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Collision-induced absorption and annihilation in hadronic atoms within a close-coupling approach
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The induced absorption or annihilation of π−, K−, and p̄ in collisions of hadronic hydrogen atoms in excited
states with ordinary hydrogen in the ground state is treated in a unified manner with the elastic scattering, Stark
transition, and Coulomb de-excitation in the framework of the close-coupling approach. The close-coupling
approach is generalized to include both open andclosed channels corresponding to stable and unstable states of
the hadronic atom. Calculations are performed using the basis sets including all states of hadronic atoms with a
principal quantum number from n = 1 up to nmax = 8. The general features of induced-absorption cross sections
are studied in a wide range of complex energy-shift values. The cross sections of all processes are calculated
for π−p, K−p, and p̄p atoms with principal quantum numbers n = 2–8 and kinetic energies from 0.001 up to
100 eV. The validity of the previous quantum-mechanical and semiclassical models is critically discussed.
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I. INTRODUCTION

The close-coupling approach (CCA) is widely used to
describe the collisional processes of composite particles in
atomic, molecular, and nuclear physics. In this approach the
total wave function of the system is expanded in terms of the
basis L2 functions corresponding to the stationary states of
the subsystems. The expansion coefficients are the wave
functions of the relative motion of subsystems in open or
closed channels. As a result, the multichannel scattering
problem is obtained.

However, the excited states of all real quantum-mechanical
systems and even some ground states (e.g., hadronic atoms)
have finite lifetimes, i.e., are unstable. It is usually assumed
that the lifetimes τ of these states are much longer than the
collision time τcoll,

τ � τcoll ≈ R0/v, (1)

where R0 denotes the radius of interaction and v is the velocity
of relative motion. States satisfying the qualitative condition,
Eq. (1), are considered to be stable ones.

In most problems of atomic and nuclear collisions this
qualitative condition is fulfilled. However, in our case, when
one of the colliding subsystems is a hadronic atom (X−a)nl

(X− = π−,K−, p̄, etc.; a = p,d,t are the hydrogen isotopes;
n and l denote the principal and angular momentum quantum
numbers, respectively), the stationarity condition, Eq. (1),
can be strongly violated in channels corresponding to low
angular-momentum states. In addition, it will be noted that
this condition makes no sense and cannot be applied in the
case of closed channels corresponding to unstable states.

Hadronic hydrogen-like atoms (X−a)nl are formed in
highly excited atomic (n l) states after slowing-down and
Coulomb capture of negatively charged particles X− in the
hydrogen media. The general features of hadronic hydrogen
atoms are similar to those of ordinary hydrogen, since its
level structure is mainly formed by static Coulomb interaction.
However, in contrast to ordinary hydrogen, the energy levels

*popov@nucl-th.sinp.msu.ru
†pomeran@nucl-th.sinp.msu.ru

of low-angular-momentum states of hadronic atoms have a
complex energy shift �Enl determined by a strong hadron-
nucleon interaction. Such states can be called quasidiscrete
states, and free hadronic atoms in these states have finite
lifetimes τnl and decay due to nuclear reactions:

π−p −→ π0n, γ n, (2)

K−p −→ �±π∓, �0π0,�n, (3)

p̄p −→ π+π−, π0π0,K+K−, π0π0π0, π0ω. (4)

The lifetimes of these states τnl = h̄/	nl are determined by an
imaginary part,

	nl = −2 Im�Enl, (5)

of the complex energy shift. The width 	nl determines the
nuclear reaction rates from the (nl) state. The problem of taking
short-lived states into account is a general one in the stationary
scattering theory and should arise in any theoretical approach
describing the scattering processes of similar systems (e.g.,
see [1–9]).

There are at least two mechanisms leading to the decay
of hadronic hydrogen-like atoms due to strong-interaction
effects. In the first of them the above-mentioned reactions
occur from the ns sublevels of hadronic atoms populated in
the preceding radiative, Auger, Coulomb, or Stark transitions
nl → n′s (n′ � n). In the other mechanism, the interaction
with the target atom or molecule results in a strong coupling
between the stable and the unstable states of hadronic atoms
and the absorption or annihilation from the stable states of
hadronic atoms takes place during the collision. This process
is called collision-induced absorption or annihilation. The
consequences of this mechanism can be observed in both the
absolute x-ray yields and the kinetic energy distributions of
hadronic atoms at the instant of radiative transitions or nuclear
reactions.

According to our knowledge, the effect of nuclear absorp-
tion during hadronic hydrogen–ordinary hydrogen collisions
has been treated in the framework of the semiclassical
straight-line-trajectory approximation [1–4] since the paper
by Leon and Bethe [1]. This relatively simple model is only
justified if the energy of collision is sufficiently high. A simple
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estimation shows that the semiclassical straight-line-trajectory
description is valid at collisional energies more than or about
several electron volts and therefore a very important range of
low-energy collisions cannot be reliably treated.

Noticeable progress in the study of induced absorption in
hadronic hydrogen was made by Jensen and Markushin (see [4]
and references therein). The quantum close-coupling method
was applied by the authors, with the additional assumption that
the widths 	ns are switched off at the interatomic separation
R � Rg (Rg denotes a switched-off parameter used by the
authors). However, it is well known that in the potential
scattering theory the procedure to switch the interaction
on or off is ambiguous and leads, in the general case, to
parameter-dependent results. As will be seen below, the cross
sections of collision-induced absorption and, especially, the
Stark transition very strongly depend on the value of the
switched-off parameter used in [4]. In addition, it will be noted
that the asymptotic boundary conditions of this model are in
contradiction with the ones of the initial scattering problem.

Recently, the problem was considered by Korenman and
Yudin [7] in the framework of the CCA by applying the correct
asymptotic boundary conditions. The cross sections of the
induced annihilation during (p̄He)+nl + He collisions for n =
30 and l � 2 were calculated in [8] at a fixed energy E =
10 K.

However, collision-induced absorption or annihilation in
hadronic (π−p), (K−p), and (p̄p) atoms with the correct
asymptotic boundary conditions have not been considered until
now. Besides, the effects of the closed channels corresponding
to quasidiscrete states were not taken into account in either
the close-coupling model [4] or the CCA applied in [7] and
[8]. These channels in the case of kaonic and antiprotonic
atoms are very important for the realistic description of both
elastic scattering and, especially, collision-induced absorption
in the wide energy range below nl − ns thresholds (l � 1).
The effects of collision-induced absorption on the values of
the x-ray yields and kinetic energy distributions of hadronic
atoms in lower states are very important in connection with
high-precision experiments on the spectroscopy of the lowest
levels of (π−p), (K−p), and (p̄p) atoms. Hence, a more
reliable and systematic framework free of ad hoc assumptions
is necessary to describe this process.

The main motivation of the present paper is to give a con-
sistent quantum-mechanical treatment of hadronic hydrogen–
hydrogen atom collisional processes including ab initio con-
sideration of the least studied theoretically collision-induced
absorption in (π−p) and (K−p) atoms or annihilation in
the case of the (p̄p) atom. Some of our preliminary re-
sults obtained in the framework of the CCA were recently
published [10].

The paper is organized as follows. Section II is devoted
to the unified description of collision-induced absorption
together with other collisional processes—Stark mixing,
Coulomb de-excitation, and elastic scattering—in the frame-
work of the CCA. In Sec. III the method is applied to
study the main regularities of the collision-induced absorption
cross sections and to calculate the cross sections for (π−p),
(K−p), and (p̄p) atom collisions with ordinary hydrogen.
In Sec. IV the main results of the paper are summarized
and possible effects of collision-induced absorption on the

kinetics of the atomic cascade in hadronic atoms are briefly
discussed.

Atomic units are used throughout the paper unless other-
wise stated. The unit of cross sections is a2

0 = 2.8 × 10−17

cm2, where a0 = 5.29 × 10−9 cm is the Bohr radius of the
electron in the hydrogen atom.

II. CLOSE-COUPLING APPROACH

To give a fully quantum-mechanical treatment of collision-
induced absorption in the scattering of hadronic hydrogen
(X−p) from ordinary hydrogen, we apply the CCA developed
in Refs. [11–18] to study exotic hydrogen–ordinary hydrogen
collisions. Thus collision-induced absorption is described in a
unified manner together with other collisional processes,

(X−p)nl + H → (X−p)n′l′ + H: (6)

elastic scattering (n′ = n, l′ = l), Stark transitions (n′ =
n, l′ �= l), and Coulomb de-excitation (n′ � n − 1).

A. Brief outline of the approach

The total wave function 
(ρ,r,R) of the system aX− +
be− (a and b are nuclei of hadronic and ordinary atoms—
in the present case, protons) satisfies the time-independent
Schrödinger equation with the nonrelativistic Hamiltonian,
which, after separating the center-of-mass motion, can be
written as

H = − 1

2Mr

�R + hX(ρ) + he(r) + V (r,ρ,R). (7)

Here, Mr is the reduced mass of the system, and hX and he are
the Hamiltonians of the free hadronic and ordinary hydrogen
atoms, respectively.

The interaction potential V (r,ρ,R) includes the pair
Coulomb interactions between the particles from two colliding
subsystems and the strong interaction �VXb(ρ,R) between the
hadron and the proton of the ordinary hydrogen atom as well.

The set of Jacobi coordinates (R,ρ,r),

R = Re−b − RX−a, ρ = rX − ra, r = re − rb,

used in the present paper, is shown in Fig. 1. Here, ra , rb,
rX, and re are the laboratory-system radius vectors of the
nuclei, hadron, and electron; Re−b, and RX−a are the center-
of-mass radius vectors of the hydrogen and hadronic atoms,
respectively.

The Hamiltonian of the hadronic atom is defined by

hX = h0 + �VXa, (8)

where h0 is the Hamiltonian of the nonrelativistic Coulomb
two-body problem having hydrogen-like eigenfunctions |nlm〉

a

b

X
e−

−
r

R
ρ

FIG. 1. Jacobi coordinates used to describe the (aX−)–(be−)
collision.
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and eigenvalues

En = −mXa

2

(αc

n

)2
, (9)

where mXa is the reduced mass of the hadronic atom, α the
fine-structure constant, and c the velocity of light. The complex
potential �VXa(ρ) is treated as a perturbation and takes into
account all effects leading to the energy shift �Enl from the
Coulomb energy level En due to the vacuum polarization, the
finite charge distribution, and, in the case of hadronic atoms, a
strong interaction. In the leading order of perturbation theory
one can obtain

〈nlm|�VXa(ρ)|nlm〉 = �Enl = ERe
n l − i	nl/2. (10)

The real part ERe
nl of the complex energy shift �Enl is mainly

determined by the strong interaction and electron vacuum
polarization:

ERe
nl

∼= εstr
nl + ε

vp
nl . (11)

The n dependence of �Ens is described by the well-known
formula

�Ens = εstr
1s − i	1s/2

n3
+ εvp

ns , (12)

while all sublevels with l � 1 are assumed to be the degener-
ated ones (�Enl = 0).

In a space-fixed coordinate frame the basis states |1s,nl,L :
JM〉 are constructed from the ground-state wave function of an
ordinary hydrogen, unperturbed hydrogen-like wave functions
of a hadronic hydrogen in the |n,l,m〉 state, and the angular-
momentum eigenfunctions |L,λ〉 of relative motion,

|1s,nl,L : JM〉 = 1√
4π

R1s(r)Rnl(ρ)YJM
lL (ρ̂,R̂), (13)

where

YJM
lL (ρ̂,R̂) =

∑
mλ

〈lmLλ|JM〉Ylm(ρ̂)YLλ(R̂). (14)

In Eq. (14) the orbital angular momentum l of (aX−)nl is
coupled with the orbital angular momentum L of relative
motion to give the total angular momentum J = l + L. The
exact wave function, corresponding to the real total energy E

of the system, definite quantum numbers of the total angular
momentum (J,M), and parity π = (−1)l+L, and satisfying the
Schrödinger equation

(E − H )
JMπ
E (r,ρ,R) = 0, (15)

is expanded in terms of the basis states, Eqs. (13) and (14), as


JMπ
E (r,ρ,R) = 1

R

∑
nlL

GE Jπ
nlL (R)|1s,nl,L : JM〉, (16)

where GE Jπ
nlL (R) are the radial functions of relative motion

and the sum is restricted by the (l,L) values to satisfy the total
parity conservation. This expansion leads to the multichannel
scattering problem described by the coupled second-order

differential equations for the radial functions GE Jπ
nlL (R),(

d2

dR2
+ k2

nl − L(L + 1)

R2

)
GEJπ

nlL (R)

= 2Mr

∑
n′l′L′

WJπ
nlL,n′l′L(R) GEJπ

n′l′L′(R), (17)

where

k2
nl = 2MrE

ch
nl (18)

and

Ech
nl = Ecm − �nl,n1l1 (19)

specify the channel wave number and energy, respectively, Ecm

is the relative motion energy in the entrance (n1l1) channel,
and, finally, �nl,n1l1 is the difference between the thresholds of
the current and entrance channels,

�nl,n1l1 = En + �Enl − En1 − �En1l1 . (20)

The interaction-potential matrix WJ
n′l′L′,nlL coupling the

asymptotic (nlL; J ) and (n′l′L′; J ) channels is defined by

WJ
n′l′L′,nlL(R) = 1

4π

∫
dr dρ dR̂R2

1s(r)Rnl(ρ)Rn′l′(ρ)

×YJM
lL (ρ̂,R̂) V (r,ρ,R)

[
YJM

l′L′ (ρ̂,R̂)
]∗

. (21)

These matrix elements are obtained by averaging the interac-
tion potential V (r,ρ,R) over the electron wave function |1s〉
and subsequently applying the addition theorem for spherical
Bessel functions. The integration over (ρ,R̂) with the hadron
hydrogen-like functions reduces the matrix element, Eq. (21),
to the multiple finite sum (for details see [13]).

According to our study, the strong interaction potential
�VXb(ρ,R) between the hadron and the proton of the target
atom gives a negligibly small contribution to the interaction-
potential matrix WJ

n′l′L′,nlL(R), Eq. (21), compared with both
the Coulomb interactions and the complex energy shifts,
Eq. (10), of the hadronic atom. Indeed, the interaction
�VXb(ρ,R) may be described by an effective very short-range
complex potential proportional to the δ function δ(R − ξρ)
(ξ = ma/(ma + mX)). Then the corresponding additional cou-
pling interaction is given by

〈nlm|�VXb(ρ,R)|nl′m′〉 = �E1s

|φ1s(0)|2 φ∗
nlm(R′)φnl′m′(R′)

∝ �E1s

n3
(R′)l+l′e−2R′

, (22)

where φnl′m′ (R′) is the hydrogen-like wave function of the
hadronic atom, R′ = mXR/n. It is noteworthy that the energy
shift due to the δ-like strong interaction is equal to 0 in the
states of hadronic hydrogen with l �= 0. This interaction leads
to a very short-range coupling strongly suppressed at much
lesser distances, R ≈ m−1

X ∼ 10−3 (mX is the hadron mass
in a.u.), than the main coupling WJ

n′l′L′,nlL ∝ exp(−2R) and
gives a negligible contribution to the induced-absorption cross
section1 compared with the complex energy shift �Ens in

1According to our study the additional effect of this coupling
potential in the cross section of collision-induced absorption is about
10−4% in the case of pionic hydrogen.
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the hadronic atom. In the further consideration the effect of
the strong interaction potential �VXb(ρ,R) is not taken into
account.

Usually a channel is said to be open if ReEch
nl > 0 and closed

if ReEch
nl < 0. The problem which we study in the present

investigation is to describe hadronic hydrogen-ordinary hy-
drogen collisions in the framework of the CCA taking into
account the states of hadronic hydrogen with finite lifetimes.
Therefore, additional definition of the channels is necessary
for the present study. Channels corresponding to quasidiscrete
asymptotic states with ImEch

nl > 0 [due to the above-mentioned
reactions, Eqs. (2)–(4)] are called unstable-state open channels
if ReEch

nl > 0 and unstable-state closed ones if ReEch
nl < 0. In

the present study we take into account both open and closed
channels, some of which can be unstable-state channels. It
must be emphasized that, in contrast to the division into
open and closed channels, the boundary between stable-
and unstable-state channels is washed out. Unstable states
with negligible decay widths can be considered stable ones
depending on the physical conditions, e.g., the collision energy.

In the present paper we are interested only in those solutions
for which the entrance channel is open and stable, i.e., the total
energy of the system is always real. The scattering S matrix is
determined in the subspace of the open stable-state channels
(ReEch

nl > 0 and Imknl = 0) with the boundary conditions
at R → ∞ (incoming + outgoing waves) in terms of the
spherical Ricatti-Bessel functions. In the case of both open
and closed unstable-state channels the boundary conditions at
R → ∞ should be introduced in terms of the spherical Ricatti-
Hankel functions h+

L (kR), which decrease exponentially at
R → ∞.

To determine the matrix elements of the S matrix one does
not need to know the wave functions GEJπ

nlL (R) themselves.
It is possible to determine the S matrix using only the ratios
of these functions at the two nearest points Rm and Rm + h

in the asymptotic range (Rm is a matching point and h is an
integration step):

D(R) = G(R)G−1(R + h).

The main advantage of this approach is that the propagation
matrix D is limited even for both closed and unstable-state
channels in which the functions of the linearly independent
solutions G(R) can exponentially increase. Thus, the open
and closed channels associated with both stable and unstable
states are treated in a unified manner in the framework of this
method. In all our calculations we used this propagation matrix
method (for details see Appendix A in our recent paper [18]).

B. Cross sections

The partial-wave on-shell amplitude for the transition
i → f [i and f are used to denote the initial (n, l,m) and
final (n′, l′,m′) quantum numbers of the hadronic atom states,
respectively] is defined by the SJ matrix,

f J
i→f (�) = i

√
π√

knlkn′l′

∑
LL′λ′

iL
′−L

√
2L + 1〈lmL0|Jm〉

×(
δnlL,n′l′L′ − SJ

nlL→n′l′L′
)〈l′m′L′λ′|Jm〉YL′λ′(�),

(23)

where � = (ϑ,φ) is the center-of-mass scattering angle. The
partial-wave differential and integral cross sections of the pro-
cesses, (6), for the transitions nl → n′l′, averaged over the
initial distribution of the degenerated sublevels and summed
over the degenerate final sublevels, are given by

dσJ
nl→n′l′

d�
= kn′l′

knl

1

2l + 1

∑
m,m′

∣∣f J
nlm→n′l′m′ (�)

∣∣2
, (24)

σJ
nl→n′l′ = π

k2
nl

2J + 1

2l + 1

∑
LL′

∣∣δnlL,n′l′L′ − SJ
nlL→n′l′L′

∣∣2
. (25)

The total cross section is the sum of the partial ones:

σnl→n′l′ =
∑

J

σ J
nl→n′l′ . (26)

In the case of hadronic atoms, the S matrix of the
transitions is not unitary due to the instability of the low-
angular-momentum states. The unitary defect allows one to
determine the cross sections of collision-induced absorption
or annihilation from nl states as follows:

σ ind
nl = π

k2
nl

1

2l + 1

∑
J

(2J + 1)

×
∑

LL′n′l′

(
δnlL,n′l′L′ − ∣∣SJ

nlL→n′l′L′
∣∣2)

. (27)

III. RESULTS

The CCA described in the previous section has been used
to calculate the scattering cross sections for collisions of
π−p, K−p, and p̄p atoms in excited states with hydrogen
atoms. The present calculations had at least two purposes:
first, to apply the fully quantum-mechanical approach to the
study of collision-induced absorption in hadronic atoms and,
second, to clear the effects of complex energy shifts of ns states
of hadronic atoms on the cross sections of elastic scattering,
Stark transitions, and Coulomb de-excitation.

Numerical calculations of the total cross sections of the
processes, (6), and collision-induced absorption or annihila-
tion have been performed for excited states of pionic, kaonic,
and antiprotonic hydrogen with the principal quantum number
n0 = 2–8 and collision energies Ecm = 0.001–100 eV. Calcu-
lations with physical values of complex energy shift have been
performed using an extended basis set including all hadronic
atom states with n � n0. At all energies the convergence of
the partial-wave expansion was achieved and all cross sections
were calculated with an accuracy better than 0.1%.

The experimental values of the strong-interaction shifts
and widths of the 1s state of pionic [19,20], kaonic [21],
and antiprotonic [22] hydrogen used in the present paper
are listed in Table I. The energy shift of the 1s state due
to electron vacuum polarization for pionic [23], kaonic [21],
and antiprotonic [22] hydrogen was also taken into account.

TABLE I. Values of the 1s energy-level shifts and widths.

Atom π−p K−p p̄p

εstr
1s (eV) −7.11 ± 0.3 283 ± 42 714 ± 14

ε
vp
1s (eV) −3.24 ± 0.1 −19 ± 1 −43 ± 1

	1s (eV) 0.76 ± 0.2 541 ± 111 1097 ± 42
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The central values of the 1s energy-level shifts and widths
were used as their physical values in the present calculations
throughout the paper. For the ns state with n � 2 the energy
shift due to electron vacuum polarization is approximately
calculated according to ε

vp
ns = ε

vp
1s /n3.

A. The main regularities of the absorption cross section

A large variety of the complex energy-shift values in
hadronic atoms [see Table I and Eq. (12)] reveals some general
regularities in the behavior of the induced-absorption cross
section. Similar effects may also be observed in the scattering
of other systems involving unstable states.

To illustrate these regularities the cross section σ ind
np (E,	ns)

has been calculated for the case of (π−p)2p + H1s collision
used here as a model example. At the fixed values of total
angular momentum J and parity π we have a model with three
coupled channels (nlL): (2p,L = J − 1), (2p,L′ = J + 1),
and the channel (2s, L′′ = J ) associated with the unstable 2s

state of pionic hydrogen. The channel (2p,L = J ) has the
opposite parity and is not coupled with the others.

In Figs. 2 and 3 we show the 	2s dependence of the
σ ind

2p (Elab, 	2s) calculated at Elab = 10−6 eV for the different
values of Re�2s,2p. The values of Re�2s,2p are chosen in
such a way that at a given energy Elab the channel associated
with the unstable 2s state was either closed (Fig. 2) or open
(Fig. 3). The value of the collision energy is taken very small to
demonstrate the effects of the complex energy shift explicitly.

As shown in Figs. 2 and 3, the behavior of the cross section
of collision-induced absorption as a function of 	2s allows
us to distinguish conventionally at least three regions with
essentially different 	 dependences of the cross section. The
first region corresponds to very small values of 	2s in compar-
ison with the diagonal and nondiagonal interaction potentials
as well as the absolute value of the real part of the channel
energy Ech

2s = Ecm − �2s,2p. In particular, the condition

κ = 	2s

2
∣∣Re Ech

2s

∣∣ < 0.1 (28)

is satisfied in the examples considered here.

10-6 10-4 10-2 100 102 104 106

Γ2s (eV)
10-3

10-2

10-1

100

101

102

103

σin
d  (a

.u
.)

Δ = 12.5 eV
Δ = 1.25 eV
Δ = 0.125 eV

FIG. 2. (Color online) Cross section of collision-induced absorp-
tion for (π−p)2p + H scattering vs the width 	2s at a fixed value
of laboratory kinetic energy Elab = 10−6 eV and different values of
� ≡ Re�2s,2p corresponding to closed unstable-state channels.

10-6 10-4 10-2 100 102 104 106

Γ2s (eV)
10-3

10-2

10-1

100

101

102

103

σin
d  (a

.u
.)

Δ = -0.0125 eV
Δ =    -1.25 eV
Δ =    -12.5 eV

FIG. 3. (Color online) The same as Fig. 2 at different values
of � ≡ Re �2s,2p corresponding to an open unstable-state channel.
The difference [σ ind

2p (E, 	2s) − σ ind
2p (E,0)] is shown by the lines with

asterisks.

In the case of closed unstable-state channels (Fig. 2) the
cross section of collision-induced absorption increases in this
region proportionally to 	2s and can be written as

σ ind
2p (E,	2s) = β	2s , (29)

where β is a function of the collision energy Ecm, Re �2s,2p,
and some other parameters of the scattering problem.

Such behavior can be qualitatively explained within a
simple model of potential scattering with the complex potential
V = V1 − i V2 (V2 > 0). The imaginary part V2 is proportional
to 	2s and can be considered a perturbation. The scattering
matrix at a fixed total angular momentum can be written as
S = e2iδ , where δ is the complex partial-wave phase shift
δ = δ1 + iδ2 (δ2 > 0 and δ2 � η	2s � 1). Then for the partial
cross section of inelastic (induced absorption in our case)
scattering we obtain

σ ind ∝ 1 − |S|2 = 1 − e−4δ2 = 4δ2 = 4η	2s . (30)

In the general case of the multichannel scattering problem,
the unstable-state channel can be excluded from the system
following Feshbach’s method [24] (see also [25]). Then we
obtain a complex addition to the interaction matrix Wαβ

between the “stable” channels:

�Wαβ = Wα0(E0 + i	0/2 − T0 − W00)−1W0β, (31)

where α, β denote the channel indexes (α = {n,l,L}) and
index 0 corresponds to the unstable-state channel. This is
an effective short-range (nonlocal and energy-dependent in
general case) absorptive interaction due to the coupling of the
“stable” channels with the unstable-state channel. When the
unstable-state channel is closed (E0 < 0), the imaginary part
of this effective interaction is determined only by the imaginary
part of the channel energy 	0/2 and is proportional to 	0 at
small values of 	0:

Im�Wαβ ∝ 	.

Thus, Im�Wαβ can be regarded as a small perturbation.
Further, in the eigenphase representation [26] the S matrix is
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given by S̃αβ = δαβe2iδα , where δα is the complex eigenphase
shift in channel α, δα = δR

α + iδI
α (δI

α > 0). At small 	 the
imaginary parts of the eigenphase shifts are proportional to
	: δI

α ≈ ηα	. Then for the total cross section of induced
absorption, we get an expression similar to Eq. (30):

σ ind ∝
∑

α

⎛
⎝1 −

∑
β

|S̃αβ |2
⎞
⎠ ≈ 4

∑
α

δI
α = 4	

∑
α

ηα. (32)

For an open unstable-state channel (Fig. 3), the cross section
of collision-induced absorption in the first region depends
linearly on 	2s ,

σ ind
2p (E,	2s) = σ ind

2p (E,0) + β	2s , (33)

since at 	2s → 0

σ ind
2p (E,0) ≡ σ2p→2s(E), (34)

where σ2p→2s(E) is the cross section of the Stark 2p →
2s transition. To demonstrate the similarity in the behav-
ior of the cross sections σ ind in the case of both closed
and open unstable-state channels explicitly, the differences
[σ ind

2p (E,	2s) − σ ind
2p (E,0)] are shown in Fig. 3 as well.

The cross section of induced absorption significantly
decreases in the first region while |Re�2s,2p| is increasing. This
effect may be qualitatively explained by the weakening of the
effective coupling WJ

npL′,nsL(R)GnsL(R) between stable-state
and unstable-state channels. Indeed, the asymptotic behavior
of the radial function GnsL(R) of an unstable-state channel is
given by

G(R) ∝ exp(ikR) = exp(ikreR) exp(−kimR), (35)

where the real kre and imaginary kim parts of the wave number
[under the condition, Eq. (28)] for the closed unstable-state
channel is determined by

kre ≈ 	2s

2

√
Mr

2
∣∣Re Ech

2s

∣∣ , (36)

kim ≈
√

2Mr

∣∣Re Ech
2s

∣∣. (37)

The factor exp(−kimR) in Eq. (35) essentially decreases the
effective coupling between the stable- and unstable-state chan-
nels and leads to suppression of the induced-absorption cross
section, while the absolute value of Re�2s,2p is increasing.

In the case of an open unstable-state channel the real and
imaginary parts of the wave number under the same condition,
Eq. (28) (here, Re Ech

2s > 0), are given by the expressions

kre ≈
√

2Mr ReEch
2s , (38)

kim ≈ 	2s

2

√
Mr

2Re Ech
2s

. (39)

Here, collision-induced absorption also becomes less likely
with increasing energy shift Re�ε2s,2p. However, in contrast to
the previous case, the effective coupling becomes much weaker
due to the fast oscillations of the radial function, Eq. (35), at
large R.

Now we determine a qualitative condition under which an
unstable-state channel can be treated as a stable one. Our

estimation is based on Eqs. (35), (36), and (39). For an open
unstable-state channel this condition can be written either as

exp(−kimR0) ∼= 1 (40)

or in a form close to the classical condition, Eq. (1),

	nsR0

2vch
ns

� 1, (41)

where vch
ns = √

2ReEch
ns/Mr is the “relative-motion velocity”

in the unstable-state channel and R0 denotes the characteristic
radius of interaction as in Eq. (1). At high-energy scattering
(Ecm ≈ ReEch

ns ) both the classical, Eq. (1), and the quantum-
mechanical, Eq. (41), conditions lead to similar estimations.
At low-energy scattering Ecm may be much less than ReEch

ns

due to the large value of the real part ERe
nl of the complex

energy shift, and the classical condition is not justified.
In the case where the unstable-state channel is closed the

classical condition, Eq. (1), makes no sense. Instead, the
qualitative quantum-mechanical estimation can be obtained
from Eqs. (35) and (36) similarly to the unstable-state open
channel considered above:

exp(ikreR0) ∼= 1, (42)

	nsR0

2

√
Mr

2|ReEch
ns |

= 	nsR0

2ṽch
ns

� 1. (43)

Here, ṽch
ns has a dimension of velocity but has no physical

meaning of the asymptotic channel velocity. It is noted
that when the unstable-state channel is closed the induced-
absorption cross section differs from 0 at all values of
the width, even very small ones. Therefore, the qualitative
condition allowing us to neglect the unstable-state width
depends crucially on the physical problem under consideration
and additional conditions are demanded. For example, the
cross section of elastic scattering must be considered with an
accuracy better than 1% or the unitarity defect cannot exceed
0.0001. It is noted that the conditions determined in Eqs. (40)
and (42) do not take into account the dynamics of the scattering
problem and can be considered only as a qualitative estimation
of the unstable-state effects.

In the third region 	2s is much greater than all interaction
potentials and the absolute value of the real part of the energy
|ReEch

2s | in the unstable-state channel. Here, the cross section
of collision-induced absorption, in contrast to that in the
first region, sharply decreases while 	2s is increasing and
behaves as

σ ind
2p ∝ 1

	2s

, (44)

i.e., proportional to the lifetime of the unstable state. In
Figs. 2 and 3 this region corresponds to 	2s � 104 eV and
the lifetime of the unstable state is much less in comparison
with the collision time, i.e., the unstable state does not
practically take part in the scattering. Indeed, the behavior of
the radial wave function (outgoing wave) associated with the
unstable-state channel at large distances is defined by Eq. (35)
with kre = kim

∼= √
Mr	2s/2. At 	2s � 104 eV the condition

kimR = kreR � 1 is already fulfilled at very small R � 0.05
a.u., which is much lower than the characteristic radii of
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the interaction potentials. Therefore, the effective coupling
between stable- and unstable-state channels becomes very
“short-range” and can be neglected in the equations describing
stable-state channels. Thus, the three-channel scattering prob-
lem, in the case considered here, is reduced to the two-channel
one: (2p,L = J − 1) and (2p,L = J + 1). It is noted that a
dependence on 	2s similar to Eq. (44) can also be obtained as
in the case of small 	2s discussed above. Indeed, the effective
interaction between stable channels obtained by exclusion of
the unstable channel from the system of equations behaves at
	 → ∞ as

�Wαβ = Wα0(E0 + i	0/2 − T0 − W00)−1W0β

→ − 2i

	0
Wα0W0β. (45)

This complex potential can be considered as a perturbation
with a small parameter 1/	0. Therefore, the analysis applied
in the case of small 	0 (the first region) can also be used for
large 	0. We see that the unitarity defect and, therefore, the
collision-induced absorption cross section are proportional to
the small parameter 1/	0, i.e., the cross section behaves in
accordance with Eq. (44) at very large 	.

In the intermediate region of the width values |Re Ech
2s | �

	2s � 104 eV the cross sections of collision-induced absorp-
tion very slowly decrease with an increase in 	2s . Indeed, the
cross sections decrease by about an order of magnitude while
	2s increases by more than four orders of magnitude. Of note,
this region in Fig. 2 corresponds to the physical values of the
complex energy shifts of ns states in kaonic and antiprotonic
hydrogen atoms.

The behavior of the elastic 2p → 2p cross section is also
correlated with the value of 	2s . The dependence of the elastic
2p → 2p and induced-absorption (from the 2p state) cross
sections on 	2s calculated at two values of the laboratory
kinetic energy, Elab = 0.05 and 15 eV, with the physical value
of Re�2s,2p = −1.26 eV (the sum of the vacuum polarization
and strong interaction shifts) is shown in Fig. 4. It is noted that

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

Γ2s (eV)

10-3

10-2

10-1

100

101

σ 
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.u
.)

FIG. 4. (Color online) Elastic (dashed lines) and collision-
induced absorption (solid lines) cross sections for (π−p)2p + H
collisions vs the width 	2s at Elab = 0.05 (filled circles) and 15 eV
(open triangles). The vertical line shows the physical value of
	2s = 0.1 eV.

in the case of pionic hydrogen channels associated with the
unstable 2s state are always open.

At small values of 	2s � 0.1 eV the elastic cross sections
change by about a few percent with an increase in 	2s . Using
the above-mentioned model with the complex potential and
considering 	2s as a perturbation, we obtain

σel ∝ 4(η	2s)
2 + 4(1 − 2η	2s) sin2 δ1 � 4 sin2 δ1. (46)

While 	2s increases from its physical value, ∼0.1 eV, up
to ∼103 eV the elastic cross section sharply decreases (by
about two orders of the magnitude) and reaches a value which
can be calculated without the inclusion of the 2s state in the
basis set. This suppression of the elastic cross section is a
specific feature of scattering in the n = 2 state, since here
the coupling between stable- and unstable-state channels is
a unique origin of the dipole interaction. In contrast to the
considered example, the increase in 	ns does not lead to a
strong suppression of the elastic cross sections for scattering
of the excited hadronic atoms with n � 3, since there is a
dipole interaction between stable-state channels with different
values of the internal angular momentum l > 0.

B. Induced absorption or Stark transition?

Here we return to the question about the stability or
instability of hadronic atom states in the scattering problem.
Strictly speaking, all states are unstable, but under some
conditions of the scattering problem an unstable state can be
approximately considered as a stable one (see the previous
section). Correct interpretation of the scattering process is
very important to describe the kinetics of the atomic cascade
properly. Indeed, the results of the cascade calculations and
corresponding predictions essentially depend, in particular, on
the correct identification of the event of induced absorption
or Stark transition. To clear up this question the dependence
of the absorption cross sections on the kinetic energy of a
pionic hydrogen atom in the 2p state is shown in Fig. 5. The
calculations were performed at the physical value of the real

0.01 0.1 1 10 100
Elab (eV)

10-3

10-2

10-1

100

σ 2pin
d  (a

.u
.)

2p→2s, Γ2s=0

Γ2s=10-5 eV
Γ2s=0.001
Γ2s=0.01
Γ2s=0.1
Γ2s=1

FIG. 5. (Color online) Induced-absorption cross sections for
(π−p)2p + H collisions vs the laboratory kinetic energy Elab cal-
culated at different values of 	2s . The cross section of the Stark
2p → 2s transition calculated at 	2s = 0 is shown for comparison
(filled circles).
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energy shift Re�2s,2p = −1.26 eV and different values of 	2s ,
from 10−5 up to 1 eV. The energy dependence of the Stark
mixing cross section calculated at 	2s = 0 is also presented in
Fig. 5 for comparison. It is noted that at energies below 1 eV
the Stark mixing cross section is strongly suppressed due to
the large value of the real energy shift Re�2s,2p = −1.26 eV.

At 	2s = 10−5 eV, the induced absorption and Stark mixing
(	2s = 0) cross sections are indistinguishable (the relative
difference does not exceed 1%) and the 2s state can be
treated as a stable one since β	2s � σ ind

2p (E,	 = 0) [see
Eq. (33)]. The qualitative condition, Eqs. (40) and (41), is
clearly satisfied and the pionic atom is more likely to be
in the 2s state after the collision than to undergo induced
absorption during the collision. Indeed, the imaginary part of
the wave number kim is determined here by Eq. (39) and the
condition kimR0

∼= 2 × 10−4 � 1 is fulfilled at R0 � 5 a.u.
Then the exponentially decay factor in Eq. (35) satisfies the
condition Eq. (40) with a high accuracy at all energies Ecm

under consideration, i.e., the Im�2s,2p can be neglected and
unstable-state channels can be treated as stable ones.

For width values 	2s � 10−3 eV (	2s = 0.1 eV corresponds
to the physical value of the width), the absorption cross
sections increase linearly with 	2s [see Eq. (33)] at a fixed
energy and form a family of similar curves. It is worthwhile
to note that for 	2s � 10−3 eV the second term on the
right-hand side of Eq. (33) becomes comparable to and even
much larger than the first one and determines the value of
the induced-absorption cross section in low-energy collisions.
In this energy range ReEch

2s
∼= |Re�2s,2p| = 1.26 eV and the

values of kimR0 [see Eqs. (39) and (40)] are mainly determined
by the value of 	2s . Here we obtain the values of the parameter
kimR0 � 10−2 at which the condition Eq. (35) is violated.
According to our study, this condition is clearly fulfilled if
kimR0 � (10−3–10−4).

At a higher energy the condition kimR0
∼= 10−4 � 1 is

again fulfilled and the induced-absorption cross section ap-
proaches the cross section of the Stark 2p → 2s transition
at some energy E∗

lab correlated with the values of 	2s (e.g.,
for 	2s = 10−3, 10−2, and 10−1 eV the corresponding values
of the energy E∗

lab ≈ 3, 10, and 33 eV, respectively). Such
behavior of the absorption cross sections corresponds with the
main regularities.2

According to our study, for energies Elab � 30 eV (at
the physical value of 	2s) the Stark transition 2p → 2s is
essentially more probable than induced absorption. Therefore,
the pionic atom is destroyed due to charge-exchange reaction
or radiative capture of the pion mainly after the Stark 2p → 2s

transition. In addition, we can conclude that the widths of the
n′s sublevels formed in the process of the Coulomb transitions
nl → n′s (n′ � n − 1) are always much less than the energies
released in such transitions and the final n′s sublevels can be
treated as stable ones.

The results obtained above allow us to conclude that in the
general case one cannot simultaneously obtain the cross sec-

2A similar observation was made in Ref. [6]: at energies much
higher than the positronium level width (due to annihilation) the
positron annihilation cross section approaches the cross section of
positronium formation.

tions of collision-induced absorption and the Stark transition to
the unstable state. Only under the definite conditions discussed
above can an unstable state be approximately considered as a
stable one.

In previous quantum-mechanical calculations [4] the effect
of nuclear absorption during collisions was taken into account
in the framework of a model in which the imaginary part of
the ns-state energy shift was taken into account only for the
interatomic separations R � Rg = 5 a.u. At R > Rg the ns

states of hadronic atoms in the model [4] were treated as normal
asymptotic states and the imaginary part (−	ns/2) of the
complex energy shift �Ens was switched off independently of
the value of the collisional energy and the conditions Eqs. (40)
and (41). Moreover, the Stark transitions nl ↔ ns together
with the absorption during the collision and even the elastic
scattering ns → ns have been considered in this model at all
collision energies, although the lifetime of a hadronic atom
in the ns state can be comparable to or even less than the
characteristic time of the collision.

To illustrate the effect of the switched-off parameter Rg we
present in Fig. 6 the energy dependence of the cross sections
defined in [4]: absorption σ2p→abs and Stark transition σ2p→2s .
The calculations were done using the model [4] with different
values of the switched-off parameter, Rg = 5 and 15 a.u., for
(πp)n=2 + H collisions. All cross sections were calculated in
the framework of our numerical procedure. For comparison
the cross sections of the Stark transition σ2p→2s calculated
for 	2s = 0 and σ ind

2p calculated in the present approach with
the correct boundary condition are also presented in Fig. 6.
Both the absorption and, especially, the Stark cross sections,
calculated in the framework of the model in [4], depend
strongly on the value of Rg and cannot be treated reliably.
At the same time the cross sections of the so-called maximum
absorption σmax abs = σ2p→abs + σ2p→2s calculated with Rg �
5 a.u. does not depend on the Rg value and practically coincides
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σ2p→2s, Γ2s=0
σ2p→2s, Rg=5
σ2p→2s, Rg=15
σ2p→abs, Rg=5
σ2p→abs, Rg=15

σ2p
ind, present 

FIG. 6. (Color online) Cross sections of the absorption σ2p→abs

and Stark transition σ2p→2s (open triangles and asterisks) vs the
laboratory kinetic energy calculated using the model in Ref. [4] for
two values of the switched-off parameter Rg = 5 a.u. (dashed lines)
and Rg = 15 a.u. (solid lines). The cross section of collision-induced
absorption σ ind

2p calculated in the present approach is denoted by filled
circles. For comparison the Stark cross section σ2p→2s calculated at
	2s = 0 is shown by the dash-dotted line.
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with the cross sections of the collision-induced absorption σ ind

calculated with the correct boundary conditions. In Fig. 6, the
sections σmax abs are not distinguishable from σ ind

2p and therefore
are not shown.

It is worthwhile noting that the results obtained in the frame-
work of the close-coupling model [4] are more realistic than
those obtained in the semiclassical approximation. However,
for a reliable description of atomic cascade kinetics one must
use a more elaborate approach for the proper description of all
collision processes.

C. Pionic hydrogen

Numerical calculations have been done for the principal
quantum number values and kinetic energies to provide
comprehensive sets of the differential and total collisional
cross sections needed for the detailed cascade calculations.
Here we present a small portion of our results illustrating only
the energy dependence of the total cross sections of collision-
induced absorption calculated with the physical values of the
ns-state energy shifts and widths. The results of the detailed
calculations were used as input data in kinetics code and some
results of the cascade calculations were recently published
[26].

The energy dependence of the induced-absorption cross
sections from the different sub-levels of pionic hydrogen in the
states with n = 6 is shown in Fig. 7. At energies below ∼0.1 eV
the σ ind

nl with various l = 1, . . . ,5 have quite different energy
behaviors. Such behavior is explained by the strong coupling
of the different channels in the low-energy region.

At higher energies dipole coupling dominates and induced
absorption from the np sublevels becomes more probable than
from the states with l > 1. This statement is qualitatively
supported by the simple estimation obtained in the dipole
approximation, which is only justified in the high-energy
region. Indeed, the l dependence of the interaction matrix
elements coupling the sublevels at a fixed n can be obtained
from Eq. (21) in the dipole approximation:

WJ
nl±1,nl ∝ n

√
n2 − l2. (47)
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FIG. 7. (Color online) Energy dependence of the induced-
absorption cross sections for (π−p)6l + H collisions.
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FIG. 8. (Color online) Energy dependence of the induced-
absorption cross sections for (π−p)nd + H collisions.

Then the coupling matrix element, Eq. (47), e.g., for np states,
is proportional to n2, while for the circular orbit (l = n − 1) we
obtain WJ

nn−2L±1,n n−1L ∝ n3/2. Also, additional suppression
occurs due to the trivial statistical factor 1/(2l + 1) in Eq. (27).
As a result, the differences between the induced-absorption
cross sections from the 6p state and those from other states
increase and reach about an order of magnitude at a collisional
energy of more than a few electron volts. In accordance
with our study in the previous section, at collisional energies
Elab > 10 eV the induced-absorption cross sections from the
6l sublevels (l � 1) are practically equal to the cross sections
of the Stark transitions calculated with 	6s = 0 (note that
	6s/2 ≈ 0.16 × 10−3 eV) and can be treated as the cross
sections of the Stark transitions.

Figure 8 shows the energy dependence of the induced-
absorption cross sections calculated for the different nd states
of pionic hydrogen with n = 4–8. In low-energy collisions
the induced-absorption cross section as a whole grows while
the n value decreases. This behavior corresponds qualitatively
to the n dependence of the 	ns . At an Elab of more than a
few electron volts the n dependence of the coupling matrix
elements becomes the most important and determines the
behavior of the cross sections. As a result, we observe an
increase in the cross section while n changes from 4 up to 8.

D. Kaonic hydrogen

The strong-interaction effects in the scattering of K−p

atoms in excited states are rather different and can be
essentially more important than in the case of pionic hydrogen.
First, the real part Reεstr

1s of the 1s energy shift is repulsive and
much larger in kaonic atoms, i.e., the binding energy of the
ns states is lower than the binding energy of the n l states
with l � 1. Therefore, the unstable-state channels below the
corresponding threshold energies Ecm < |Re�ns,nl | are closed.
Second, the strong-interaction width 	1s = −2 Im�E1s in
kaonic hydrogen is also much larger (by about two orders
of magnitude) than in pionic hydrogen. It is important to
note that for kaonic hydrogen the condition |	ns/2ERe

ns | ≈ 1 is
always satisfied, in contrast to pionic hydrogen, for which the
condition |	ns/2�ERe

ns | � 1 is fulfilled. Therefore, the widths
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FIG. 9. (Color online) Elastic (dashed lines) and induced-
absorption (solid lines) cross sections for (K−p)3p + H collisions
vs the width 	3s calculated at Elab = 1 eV (open circles) and
Elab = 25 eV (open triangles). The physical value of 	3s = 20.04 eV
is shown by the vertical line.

	ns cannot be considered as a perturbation in kaonic hydrogen
scattering and must be taken into account within the realistic
quantum-mechanical consideration. Finally, to our knowledge,
the cross sections of collision-induced absorption for kaonic
hydrogen and also all other collisional processes in the energy
range below ns thresholds have not been calculated until now.3

The dependence of the elastic and induced-absorption cross
sections for (K−p)3p + H collisions on the strong-interaction
width 	3s is shown in Fig. 9. The calculations were performed
in the wide range of values 	3s = (10−5–105) eV and the two
values of the laboratory kinetic energy Elab = 1.0 and 25 eV.
Since the real part of the energy shift Re(�3s,3p) = 9.78 eV,
the unstable-state channels at Elab = 1.0 eV are closed, while
at Elab = 25 eV they are open.

The main regularities of the induced-absorption cross
section discussed in Sec. III A (see Figs. 2 and 3) are also
revealed in the case of kaonic hydrogen. At a 	3s of less
than a few electron volts, σ ind

3p is proportional to 	3s when
the unstable-state channels are closed and demonstrates a
linear dependence on 	3s when the unstable-state channels
are open. The numerical calculations confirm the validity of
the conditions, Eqs. (40)–(43) in the case of kaonic hydrogen
at nonphysical and very small values of 	. In the intermediate
region of 	 values these conditions are not satisfied and the
unstable-state widths cannot be neglected. The physical value
of 	3s = 20.04 eV is outside the region of linear dependence
of the induced-absorption cross section on the width value. It
is noted that the cross section calculated at Elab = 25 eV and
the physical value of 	3s is about two orders of magnitude
more than the cross section of the Stark transition 3p → 3s

calculated at 	3s → 0. The cross section of elastic 3p-3p

3The preliminary results for a kaonic hydrogen recently published
in [10] were obtained using the experimental values of the strong-
interaction shift and width of the 1s state from Ref. [27], which differ
significantly from the data [21] used in the present calculations.
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FIG. 10. (Color online) Energy dependence of the induced-
absorption (solid line) and elastic scattering (dashed line) cross
sections for (K−p)2p + H collisions. The elastic cross section
calculated with 	2s = 0 is shown by the dash-dotted line. The 2s

threshold energy is shown by the arrow.

scattering is practically independent of 	3s since the (3p-3d)
coupling is stronger than the (3p-3s)-coupling due to the large
value of the (3p-3s) energy shift.

An example of the energy dependence of the collision-
induced absorption and elastic cross sections for (K−p)2p + H
scattering is shown in Fig. 10. The calculations were made
with the physical value 	2s = 67.6 eV at collision energies
both above and below the 2s threshold. At low energies the
lowest partial waves make the main contribution to the cross
sections of elastic scattering and collision-induced absorption.
At energies of less than ∼0.1 eV both the elastic scattering and
the induced-absorption cross sections approach their threshold
behavior: σ el

2p → const and σ ind
2p ∝ 1/

√
E.

Comparison of the elastic cross section calculated with
the physical value of 	2s demonstrates strong suppression,
of about an order of magnitude, compared with the cross
section calculated at 	2s = 0. This suppression is explained
by the much weaker effective coupling between the stable-
and the unstable-state channels due to the fast oscillations of
the wave function in the unstable-state channel. According to
the present study the induced absorption from the 2p state of
kaonic hydrogen is the fastest collision process at all energies
under consideration and leads to suppression of the Kα yield
at high target densities.

The energy dependencies of the calculated cross sections
for the elastic 3p-3p scattering, Stark 3p → 3d transition,
Coulomb 3p → 2p de-excitation, and induced absorption in
(K−p)3p + H collisions are presented in Fig. 11. For energies
higher than ∼0.5 eV the elastic scattering and Stark 3p → 3d

transition are the fastest processes, while at lower energies
the cross section of collision-induced absorption increases
approximately as σ ind

2p ∝ 1/
√

E and becomes comparable to
the cross sections of the elastic scattering and Stark mixing.
In addition, the cross section of the Coulomb de-excitation
(3p → 2p) is about an order of magnitude less than the cross
sections of collision-induced absorption from both the 3p and
the 3d states.
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FIG. 11. (Color online) Energy dependence of the cross sections
calculated for the elastic 3p-3p scattering, Stark 3p-3d transition,
Coulomb 3p-2p de-excitation, and induced absorption in (K−p)3p +
H collisions. The arrow shows the 3s threshold energy.

Figure 12 shows the energy dependence of the induced-
absorption cross sections for different sublevels of kaonic
hydrogen with n = 5. At low collisional energies the induced-
absorption cross sections from different sublevels (5p, 5d,

and 5g) have comparable values and similar energy behavior
due to the strong coupling of the different channels as well as
in the case of pionic hydrogen scattering. At higher energies
(Elab ∼ 2–3 eV) the transitions with |�l| = 1 dominate and
induced absorption during collisions from the state with the
lowest angular momentum (here the 5p state) becomes more
probable than from the others.

Comparison of the present results with the results [4]
of previous quantum-mechanical calculations (above the 5s

threshold) and semiclassical calculations is also presented in
Fig. 12. As a whole, there is satisfactory agreement of our
induced-absorption cross sections with the so-called maximal
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FIG. 12. (Color online) Induced-absorption cross sections for
scattering of K−p in the 5p, 5d, and 5g states from hydrogen vs the
laboratory kinetic energy. The present results are shown by solid lines;
the results [4] of quantum-mechanical calculation, by the dashed line;
and the results of semiclassical calculation, by the dash-dotted line.
The arrow shows the 5s threshold energy.

absorption cross sections (σ abs
5p + σ5p→5s) calculated in [4]. For

energies below the 5s threshold the semiclassical approach
[4] completely fails and cannot reproduce either the energy
behavior or the absolute value of the induced-absorption cross
sections.

E. Antiprotonic hydrogen

The effects of a strong interaction are enhanced in antipro-
tonic hydrogen in comparison with kaonic hydrogen. The
values of the energy shifts and widths of the ns states in
antiprotonic hydrogen are about two times larger than in K−p.
The real part of the ns energy shifts is also repulsive, therefore
nl → ns transitions are forbidden below the corresponding
threshold even at 	ns = 0. Another difference between kaonic
and antiprotonic hydrogen is the hadronic width of the 2p state
in antiprotonic hydrogen, 	2p = 38 ± 2.8 meV [22], which
is about two orders of magnitude larger than the radiative
width, 	rad

2p→1s
∼= 0.38 meV, and must be taken into account

in the realistic cascade model and in the quantum-mechanical
calculations of low-energy collisions. According to our study,
the 2p state of antiprotonic hydrogen can be treated as a normal
asymptotic state for collision energies above ∼ 5–10 eV. In
the examples considered below the effect of 	np is neglected
in comparison with the much stronger effect of the complex
energy shift of the ns state.

It is important to note one more peculiarity of antiprotonic
hydrogen: ordinary hydrogen collisions due to the equality
of the proton and antiproton masses. The matrix elements,
Eq. (21), coupling the asymptotic initial (nlL; J ) and final
(n′l′L′; J ) channels are identically equal to 0 if the internal
orbital angular momenta satisfy the condition (−1)l = (−1)l

′
.

Therefore the dipole coupling becomes more important in
antiprotonic hydrogen scattering than in the case of pionic
and kaonic atoms.

The energy dependence of the elastic cross sections for
(p̄p)nl atoms in the 5p, 5d, and 5g states scattering from
hydrogen is shown in Fig. 13. There the results of the
calculations with the physical value of 	5s/2 = 4.2 eV are

0.001 0.01 0.1 1 10 100
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l→
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.)
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FIG. 13. (Color online) Energy dependence of the elastic cross
sections for scattering of p̄p in the 5p, 5d, and 5g states from
hydrogen. Results of the calculations with the physical value of
	5s/2 = 4.2 eV are shown by solid lines and those with 	5s = 0
by dashed lines. The arrow shows the 5s threshold energy.
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FIG. 14. (Color online) Cross sections of induced annihilation for
scattering of p̄p in the 5p, 5d, and 5g states from hydrogen vs the
laboratory kinetic energy (	5s/2 = 4.2 eV). The arrow shows the 5s

threshold energy.

compared with those obtained with 	5s = 0. Noticeable
differences in the cross sections are only seen at low energies,
�0.5 eV. At higher energies the influence of the width value
becomes less pronounced. In accordance with the peculiarity
discussed above, the cross section of elastic 5p-5p scattering
is suppressed in comparison with the cross section of elastic
5d-5d scattering. The effect of a strong-interaction shift is
enhanced for lower states and increases weakly for highly
excited states of antiprotonic atoms.

Figure 14 shows an example of the energy dependence of
induced-annihilation cross sections calculated for 5p, 5d, and
5g states of antiprotonic hydrogen. Both the energy and the
l dependence of these cross sections are qualitatively very
similar to the ones presented in Fig. 12 for kaonic hydrogen.

Figure 15 shows the energy dependence of the induced-
annihilation cross sections for (p̄)npp collisions (n = 3–8).
The energy behavior and n dependence of these cross sections
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FIG. 15. (Color online) Cross sections of induced annihilation for
(p̄p)np (n = 3–8) scattering from hydrogen vs the laboratory kinetic
energy. The present results are shown by solid lines; the results of
semiclassical calculation (for the 8p state) from [4], by dashed lines.
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FIG. 16. (Color online) Threshold behavior of the elastic (5l →
5l, l � 1), Stark (5l → 5l′), and induced annihilation (5l, l = 1–2)
cross sections for p̄p scattering from hydrogen (�l ≡ |l − l′|).

are, as a whole, similar to the case of pionic hydrogen discussed
above (see Fig. 8). Both of them grow while n is increasing.
However, in contrast to pionic hydrogen, in the case of
antiprotonic hydrogen we observe strong suppression of the
induced-annihilation cross section from low-lying states due
to the large values of the level shift and width. Comparison of
the present results with the results of semiclassical calculations
in [4] shows a satisfactory agreement for energies above ∼4 eV.
For lower energies the results of the semiclassical calculations
underestimate the induced-annihilation cross sections (see
also [10]) as in the case of kaonic hydrogen (see Fig. 12).

For proper description of the kinetics of the atomic cascade
in hadronic atoms, knowledge of the low-energy behavior of
the cross sections for different processes is very important. The
threshold behavior of the elastic (5l → 5l, l � 1), Stark (5l →
5l′), and induced-annihilation (5l, l = 1–4) cross sections for
p̄p scattering from hydrogen is illustrated in Fig. 16. It
is shown that the threshold behavior of the cross sections
begins at various energies below Elab � (3–6 × 10−3 eV and,
in correspondence with Wigner’s law [28], is determined
by simple energy dependencies: for induced annihilation
σ ind(Elab) ∼ E

−1/2
lab , and for the other processes σll′(Elab) ∼

E
|l−l′ |
lab (l and l′ are the orbital angular momenta of antiprotonic

hydrogen in the initial and final states). It is noted that
|l − l′| ≡ min(L + L′), where L and L′ are the orbital angular
momenta of the relative motion.

IV. CONCLUSION

The fully quantum-mechanical description of induced
absorption in π−p and K−p and induced annihilation in
p̄p atoms has been studied in the framework of the CCA.
The effects of complex energy shifts due to strong interac-
tion and vacuum polarization have been taken into account
straightforwardly in the quantum-mechanical scattering prob-
lem. Unstable states corresponding to both open and closed
channels have been included in the basis set and the system of
coupled second-order differential equations has been solved
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with the correct boundary conditions using the propagation
matrix method developed by the authors earlier.

In the framework of the present approach the cross sections
of collision-induced absorption (in π−p and K−p atoms) and
annihilation (in p̄p atoms) have been calculated in a unified
manner together with the cross sections of elastic scattering,
Stark transitions, and Coulomb de-excitation. The calculations
have been done for states of the hadronic atoms with principal
quantum numbers n = 2–8 and kinetic energies Elab = 0.001–
100 eV.

The main regularities of the induced-absorption cross
sections have been studied in a wide range of shifts and
widths. In particular, in the case of pionic hydrogen it was
shown that there are three regions of width values in which
the dependencies of the induced-absorption cross sections on
width are quite different, e.g., this dependence is linear at
small widths of the unstable states. For kaonic and antiprotonic
hydrogen atoms the corresponding regularities have also been
studied, taking into account the fact that the values of their ns

level shifts (repulsive) and widths are comparable and much
larger than in the case of pionic hydrogen. The cross sections of
all processes for collisions of kaonic and antiprotonic atoms
with an ordinary hydrogen atom at energies below (np-ns)
thresholds, including induced absorption and annihilation,
have not been calculated before.

The quantum-mechanical condition that the unstable state
can be approximately treated as a stable one in the scattering
problem has been formulated for the general case of both the
open and closed unstable-state channels. It has been shown
that both the classical condition and quantum-mechanical
conditions leads to the similar estimations if Ecm ≈ ReEch

nl .
Comparison of the present cross sections with those

calculated earlier [4] in the close-coupling and semiclassical
models shows, as a whole, a fairly good agreement, provided
the collision energy is above the (np-ns) thresholds, while
at lower energies the semiclassical description is not justified,
strongly underestimates the induced-absorption cross sections,
and cannot reproduce its energy and l dependencies.

In the case of pionic hydrogen the effects of induced
absorption can be explicitly seen in the spectra of neutrons

formed from the charge-exchange reaction π− + p → π0 +
n. There are at least three variants, which lead to different
contributions to the neutron time-of-flight spectra.

(1) Coulomb transition nl → n′s (n′ � n − 1) and absorp-
tion from the n′s state: These must lead to peaks at energies
corresponding to the energies of the preceding Coulomb
transitions.

(2) Coulomb transition nl → n′l′ (n′ � n − 1; l �= 0, l′ �=
0), elastic scattering, Stark transition n′l′ → n′s, and, again,
absorption from the n′s state: Here, the energy of the neutron
may be lower than the energy obtained by the pionic hydrogen
from the preceding Coulomb transition.

(3) Induced absorption from nl states (l �= 0): In this
case the energies of the formed neutrons change in wider
boundaries—practically from the average energy of the target
up to the estimated value (see discussion of Fig. 6).

Some results of the present study have been used in detailed
kinetics calculations of the atomic cascade in pionic hydrogen
[29].

This study reveals knowledge about induced absorption and
annihilation in hadronic atoms during collisions with ordinary
hydrogen that is very important for the reliable description
and analysis of the x-ray yields and kinetic energy distribution
of hadronic atoms at the instant of absorption or radiative
transition. The latter has crucial meaning in the analysis of
precision experiments aimed at the determination of strong-
interaction widths (e.g., 	1s in pionic hydrogen and deuterium,
	2p in kaonic and antiprotonic hydrogen) with a very high
accuracy.

We hope that the obtained results will allow the elimination
of some uncertainties inherent in previous cascade calcula-
tions, in which different, and not always self-consistent and
justified, assumptions are used to treat the collision processes.
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