of Sec. V B, may be of significance for matter-wave
interferometry experiments.

In the Appendix, we obtain the exact expression for the
interaction of a neutral atom with a conducting spherical bowl.
Our interest in this geometry was ignited by nanocups, i.e.,
dielectric spheres that are half coated in gold, which have been
recently shown to enable second-harmonic generation [18].
However, our result does not include the dielectric filling of
the nanocup and is therefore applicable only approximately
for weak dielectric substrates.
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APPENDIX: CONDUCTING SPHERICAL SHELL: GREEN’S
FUNCTION AND THE ENERGY SHIFT

The Green’s function for a conducting disk without a
substrate facilitates the derivation of yet another interesting
exact solution in electrostatics, namely, the potential due to a
point charge in the presence of a conducting spherical bowl. In
order to derive the Green’s function in this geometry, we apply
a Kelvin inversion to the Green’s function for a conducting
disk, which is obtained by taking the limit n — 1 in the results
of Sec. V A. We place the disk of radius d in the z = 0 plane
and choose s = (0,0,d) as the center of the Kelvin inversion
and § = d as the radius of the inversion sphere; cf. Eq. (19)
and Fig. 8. We dispense with the details of the calculation
and explicit formulas for the Green’s function, which have
already been reported in Ref. [12]. Here we are interested only
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diz_—+d[2

4 Y a2 Yy

X X

FIG. 8. Applying a suitable Kelvin inversion (19) to the Green’s
function for a disk generates the Green’s function for a conducting
spherical bowl. Note that dielectric continuity conditions are not
preserved by this transformation, so that the procedure works only in
the absence of the substrate, i.e., in the limit n — 1.

in giving the energy-level shift for an atom interacting with a
conducting spherical bowl. We take the center of the bowl to
be at the center of the Cartesian coordinate system so that its
surface is described by

d2
X+y+i=— n

1 z<0.

(AD)

Then the energy shift can be expressed in Cartesian coordinates
as

1 = = L}
AL = tore [Ex(n3) + Epful) + Bo(n?)],  (A2)
_2 _1 0 1 2
T T I : :
-2
=1
g
£ -0
+4-1
-2
1 1 | } 1

X (arb. units)

FIG. 9. (Color online) Direction of the dispersion force acting
on an atom with isotropic polarizability placed near a conducting
spherical bowl (blue arrows). The black circular lines are contours
of constant van der Waals energy, and the red semicircle is the
conducting bowl.
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Here s> =x? 4 y> 47> —d?/4, and the result for g, is
obtained by the replacement x < y, that is, E,(x,y,z,d) =
Ex(y,x,z,d). It may at first sight seem awkward to work
in Cartesian coordinates in this geometry, but this in fact
avoids mathematical difficulties which arise at the origin of
the spherical coordinate system where the azimuthal angle is
not well defined. Besides, it is useful to have dipole matrix
elements expressed in terms of unit vectors whose orientation
does not depend on their position. We plot the direction of the
dispersion force acting on an atom with isotropic polarizability
in Fig. 9.
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