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Linear-response methods, based on the time-dependent variational coupled-cluster or the unitary coupled-
cluster model, and truncated at the second order according to the Møller-Plesset partitioning, i.e., the TD-VCC[2]
and TD-UCC[2] linear-response methods, are presented and compared. For both of these methods a Hermitian
eigenvalue problem has to be solved to obtain excitation energies and state eigenvectors. The excitation energies
thus are guaranteed always to be real valued, and the eigenvectors are mutually orthogonal, in contrast to response
theories based on “traditional” coupled-cluster models. It turned out that the TD-UCC[2] working equations
for excitation energies and polarizabilities are equivalent to those of the second-order algebraic diagrammatic
construction scheme ADC(2). Numerical tests are carried out by calculating TD-VCC[2] and TD-UCC[2]
excitation energies and frequency-dependent dipole polarizabilities for several test systems and by comparing
them to the corresponding values obtained from other second- and higher-order methods. It turns out that the
TD-VCC[2] polarizabilities in the frequency regions away from the poles are of a similar accuracy as for other
second-order methods, as expected from the perturbative analysis of the TD-VCC[2] polarizability expression.
On the other hand, the TD-VCC[2] excitation energies are systematically too low relative to other second-order
methods (including TD-UCC[2]). On the basis of these results and an analysis presented in this work, we
conjecture that the perturbative expansion of the Jacobian converges more slowly for the TD-VCC formalism
than for TD-UCC or for response theories based on traditional coupled-cluster models.
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I. INTRODUCTION

Coupled-cluster (CC) theory [1] is one of the most success-
ful computational methods for calculating dynamic electron
correlation in molecules. The exponential Ansatz for the CC
wave function |�〉 = exp (T)|0〉 ensures size extensivity of
the method also for truncated cluster operators T by including
the required disconnected clusters. Furthermore, a CC wave
function, even based on a cluster operator truncated, e.g.,
beyond doubles substitutions (CCSD), contains all possible
excited determinants of the corresponding full configuration
interaction (CI) Ansatz; the coefficients of the higher, i.e.,
beyond doubles, substitutions though are approximated by
corresponding products of singles and doubles amplitudes.
From that angle the CC Ansatz can also be considered as a
method leading to an appropriate tensor decomposition of the
full CI coefficients related to higher excited determinants. For
a comprehensive review of coupled-cluster theory, we refer to
Ref. [2].

Since the variational determination of the CC amplitudes
is too difficult, the projected Schrödinger equation formalism
(sometimes called “traditional” CC theory [3]) is commonly
employed. Here, the CC wave function is inserted into the
Schrödinger equation, which in turn is projected against the
reference (yielding the energy), and against the determinants
covered by the cluster operator T (yielding the amplitude
equations, i.e., as many equations as there are amplitudes to
be determined). Usually, prior to projection the Schrödinger
equation is multiplied by exp (−T). This delivers the so-called
“linked” CC equations, which are size extensive term by term
and terminate after the fourth power of T regardless of the
number of electrons and the truncation in T.

CC methods based on canonical molecular orbitals (MOs)
exhibit a rather steep polynomial scaling of the computational
cost with system size N , e.g., O(N 6) and O(N 7) for CCSD
and CCSD(T), respectively, where the latter (CCSD with
a perturbative triples correction) [4] represents the “gold
standard” in quantum chemistry. Polynomial scaling of the
computational cost is already a great achievement compared
to the factorially hard problem of full CI, but still limits the
application of CC theory to systems of small or medium size.
Low- (even linear) scaling CC methods can be devised by
substituting the canonical by local MOs and exploiting the
short-range nature of dynamic correlation effects [5–10].

Properties and electronically excited states are, in the
framework of “traditional” CC theory, accessible through
time-dependent (TD) response [11–14], or equation-of-motion
(EOM) formalisms [15–17]. Pioneering work on this topic
has been published already in the late 1970s [18–20]. TD
response and EOM-CC approaches differ significantly
in their perspective of electronically excited states.
EOM-CC considers excited states as the eigenstates of the
(time-independent) similarity-transformed coupled-cluster
Hamiltonian Ĥ = exp (−T)H exp (T) in the basis of singly,
doubly, etc., excited configurations. It is therefore a
(truncated) configuration interaction method employing the
Ĥ Hamiltonian and the correlated CC wave function
as the reference. The TD response method, on the
other hand, considers the excitation energies as time- or
frequency-dependent ground-state properties, i.e., as the poles
of the dynamic polarizability. The TD response thus provides
a very general framework, which can be used in the context of
density functional, Hartree-Fock, or CC theory. Interestingly,
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despite the different vantage point, both methods lead, for
a traditional CC theory like CCSD, to analogous equations
determining the excitation energies, although transition
strengths and other properties of excited states differ. In the
present work we focus on the TD response formalism.

Traditional CC theory has a disadvantage that it lacks
Hermiticity: Since exp (T) contains exclusively excitation
operators, the CC similarity-transformed Hamiltonian Ĥ is
not Hermitian. The absence of deexcitation operators directly
implies the practical gains mentioned above, but also has
undesirable consequences, particularly so for excited states.
Specifically, the eigenvectors of the nonsymmetric Jacobian
representing the excited states are nonorthogonal, and the
excitation energies may become complex [21,22], especially
for distorted geometries and close to conical intersections. It
is therefore attractive to investigate alternative variational CC
formalisms, and to develop time-dependent response theories
on top of those. Quite a few papers devoted to alternative CC
theories have been published so far; these refer mainly to the
ground-state energy [23–33], but there are also some contribu-
tions addressing molecular ground-state properties [34–39].

Recently, some of us presented a time-dependent response
approach on the basis of variational CC theory (cf. Ref. [40],
denoted as Paper I in the following), which is targeting exci-
tation energies and first-order properties of excited states. The
problem with the nonterminating series of diagrams, which is
due to the presence of deexcitation operators T†, was solved in
a pragmatic way by utilizing a Møller-Plesset (MP) perturba-
tion expansion and omitting terms which contribute at an order
higher than some selected power n of the fluctuation operator
W to the time-dependent quasienergy (W = H − F, where H
is the Hamiltonian and F is the Fock operator). Within this
framework a hierarchy of methods of increasing accuracy can
be derived. The different levels of this hierarchy were denoted
by the acronym TD-VCC[n] (time-dependent variational cou-
pled cluster), where n stands for the largest fully included order
of W. The first two orders n = 0 and n = 1 are equivalent to the
Koopmans-like treatment (orbital energy differences) and the
configuration interaction singles (CIS) method for excitation
energies, respectively. The lowest correlated level appears at
second order and is therefore denoted as TD-VCC[2].

In the present contribution we explore, in the same spirit,
yet another time-dependent response approach (denoted by the
acronym TD-UCC[n]), which is based on the unitary coupled-
cluster (UCC) formalism [26,27], rather than VCC. Moreover,
we present numerical excitation energies and dynamic dipole
polarizabilities for both of these methods, and compare these
to other relevant approaches, such as TD-CC2 [41], TD-CCSD
[42,43] (equivalent to EOM-CCSD for excitation energies
[16], but not for polarizabilities [44,45]), TD-CC3 [46], and
other alternative CC theories for properties [30,36,47].

II. THEORY

A. Linear response

In this section an “in a nutshell” review of linear-response
theory is given, in order to prepare the ground for the
subsequent discussion. For a detailed discussion of response
theory, based on the time-averaged quasienergy, we refer to
Ref. [14], and references therein.

The time-independent Hamiltonian H(0) is augmented by a
general time-dependent perturbation operator, i.e.,

H(t) = H(0) + V(t), with V(t) =
N∑

k=−N

exp(−iωkt)Vωk

and Vωk =
∑
X

εX(ωk)X. (1)

For simplicity, the k-index summation can be restricted to only
two terms by setting N = 1. This restriction does not affect
results of linear-response theory, but only of higher orders.
The time evolution of the wave function |�̄(t)〉, written in the
phase-isolated form as

|�̄(t)〉 = eiF (t)|�̃(t)〉, (2)

is governed by the time-dependent Schrödinger equation

H(t)|�̄(t)〉 = i
∂

∂t
|�̄(t)〉. (3)

Note that the (still time-dependent) wave function |�̃(t)〉
is restricted such that it becomes equivalent to the time-
independent solution |�〉 (with H(0)|�〉 = E|�〉) for vanish-
ing perturbation V(t). Inserting Eq. (2) in Eq. (3) and projecting
onto 〈�̃(t)| straightforwardly yields the quasienergy as the
time derivative of the phase of |�̄(t)〉, i.e.,

Q(t) = Ḟ (t) =〈�̃(t)|H̄(t)|�̃(t)〉, with H̄(t) = H(t) − i
∂

∂t
.

(4)

Q(t) is the formal time-dependent analog of the energy
[to which it reduces for vanishing V(t)], and of central
importance for the time-dependent formalism. The derivative
of the time-averaged (over the period T ) quasienergy with
respect to the perturbation strength εX(ωX) is equivalent to the
time-averaged expectation value over an operator X,

d{Q(t)}T
dεX(ωX)

= {〈�̃(t)|X|�̃(t)〉}T

= 1

T

∫ T/2

−T/2
dt〈X〉0e

−iωXt +
∑
k1

e−i(ωX+ωk1 )t

×
∑
Y

εY (ωk1 )〈〈X; Y 〉〉ωXωk1
+ · · ·

= 〈X〉0δ(ωX) +
∑
k1

∑
Y

εY (ωk1 )〈〈X; Y 〉〉ωXωk1

× δ(ωX + ωk1 ) + · · · ; (5)

hence there is the direct equality

d2{Q(2)(t)}T
dεX(ωX)dεY (ωY )

≡ 〈〈X; Y 〉〉ωXωY
, with ωY = −ωX (6)

between the second-order (with respect to the perturbation
strength) time-averaged quasienergy {Q(2)}T and the linear
response function 〈〈X; Y 〉〉ωXωY

. The latter corresponds to the
negative of frequency-dependent polarizability, if X and Y are
position operators. Provided that the wave-function parameters
tμ(t) specifying |�̃(t)〉 [gathered in the vector t(t)] are
variational, i.e., they minimize {Q(t)}T , the linear-response
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function can be cast in the form [14,40]

〈〈X; Y 〉〉ωXωY
= ηXtY(ωY ) + ηY tX(ωX) + t

X†
(−ωX)η

Y † + t
Y †
(−ωY )η

X†

+ t
X†
(−ωX)G(ωY )tY(ωY ) + t

Y †
(−ωY )G(ωX)tX(ωX)

+ t
X†
(−ωX)t

Y †
(−ωY )B

† + BtX(ωX)t
Y
(ωY ), (7)

with the vector ηX and the matrices B and G(ωY ) being defined
as

ηX
μ = ∂2{Q(2)(t)}T

∂εX(ωX)∂t
(1)
μ (ωY )

, Gμν(ωY ) = ∂2{Q(2)(t)}T
∂t

(1)†
μ (ωY )∂t

(1)
ν (ωY )

,

Bμν = ∂2{Q(2)(t)}T
∂t

(1)
μ (ωX)∂t

(1)
ν (ωY )

. (8)

Here, μ and ν are indices of the wave-function parameters t(t)
parametrizing |�̃(t)〉, and the derivatives are taken at zero-
field strength. In order to arrive at Eqs. (7) and (8) we have
expanded the wave-function parameters t(t) and t†(t) in the
Fourier components of the perturbation (1) as

tμ(t) = t (0)
μ + t (1)

μ (t) + · · · , with

t (1)
μ (t) =

N∑
k=−N

t (1)
μ (ωk) exp(−iωkt),

t (1)
μ (ωk) =

∑
X

εX(ωk)tXμ(ωk),

(9)
t†μ(t) = t (0)†

μ + t (1)†
μ (t) + · · · , with

t (1)†
μ (t) =

N∑
k=−N

t (1)†
μ (−ωk) exp(−iωkt),

t (1)†
μ (−ωk) =

∑
X

εX(ωk)tX†
μ(−ωk)

[see also Eqs. (3.2)–(3.7) in Ref. [14], or Eq. (17) in Ref. [40]]
and made use of the 2n + 1 rule.

Variationality of {Q(t)}T with respect to the wave-function
parameters of |�̃(t)〉 implies the stationary conditions

∂〈〈X; Y 〉〉ωXωY

∂t
X†
(−ωX)

= ηY † + G(ωY )tY(ωY ) + t
Y †
(−ωY )B

† != 0,

(10)
∂〈〈X; Y 〉〉ωXωY

∂tX(ωX)

= ηY + t
Y †
(−ωY )G(−ωY ) + BtY(ωY )

!= 0,

which specify the parameter responses tY . By virtue of
Eq. (10), Eq. (7) simplifies to

〈〈X; Y 〉〉ωXωY
= 〈〈X; Y 〉〉−ωY ωY

= ηXtY(ωY ) + t
Y †
(−ωY )η

X†. (11)

Note that expression (11) for a polarizability at a given
frequency ωY involves two independent sets of parameter
responses tY(ωY ) and t

Y †
(−ωY ), which are obtained by solving the

coupled linear equation system (10). However, when the B
matrix is zero (vide infra), the equations for tY(ωY ) and t

Y †
(−ωY )

decouple.
The poles of 〈〈X; Y 〉〉ωXωY

occur at frequencies ωf , for which
the parameter responses tY(ωf ) become infinite, i.e., when the
matrix (

G(ωf ) B∗
B G(ωf )∗

)
(12)

is singular. This leads to a Casida-like eigenvalue problem [41]
for the excitation energies ωf ,(

A B∗
B A∗

) (
Uf

U−f

)
= ωf

(
M 0
0 −M∗

) (
Uf

U−f

)
. (13)

Here we have introduced the matrices A and M as components
of G(ωY ):

G(ωY ) = A − ωY M, (14)

where A is the ω-independent part of G, and M is the metric
matrix.

B. Time-dependent second-order variational
coupled-cluster theory

The formalism for time-dependent second-order variational
coupled-cluster (TD-VCC[2]) linear response has been ex-
plained in detail in Ref. [40] (Paper I). Here we just review
the most relevant points, for comparison with time-dependent
second-order unitary coupled-cluster theory (TD-UCC[2])
(vide infra). The wave function |�̃(t)〉 has the form

|�̃(t)〉 = exp [T(t)] |0〉, (15)

where |0〉 stands for the time-independent reference, i.e., the
Hartree-Fock (HF) wave function. Furthermore,

T(t) =
∑

i

Ti(t) =
∑

i

∑
μi

tμi
(t)τμi

(16)

is the cluster operator with time-dependent amplitudes tμi
(t)

(the wave-function parameters; vide supra), and corresponding
(spin)orbital-replacement operators τμi

, generating single-
(i = 1), double- (i = 2), etc. (up to the actual number
of electrons) orbital substitutions when acting on the HF
reference. Ti(t), implicitly defined in (16), represents the i-fold
excitation part of the cluster operator T(t).

Employing the wave-function Ansatz (15) variationally
leads to the VCC theory. For the quasienergy, one obtains

Q(t) = min
t(t)

〈0| exp[T†(t)]H̄(t) exp[T(t)]|0〉
〈0| exp[T†(t)] exp[T(t)]|0〉 . (17)

The expression (17) contains disconnected diagrams and
truncates only when the number of electrons is exhausted in the
excitation. Although the Baker-Campbell-Hausdorff (BCH)
expansion is not applicable here, this expression, as was shown
by Cizek [48], can still be written in a fully connected form as

Q(t) = min
t(t)

〈0| exp[T†(t)]H̄(t) exp[T(t)]|0〉C. (18)

However, in this last expression exclusion-principle violating
(EPV) terms are present [49], in which products of the cluster
operators Ti are no longer restricted to the actual number of
electrons, making the summations in (18) effectively infinite.
Therefore, without further truncations, Eq. (18) is inapplicable.

In Paper I we have employed a double perturbation theory
to devise TD-VCC[n] linear-response methods up to order
n = 2: In addition to the time-dependent perturbation V(t) [cf.
Eq. (1)], the time-independent Hamiltonian H(0) is partitioned
(according to the standard Møller-Plesset partitioning) into the
zeroth-order Fock operator F, and the first-order fluctuation
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potential W, i.e.,

H(t) = F[0](0) + W[1](0) + V[0](1)(t). (19)

Here, and throughout the paper, the order with respect to the
fluctuation potential is given in square brackets, while the
order with respect to the time-dependent perturbation is given
in parentheses.

The amplitudes (or formally, the corresponding cluster
operators) can be expanded in orders with respect to both
perturbation operators as

T(t) = T[1](0) + T[2](0) + · · · + T[0](1)(t)

+ T[1](1)(t) + T[2](1)(t) + · · · . (20)

The amplitudes, which are of zeroth order in V(t), are
obviously time-independent. The expansion of the amplitudes
in the Fourier components of the perturbation (1) as in Eq. (9),
followed by the insertion into the respective TD-VCC[n]
quasienergy and the time-averaging over the period T , yields
the linear-response function by virtue of Eq. (6). Note that
the time-dependent singles amplitudes in second-order TD-
VCC[2] theory [40] are actually not partitioned into individual
components of various W orders as in Eq. (20), but instead
serve as parameters correct through second order (which is
indicated by the superscript [�2] in T[�2](1)

1 )

T[0](1)(t) + T[1](1)(t) + T[2](1)(t) ⇒ T[�2](1). (21)

The time-averaged TD-VCC[2] quasienergy {2n+1Q[�2](2)}T is
defined such that it collects all terms which are of exact second
order with respect to the perturbation V, and correct through
second order with respect to the fluctuation potential W.
Furthermore, the 2n + 1 rule with respect to the perturbation
V applies, as indicated by the corresponding superscript. The
time-averaged TD-VCC[2] quasienergy is given explicitly
in Eq. (41) of Paper I. The matrices G[�2](ωY ), B[�2], and
the vector ηY [�2], the latter constituting the right-hand side
of the stationary conditions [Eq. (10)], are obtained from
{2n+1Q[�2](2)}T according to Eq. (8), yielding

ηY [�2]
μi

= 〈0|(1 + T[2](0)†
1 + T[1](0)†

2 + T[2](0)†
2

)
Yτμ1

+ T[1](0)†
2 YT[1](0)

2 τμ1 + T[1](0)†
2 Yτμ2 |0〉C, (22)

G[�2]
μiνj

(ωY ) = 〈0|τ †
μ1

(
F + T[1](0)†

2 FT[1](0)
2 + W + WT[1](0)

2

+ T[1](0)†
2 W − ωY − ωY T[1](0)†

2 T[1](0)
2

)
τν1

+ τ †
μ1

Wτν2 + τ †
μ2

Wτν1 + τ †
μ2

(F − ωY )τν2 |0〉C,

(23)

B[�2] = 0. (24)

In the above equations the superscript [�2] of G[�2](ωY ),
B[�2], and ηY [�2] indicates that the corresponding object
originates from the quasienergy, which is correct through
second order with respect to W. Correctness through second
order, however, does not necessarily transfer to these objects,
which are derivatives of the quasienergy. Since the B[�2] matrix
in the TD-VCC[2] theory vanishes, the position of the poles of
the linear response function, i.e., the excitation energies, can
be obtained by solving the simplified [with respect to Eq. (13)]

eigenvalue problem

AUf = ωf MUf , (25)

which is Hermitian, provided that the M matrix is positive
definite (see Sec. III E for discussion of this issue).

We note in passing, that the double perturbation theory as
outlined above, can also be applied to the traditional non-
Hermitian coupled-cluster method. As mentioned in Paper I
(cf. Sec. IV E of Ref. [40]), the working equations of the
resulting second-order method, denoted in the following as
TD-CC[2], are equivalent to those of the CIS(D∞) approach
[21]. The latter does not originate from a linear response or
EOM approach, but is an iterative version of the CIS method
with the second-order correlation correction (D) [50].

C. TD-UCC[2]

Following the same lines, a linear-response method based
on the UCC Ansatz [26,27] can be devised. The UCC wave
function is defined as

|�̃UCC(t)〉 = exp[T(t) − T†(t)]|0〉, (26)

which has the nice property of being exponential and normal-
ized at the same time. The time-dependent UCC quasienergy
can then be written as the expectation value

Q(t) = min
t(t)

〈0| exp[−T(t) + T†(t)]H̄(t) exp[T(t) − T†(t)]|0〉

= min
t(t)

〈0|H̄(t) + [H̄(t),T(t) − T†(t)]

+ 1
2 [[H̄(t),T(t) − T†(t)],T(t) − T†(t)] + · · · |0〉, (27)

which now (and in contrast to TD-VCC) can be rewritten as a
BCH commutator expansion. Yet it does not terminate after the
fourfold-nested commutator as for traditional CC theory, and
not even after the terms which exhaust the number of electrons.
Similarly to the connected version of the VCC expression
[cf. Eq. (18)], the summations in Eq. (27) are effectively infinite
[28].

It is well known that commutators can be replaced by
connected expressions, i.e.,

[O,T − T†] = (OT)C + (T†O)C ; (28)

hence the quasienergy expression [see Eq. (27)] can be recast
in fully connected form as

Q(t) = min
t(t)

〈0|H̄(t) + (H̄(t)T(t))C + (T†(t)H̄(t))C

+ 1
2 {(T†(t)(H̄(t)T(t))C)C + ((H̄(t)T(t))CT(t))C

+ (T†(t)(T†(t)H̄(t))C)C + ((T†(t)H̄(t))CT(t))C} + · · · |0〉.
(29)

The commutator involving the time-derivative part of H̄
appearing in Eq. (27) simplifies to[

∂

∂t
,T(t) − T†(t)

]

=
(

∂

∂t
T(t)

)
−

(
∂

∂t
T†(t)

)
= Ṫ(t) − Ṫ†(t), (30)

where the parentheses imply that the time derivative has to
be applied to the amplitudes of this cluster operator only (just
the first term of the product rule survives, by virtue of the
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commutator). Hence, we have

(H̄(t)T(t))C = (H(t)T(t))C − iṪ(t) and

(T†(t)H̄(t))C = (T†(t)H(t))C + iṪ†(t), (31)

for each of these terms occurring in Eq. (29). In the nested
commutators, according to Eqs. (30) and (31), the time
derivative only acts within the innermost commutator.

Since the UCC parametrization of the wave function (26)
involves noncommuting T and T† operators, the exponential
of a sum of time-dependent T(�1)(t),T(�1)†(t) and time-
independent T(0),T(0)† cluster operators does not factorize into
a product of two exponentials gathering the time-dependent
and the time-independent pieces separately, as in the VCC or
standard CC cases. Hence, in addition to the primary TD-UCC
Ansatz∣∣�̃T

UCC(t)
〉 = exp ((T(0) + T(�1)(t)) − (T(0)† + T(�1)†(t)))|0〉,

(32)

one can form alternative Ansätze, based on an enforced
exponential factorization. The two most obvious forms of
time-dependent UCC wave functions are∣∣�̃H

UCC(t)
〉 = exp(T(0) − T(0)†) exp (T(�1)(t) − T(�1)†(t))|0〉

(33)

and∣∣�̃D
UCC(t)

〉 = exp (T(�1)(t) − T(�1)†(t)) exp(T(0) − T(0)†)|0〉.
(34)

From Eq. (29) the time-averaged quasienergy {2n+1Q(2)}T can
be devised for different orders with respect to the fluctuation
potential W. In zeroth order with respect to W the ground-state
amplitudes do not contribute, making all three TD-UCC[0]
Ansätze equivalent (the excitation energies are identical to the
HF orbital energy differences, cf. Appendix A 1, as is the case
for TD-VCC[0]). Yet already in first order with respect to W
(TD-UCC[1]), the formalisms for the excitation energies and
polarizabilities deviate for the three parametrizations presented
in Eqs. (32)–(34). First we consider the TD-UCC-H Ansatz
[see Eq. (33)], for which the quasienergy takes the form

QH (t) = 〈
�̃H

UCC

∣∣H̄∣∣�̃H
UCC

〉
= 〈0| exp (−T(�1)(t) + T(�1)†(t)) exp(−T(0) + T(0)†)H̄

× exp(T(0) − T(0)†) exp (T(�1)(t) − T(�1)†(t))|0〉.
(35)

The BCH expansion for the inner exponentials involving the
ground-state amplitudes has to be performed first, which
is then subject to the second BCH expansion with the
exponentials of the time-dependent operators, as sketched in
Appendix A 1. The time-dependent rotation of the ground-state
similarity-transformed Hamiltonian matrix in (35) resembles
the EOM-UCC scheme, and in fact, agrees with the latter in
all orders of the time-dependent perturbation [see Eq. (38) of
Ref. [51]]. Such a factorization of the wave function, where
the time-independent amplitudes are forming the innermost
commutators, leads to an important simplification for the
time-derivative part of H̄,

〈
�̃H

UCC

∣∣i ∂

∂t

∣∣�̃H
UCC

〉 = 〈0| exp (−T(>0)(t) + T(>0)†(t))
(

i
∂

∂t

)
× exp (T(>0)(t) − T(>0)†(t))|0〉. (36)

Any contribution from the time-independent ground-state
amplitudes in the first BCH expansion is zeroed by the time
derivative of the amplitudes in the innermost commutator
[see Eqs. (30) or (31)]. This implies that in contrast to the TD-
VCC method, and also in contrast to the other parametrizations
of TD-UCC (vide supra) the metric matrix M is just the
identity matrix at any W order of the TD-UCC-H formalism
(cf. Appendix A 2).

It is shown in detail in Appendix A 1 that the working
equations for the TD-UCC[1]-H excitation energies are
equivalent to those of TD-VCC[1] [40]. This means that
the B matrix vanishes and the Jacobian corresponds to a
Hermitian CIS matrix. On the other hand, the η term, and,
thus the polarizabilities of TD-UCC[1]-H , similarly to the
TD-VCC[1] case, are not equal to those of CIS, but rather
correspond to ADC(1) [see Eq. (45b) of Ref. [52]]. For the
TD-UCC-H method the B matrix vanishes also for higher
orders in W. Hence the simplified Hermitian eigenvalue
problem [see Eq. (25)] is recovered also for higher orders
in W, just as is the case for TD-VCC (cf. Paper I). Such an
observation was already reported in an early paper on the UCC
parametrization of the wave function within the polarization
propagator formalism [53].

Writing out the commutators of the double BCH expansion
of TD-UCC-H (Appendix A 1) and keeping only those terms
second order in V, and up to second order in W, one finally
arrives after time averaging at the following expression for the
TD-UCC[2]-H quasienergy,

{2n+1Q[�2](2)}T =
∑

k

〈0|1

2
T[�2](1)†

1(−ωk ) T[�2](1)†
1(ωk)

[
F
(
T[1](0)

2 + T[2](0)
2

) + W + WT[1](0)
2

]
C

+ 1

2

[(
T[1](0)†

2 + T[2](0)†
2

)
F

+ W + T[1](0)†
2 W

]
C

T[�2](1)
1(−ωk ) T

[�2](1)
1(ωk ) + T[�2](1)†

1(ωk)

(
F + W + 1

2
WT[1](0)

2 + 1

2
T[1](0)†

2 W
)
C

T[�2](1)
1(ωk )

+ T[1](1)†
2(ωk ) FT[1](1)

2(ωk ) + T[�2](1)†
1(ωk) WT[1](1)

2(ωk ) + T[1](1)†
2(ωk ) WT[�2](1)

1(ωk ) − ωk

(
T[�2](1)†

1(ωk) T[�2](1)
1(ωk ) + T[1](1)†

2(ωk) T[1](1)
2(ωk )

)
+ T[�2](1)†

1(ωk ) Vωk
(
1 + T[2](0)

1 + T[1](0)
2 + T[2](0)

2

) +
(

1

2
T[�2](1)†

1(ωk) T[1](0)†
2 + T[1](1)†

2(ωk)

)
Vωk T[1](0)

2

+ T[1](0)†
2 V−ωk

(
1

2
T[1](0)

2 T[�2](1)
1(ωk ) + T[1](1)

2(ωk)

)
+ (

1 + T[2](0)†
1 + T[1](0)†

2 + T[2](0)†
2

)
V−ωk T[�2](1)

1(ωk) |0〉C, (37)
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where the superscript 2n + 1 again indicates that the 2n + 1
rule (with respect to V) applies. Furthermore, the MP2
equations are utilized to cancel some of the terms, as is shown
in Appendix A 3. Note that in particular, no product terms
involving ωk and time-independent amplitudes do occur, as is
the case for TD-VCC[2] [cf. Eq. (41) in Paper I]. The metric
matrix M therefore is just the identity matrix, as already stated
above.

Expressions for the matrices G[�2](ωY ), B[�2], and the
vector ηY [�2] are obtained by differentiating {2n+1Q[�2](2)}T
according to Eq. (8),

ηY [�2]
μi

= 〈0|(1 + T[2](0)†
1 + T[1](0)†

2 + T[2](0)†
2

)
Yτμ1

+ 1
2 T[1](0)†

2 YT[1](0)
2 τμ1 + T[1](0)†

2 Yτμ2 |0〉C, (38)

G[�2]
μiνj

(ωY )

= 〈0|τ †
μ1

(
F + W + 1

2 WT[1](0)
2 + 1

2 T[1](0)†
2 W − ωY

)
τν1

+ τ †
μ1

Wτν2 + τ †
μ2

Wτν1 + τ †
μ2

(F − ωY )τν2 |0〉C, (39)

B[�2]
μiνj

= 〈0|(T[1](0)†
2 F + W

+ T[2](0)†
2 F + T[1](0)†

2 W
)
τμ1τν1 |0〉C = 0. (40)

Comparing Eqs. (39) and (23), it can be seen that the
TD-VCC[2] terms 〈0|τμ1 T[1](0)†

2 T[1](0)
2 τν1 |0〉C in the M matrix

and 〈0|τμ1 T[1](0)†
2 FT[1](0)

2 τν1 |0〉C in the A matrix either do not
appear (the former, cf. Appendix A 2) or cancel out (the latter,
cf. Appendix A 3) in the TD-UCC[2]-H method. Finally,

as the last equality of Eq. (40) shows, the B matrix of the
TD-UCC[2]-H method indeed vanishes, under the assumption
that the ground-state MP2 and MP3 equations are satisfied.
Hence the TD-UCC[2]-H Jacobian is Hermitian, and only the
simplified Hermitian eigenvalue problem [see Eq. (25)] has to
be solved to obtain excitation energies and eigenstates.

A direct comparison reveals that the equations for the
excitation energies and polarizabilities of the TD-UCC[2]-H
method are equivalent to those of the ADC(2) method [52,54]
[the η terms of ADC(2) are given in Eq. (54) of Ref. [52]; the
Jacobian of ADC(2) can be found in Ref. [21], Eqs. (6) and (7)].
A close relation between UCC and ADC methods has already
been mentioned before [55,56]. In particular, in Ref. [55] it
was shown that a polarization-propagator formalism based
on a perturbative UCC Ansatz, where the UCC-H form of
the wave-function parametrization is actually automatically
realized, yields the same expressions as ADC. In this work
we have shown that this connection also exists within one
of the formulations of TD-UCC linear response, namely, the
H parametrization, and we have worked this out in detail
for the second-order method with respect to the fluctuation
potential W.

For the D parametrization of the TD-UCC wave function
[see Eq. (34)], the quasienergy also calls for a double BCH
expansion, but in the opposite order: here, the innermost
part is time dependent. Interestingly, this method has some
connection to density-matrix-based time-dependent theories.
Indeed, introducing the resolution of identity

∑
I |I 〉〈I |, one

can rewrite the pure Hamiltonian part of the TD-UCC-D
quasienergy (i.e., without the time derivative) as

〈
�̃D

UCC

∣∣H∣∣�̃D
UCC

〉 = 〈
�

(0)
UCC

∣∣ exp (T(�1)†(t) − T(�1)(t))
∑

I

|I 〉〈I |H
∑

J

|J 〉〈J | exp (T(�1)(t) − T(�1)†(t))
∣∣�(0)

UCC

〉

= tr

{∑
J

〈I |H|J 〉〈J | exp (T(�1)(t) − T(�1)†(t))
∣∣�(0)

UCC

〉〈
�

(0)
UCC

∣∣ exp (T(�1)†(t) − T(�1)(t))|I ′〉
}

. (41)

This expression can be interpreted as the trace of the
Hamiltonian contracted with the matrix of the ground-state
many-electron density projection operator |�(0)

UCC〉〈�(0)
UCC| ro-

tated by a time-dependent unitary transformation operator. As
a practical example to illustrate this connection we consider
the TD-UCC[1]-D method. In Appendix A 1 we demonstrate
that the TD-UCC[1]-D formalism is equivalent to TD-HF,
which can also be regarded as a HF density-matrix response
theory [57–59]. Interestingly, this equivalence holds not only
for the excitation energies, but also for the polarizabilities, i.e.,
unlike TD-VCC[1], TD-UCC[1]-H , or ADC(1), the B matrix
of TD-UCC[1]-D does not vanish, but, at the same time, the
η-term does not include any terms involving the ground-state
amplitudes.

Finally, the general TD-UCC-T scheme involves a single
BCH expansion leading to Eqs. (27) and (29). As demonstrated
in Appendix A 1, the first-order method (with respect to W),
i.e., TD-UCC[1]-T , has a nonzero B matrix, but it is weighted
with a factor of 1

2 relative to that of TD-UCC[1]-D. The

resulting eigenvalue problem for the TD-UCC[1]-T excitation
energies hence corresponds to kind of an average between
TD-UCC[1]-D and TD-UCC[1]-H (B = 0), or equivalently,
between TD-HF and its Tamm-Dancoff approximation. Such
an average also holds for the η term of the TD-UCC-T method
and therefore for the polarizabilities.

For the second-order methods TD-UCC[2]-D and TD-
UCC[2]-T the B block does not vanish, rendering the Jacobian
as non-Hermitian, and the full Casida-like eigenvalue problem
(13) has to be solved. Furthermore, the metric matrix M is
not just an identity matrix as in TD-UCC[2]-H . For these
reasons, the formalisms of TD-UCC[2]-D and TD-UCC[2]-T
are more complex than that of TD-UCC[2]-H and are not
considered further in the present work. Investigation and
corresponding numerical results for these two Ansätze are
planned for a forthcoming publication. Below we focus
on the Hermitian-Jacobian TD-VCC[2] and TD-UCC[2]-H
[=ADC(2)] theories. For the latter, we drop the postfix “-H”
in the following for convenience.
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III. RESULTS AND DISCUSSION

A. Computational details

In the course of this work the TD-VCC[2] and TD-UCC[2]
[=ADC(2)] methods have been implemented in the actual
development version of MOLPRO [60,61], i.e., in the framework
of our local Laplace-based [62] CC2 response method [63,64]
and of the EOM-CC module [65]. In the following we
compare TD-VCC[2] and TD-UCC[2] excitation energies and
frequency-dependent polarizabilities (FDPs) to other methods.
Most calculations were performed with MOLPRO; for the TD-
CC2 and TD-CCSD FDPs, as well as the TD-CC3 excitation
energies, the DALTON program [66] was employed. Static
orbital-relaxed polarizabilities at the CCSD and the CCSD(T)
level were computed via the finite-field technique.

As test molecules (i) water, (ii) formamide, and (iii) aniline
were selected, which represent, respectively, (i) a simple case
without double bonds, (ii) a case with an isolated double bond,
and (iii) an aromatic molecule, respectively. As a further test
molecule (just for excitation energies) the 1-phenylpyrrole
molecule was chosen, which represents a more complicated
organic molecule with two rings separated by a single C-C
bond, featuring excited charge-transfer (CT) states shifting
density from one ring to the other.

The geometries of the water, formamide, and aniline
molecules were optimized at the level of MP2 in the cc-
pVTZ atomic orbital (AO) basis, while the geometry of the
1-phenylpyrrole molecule was adopted from Ref. [65]. The
excitation energy and FDP calculations were performed in
the aug-cc-pVTZ (water, formamide), and the aug-cc-pVDZ
(aniline, 1-phenylpyrrole) basis sets [67]. The core electrons
(1s for C, O, and N) were excluded from the correlation
treatment (frozen core approximation) in all calculations.

Furthermore, the additive separability of the excitation
energies has been tested for the case of the BeH2 molecule
(aug-cc-pVTZ basis). The BeH2 system has been used before
for the same purpose, e.g., in Refs. [68,69].

B. Excitation energies

Table I compiles the TD-VCC[2] and TD-UCC[2]
[=ADC(2)] vertical excitation energies for several lowest
electronic singlet states of the four test molecules, which
are compared to the corresponding TD-CC2 and TD-CCSD
(=EOM-CCSD) values. For water and formamide, the TD-
CC3 excitation energies are also included. The TD-CC[2]
[=CIS(D∞)] excitation energies differ from TD-UCC[2] at
most by 0.001 eV for all states considered here (actually, this
difference is usually even smaller) and are therefore omitted
in the table. The discrepancies in the excitation energies of
TD-CC2 and TD-CCSD vary substantially from state to state,
but are for most cases not larger than 0.2 eV. Exceptions are
two higher excited states of formamide (2 A′ and 3 A′ states; cf.
third and fourth states in Table I) with a deviation as large as 0.7
eV. Apparently, relative to the more accurate TD-CC3 method,
TD-CCSD overestimates the excitation energies of these states
somewhat, but nevertheless, the error of TD-CC2 vs TD-CC3 is
still quite large for these two problematic states, i.e., ∼0.4 eV.
It should also be noted that the identification of corresponding
states between TD-CC2 and TD-CCSD is unambiguous only

for some (usually the few lowest) of the states: Indeed, the
overlaps of the singles parts of the respective eigenfunctions
of the CC Jacobian with CIS wave functions may be quite
different for “corresponding” TD-CC2 and TD-CCSD states.
Exactly such a situation occurs for the problematic A′ states of
formamide; the comparison between TD-CC2 and TD-CCSD
thus has to be taken with a grain of salt for these states. For
aniline, the TD-CC2 and TD-CCSD excitation energies agree
within 0.2 eV for all states considered. The observed deviations
between TD-CC2 and higher-order methods as employed in
the present work are well in line with a recent study on excited
states in nucleobases [70].

The TD-UCC[2] excitation energies are slightly lower than
those of TD-CC2, although usually by only ∼0.05 eV (with
the exception of the lowest state of formamide, where this
difference is ∼0.2 eV). Such discrepancies are anticipated
for second-order methods sharing a similar structure of
the Jacobian, but differing in the ground-state reference
(MP2 versus CC2).

The TD-VCC[2] excitation energies, on the other hand,
exhibit a markedly larger deviation from those of the other two
second-order methods. These differences typically amount to
∼0.2 eV, but there are several cases with larger deviations,
e.g., 0.7 eV for the first excited state of formamide, or 0.5
eV for the first excited state of aniline, etc. Interestingly, the
TD-VCC[2] excitation energies are consistently lower than
those of the other second-order methods. Since the latter
in turn systematically underestimate the TD-CCSD or TD-
CC3 reference excitation energies, TD-VCC[2] is particularly
bad for excitation energies, i.e., worse than TD-CC2 and
TD-UCC[2]. Possible reasons for this failure of TD-VCC[2]
are analyzed in detail in Sec. III E. Here, we only note
that the relevant singles-singles block of the TD-VCC[2]
Jacobian indeed deviates already in second order (with
respect to W) from the TD-UCC[2] or TD-CC[2] ones, even
though it is correct through second order within the TD-VCC
framework. The inherent problems of TD-VCC[2] regarding
excitation energies are further illustrated by the CT states of
1-phenylpyrrole: Here, the highest occupied molecular orbital
resides on the pyrrole ring, while the lowest unoccupied
molecular orbital is located primarily on the phenol ring.
Due to this feature, low-energy CT states are prominent in its
spectrum. Indeed, for TD-CCSD, TD-CC2, and TD-UCC[2]
the excited states 4, 7, and 8 possess partial CT character. On
the other hand, for TD-VCC[2] no states with partial pyrrole
to phenol excitation were found up to states 7 and 8. Also, the
CIS overlap analysis (vide supra) reveals that the excitation
characters of state 4 vary between TD-VCC[2] and the other
methods.

C. Polarizabilities

In this section we explore how the different methods
perform for the FDP at frequencies away from the poles.
Table II compiles the FDPs for the two frequencies ω = 0.0
a.u. (static) and ω = 0.1 a.u., calculated using TD-VCC[2],
TD-UCC[2], TD-CC2, and TD-CCSD methods. A much wider
set of methods is tested in Appendix C. From numerical
experience [71] it is known that the TD-CCSD method is the
first one in the hierarchy of the TD-CCS, TD-CC2, TD-CCSD,
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TABLE I. Excitation energies of the lowest singlet excited states of water, formamide, aniline, and 1-phenylpyrrole (in eV). In parentheses
the deviation with respect to the reference (TD-CC3 in case of water and formamide, TD-CCSD for aniline and 1-phenylpyrrole) is given.
Point symmetry of excited states of water: 1,4,6–B1; 2–A2; 3,5–A1. Point symmetry of excited states of formamide: 1,2,5–A′′; 3,4,6–A′.

Method State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

Molecule Water

TD-VCC[2] 7.01(−0.60) 8.69(−0.70) 9.40(−0.61) 10.17(−0.67) 10.68(−0.70) 10.83(−0.68)
TD-UCC[2] 7.18(−0.43) 8.85(−0.54) 9.56(−0.45) 10.32(−0.52) 10.83(−0.55) 10.97(−0.54)
TD-CC2 7.23(−0.38) 8.90(−0.49) 9.62(−0.39) 10.37(−0.47) 10.91(−0.47) 11.02(−0.49)
TD-CCSD 7.60(−0.01) 9.37(−0.02) 10.00(−0.01) 10.81(−0.03) 11.37(−0.01) 11.49(−0.02)
TD-CC3 7.61 9.39 10.01 10.84 11.38 11.51

Molecule Formamide

TD-VCC[2] 4.94(−0.71) 6.54(−0.29) 6.08(−0.65) 6.65(−0.74) 7.35(−0.33) 7.00(−0.62)
TD-UCC[2] 5.44(−0.21) 6.73(−0.10) 6.25(−0.48) 6.83(−0.56) 7.53(−0.15) 7.31(−0.31)
TD-CC2 5.68(+0.03) 6.74(−0.09) 6.31(−0.42) 6.89(−0.50) 7.54(−0.14) 7.36(−0.26)
TD-CCSD 5.69(+0.04) 6.91(+0.08) 6.99(+0.26) 7.55(+0.16) 7.76(+0.08) 7.78(+0.16)
TD-CC3 5.65 6.83 6.73 7.39 7.68 7.62

Molecule Aniline

TD-VCC[2] 4.25(−0.53) 4.63(−0.37) 5.21(−0.45) 5.32(−0.43) 5.36(−0.49) 5.98(−0.40)
TD-UCC[2] 4.74(−0.04) 4.83(−0.17) 5.45(−0.21) 5.54(−0.21) 5.67(−0.18) 6.15(−0.23)
TD-CC2 4.75(−0.03) 4.83(−0.17) 5.45(−0.21) 5.54(−0.21) 5.71(−0.14) 6.15(−0.23)
TD-CCSD 4.78 5.00 5.66 5.75 5.85 6.38

Molecule 1-phenylpyrrole

TD-VCC[2] 4.39(−0.55) 4.80(−0.69) 5.13(−0.48) 5.27(−0.45) 5.28(−0.51) 5.43(−0.62) 5.67(−0.47) 5.71(−0.48)
TD-UCC[2] 4.91(−0.03) 5.27(−0.22) 5.46(−0.15) 5.47(−0.25) 5.53(−0.26) 5.78(−0.27) 5.85(−0.29) 5.90(−0.29)
TD-CC2 4.92(−0.02) 5.31(−0.18) 5.43(−0.18) 5.49(−0.23) 5.49(−0.30) 5.73(−0.32) 5.85(−0.29) 5.92(−0.27)
TD-CCSD 4.94 5.49 5.61 5.72 5.79 6.05 6.14 6.19

and TD-CC3 models, which usually yields rather accurate
polarizabilities; thus this method serves as the benchmark
in Table II. Apparently, for FDPs at frequencies away from
the poles, TD-VCC[2] performs significantly better than

for excitation energies; all three second-order methods are
comparable and provide similar accuracy, which is in line
with the theoretical considerations made in Paper I: The
stationary conditions of TD-VCC[2] differ from those of

TABLE II. Dipole polarizabilities of water, formamide, and aniline (all values in a.u.). In parentheses the deviation with respect to TD-CCSD
is given.

Method αxx αyy αzz αyz
a or αxz

b

Frequency 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1

Molecule Water

TD-VCC[2] 9.59(0.51) 10.16(0.63) 10.47(0.50) 10.77(0.54) 10.08(0.63) 10.46(0.69)
TD-UCC[2] 9.48(0.40) 10.01(0.48) 10.38(0.41) 10.67(0.44) 9.98(0.53) 10.35(0.58)
TD-CC2 9.79(0.71) 10.36(0.83) 10.51(0.54) 10.80(0.57) 10.06(0.61) 10.43(0.66)
TD-CCSD 9.08 9.53 9.97 10.23 9.45 9.77

Molecule Formamide

TD-VCC[2] 21.03(0.80) 21.91(0.92) 29.21(1.91) 30.83(2.32) 41.01(4.48) 44.63(5.67) 1.69(0.84) 1.87(1.00)
TD-UCC[2] 20.86(0.63) 21.68(0.69) 28.87(1.57) 30.38(1.87) 39.98(3.45) 43.14(4.18) 1.64(0.79) 1.81(0.94)
TD-CC2 21.03(0.80) 21.88(0.89) 29.46(2.16) 31.08(2.57) 39.57(3.04) 42.56(3.60) 1.12(0.27) 1.23(0.36)
TD-CCSD 20.23 20.99 27.30 28.51 36.53 38.96 0.85 0.87

Molecule Aniline

TD-VCC[2] 53.66(2.20) 56.50(2.60) 94.37(7.42) 103.93(10.27) 114.09(10.53) 128.88(15.28) −0.10(−0.18) −0.31(−0.28)
TD-UCC[2] 53.26(1.80) 55.93(2.03) 92.85(5.90) 100.97(7.31) 111.30(7.74) 123.73(10.13) −0.06(−0.14) −0.22(−0.19)
TD-CC2 52.83(1.37) 55.51(1.61) 90.99(4.04) 98.62(4.96) 110.16(6.60) 122.05(8.45) 0.05(−0.03) −0.09(−0.06)
TD-CCSD 51.46 53.90 86.95 93.66 103.56 113.60 0.08 −0.03

aFor formamide.
bFor aniline.
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TD-CC[2] in the third order (with respect to W) only, which
should lead to similar results for second-order properties for
frequencies far from the poles. Furthermore, we note that all
three second-order methods systematically overestimate the
FDPs by several percent relative to the TD-CCSD benchmark.
The influence of the nearest pole on the FDPs can be seen by
comparing the increments in the FDPs on going from ω = 0.0
a.u. to 0.1 a.u. It is largest for aniline (which has the lowest
excitation energy), and of all methods applied to this molecule
the TD-VCC[2] approach produces the largest error due to the
underestimation of the excitation energies in this model, as
discussed in the previous section.

D. Size extensivity, additive separability, and charge transfer

To deliver meaningful results for large systems, size
extensivity (size intensivity for excitation energies) is a crucial
property for a method. The expressions for the quasienergy are
fully connected for all three methods TD-CC, TD-UCC, and
TD-VCC. For TD-CC and TD-UCC this is a consequence of
the BCH commutator expansion of the quasienergy expression
[cf. Eqs. (27) and (29) for TD-UCC], while for TD-VCC the
cancellation of the denominator leads to the connected form,
cf. Eq. (18). Size extensivity of the quasienergy, however,
does not guarantee that after differentiation with respect to the
time-dependent amplitudes (and/or Lagrange multipliers in the
case of TD-CC) the stationary conditions or the Jacobian are
free of disconnected terms.

The stationary conditions for the amplitudes of the tra-
ditional TD-CC formalism contain only connected terms.
Disconnected terms appear only in the stationary conditions
for the Lagrange multipliers; however, due to the 2n + 2
rule [14] they do not affect the linear response function, and
thus the size extensivity of the TD-CC polarizabilities is not
destroyed. The TD-CC Jacobian can also contain disconnected
terms, but only in the upper-triangle part, which therefore
cannot violate the size intensivity of the excitation energies
[72]. TD-VCC, on the other hand, which has a Hermitian
Jacobian, is more problematic in this respect. However, as
was shown in Paper I, for the second-order TD-VCC[2]
method disconnected terms occur neither in the stationary
conditions, nor in the Jacobian. Finally, for the TD-UCC-H
method with the time-dependent amplitudes appearing only
in the second, outer BCH expansion, Eq. (35) implies only
connected terms in both the stationary conditions, and the
Jacobian, for arbitrary orders in W. Consequently, all the
methods employed in the context of the present work are size
extensive for polarizabilities, and size intensive for excitation
energies.

Another important issue is the correct description of
extensive properties in the asymptotic limit of noninteracting
subsystems, i.e., the so-called additive separability: Electronic
excitations from one subsystem (donor) to the other (acceptor)
should be, in the noninteracting limit, equal to the sum of the
corresponding ionization potential (IP) and electron affinity
(EA) of the donor and the acceptor subsystems, respectively.
For finite distances R between donor and acceptor subsystems,
this sum has to be corrected by the Coulomb interaction − 1

R

(in hartree) between the two charged fragments.

The additive separability of excited states is investigated for
various methods on the example of the BeH2 molecule. To this
end this molecule is separated into two subsystems consisting
of Be and H2, with Be lying on the perpendicular bisector of
the H2 bond. The bond length in H2 is kept fixed at 1.4 a.u. The
necessary IPs and EAs were calculated with the corresponding
program for the excitation energies, where ionized or electron-
attached states are introduced into the spectrum by adding a
single, very diffuse Gaussian orbital to the orbital basis set
[73–76]. This is a very useful trick, since presently IPs and
EAs are only available for TD-CC2 and TD-CC[2] within the
MOLPRO code.

From Table III it can be seen that the difference EE −
(IP + EA − 1

R
) stabilizes at <0.03 eV for all cases for the

selected CT state of BeH2. This value is several orders of
magnitude smaller than the accuracy of methods, therefore
we can conclude that all methods presented here are approxi-
mately additively separable. It should be noted that the exact
separability would require switching, e.g., to Fock-space CC
theory [69,77].

If we compare the values for the charge-transfer excitation
energies themselves, there is evidently a relatively large error
of all the second-order methods compared to the TD-CCSD
benchmark. At a relatively small donor-acceptor distance of
R = 10 bohrs the TD-VCC[2] excitation energy is below the
TD-CC2 or TD-UCC[2] values by ∼0.1 eV, i.e., somewhat less
than for the states studied in Sec. III B. On the other hand, the
discrepancy between TD-CC2 and TD-CCSD is considerably
larger than the average difference in Table I.

Furthermore, for larger distances R, the deviation between
the individual second-order methods vanishes entirely. Al-
though many terms specific to the TD-VCC[2] Jacobian, i.e.,
of the type 〈0|τμ1 T[1](0)†

2 FT[1](0)
2 τν1 |0〉C in the A matrix, and

〈0|τμ1 T[1](0)†
2 T[1](0)

2 τν1 |0〉C in the M matrix [see Eq. (23)], give
a zero contribution to the long-range CT states, some of them
do not decay at any distance R. Apparently, the influence
of such terms on the excitation energies in the A matrix is
counterbalanced by the corresponding M-matrix terms.

TABLE III. First excitation energy of the CT type and correspond-
ing differences to the sum over ionization potential (Be) and electron
affinity (H2) corrected by the Coulomb attraction. The values for the
distances and energies are given in bohrs and eV, respectively.

R TD-CCSD TD-CC2 TD-UCC[2] TD-CC[2] TD-VCC[2]

Excitation energies
10 8.812 8.186 8.207 8.207 8.108
20 9.304 8.968 8.989 8.989 8.957
50 10.125 9.726 9.749 9.749 9.745
100 10.397 9.993 10.015 10.015 10.019
1000 10.642 10.232 10.254 10.254 10.265

EE − (IP + EA − 1
R

)

10 0.889 0.671 0.671 0.671 0.559
20 0.021 0.092 0.093 0.093 0.047
50 0.025 0.034 0.036 0.036 0.019
100 0.025 0.029 0.030 0.030 0.021
1000 0.025 0.023 0.024 0.024 0.022
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E. Behavior of the perturbative expansions

The previous sections show that the TD-VCC[2] method
performs similarly as the other second-order methods for
FDPs at frequencies sufficiently far from the poles, yet the
underestimation of excitation energies (relative to the TD-
CCSD or TD-CC3 benchmark) is significantly larger than
for the other second-order methods TD-CC[2], TD-CC2, and
TD-UCC[2]. A formal perturbative analysis given in Paper I
shows that the stationary conditions (and consequently the
amplitude responses and the corresponding linear-response
function which is equivalent to the FDP) differ only in the third
order between TD-VCC[2] and TD-CC[2]. Hence, the FDPs
obtained using these two second-order methods are indeed
expected to be of a similar quality.

However, the similarity of polarizabilities through the
second W order does not mean automatically that excitation
energies agree up to the same order, too. In Paper I it was shown
that the connection between the TD-CC[2] and TD-VCC[2]
stationary conditions involves the ηY [�2]† term. This term,
however, does not enter the Jacobian itself and thus is of no
relevance for the eigenvalue problem. As a result the Jacobian
matrices of these methods deviate not in the third, as the FDP,
but already in the second W order. The perturbative analysis
of the quality of the excitation energies cannot be directly
based on the perturbative analysis of the stationary conditions
or quasienergy, since in the vicinity of the poles the G-matrix
becomes singular, while the amplitudes (parameter responses)
become infinite and, thus, cannot be expanded in a perturbative
series.

However, what can be analyzed in terms of the perturbative
orders with respect to W is the completeness of the truncated
expressions for the individual elements or blocks of the
Jacobian matrix itself, which in turn determines the excitation
energies. As was already stated in Paper I, the TD-CC[2],
TD-VCC[2], and TD-UCC[2] Jacobians differ in the singles-
singles block only. For all three methods, and in particular
also for TD-VCC[2], the singles-singles block of the Jacobian
contains all possible second-order terms with respect to W
as dictated by the respective CC Ansatz (cf. Sec. IV D in
Paper I). In other words, those terms, which are absent in
the singles-singles block of the TD-CC[2], TD-VCC[2], and
TD-UCC[2] Jacobians, but present there in the respective
untruncated methods, are at least of third order with respect to
W. Nevertheless, and somewhat contradictive at first glance,
these three Jacobians deviate from each other in the singles-
singles block already in the second order with respect to
W, as discussed above. These two, seemingly contradictive
statements imply that for excited states dominated by single ex-
citations, all three methods are formally correct through the
second order with respect to W [40,56,78], but with reference
to different untruncated forms of the Jacobian. Consequently,
relatively large deviations in the excitation energies may occur.

Assuming that the three untruncated methods yield all the
same excitation energies (though not necessarily from identical
Jacobians), one can conclude that the convergence rate of
the perturbation expansion of individual elements or blocks
of the Jacobian can differ for the three different formalisms.
From the numerical experiments presented in Sec. III B, we
know that the TD-VCC[2] excitation energies are noticeably
smaller (usually by ∼0.2 eV, but in some cases by 0.5–0.7 eV)
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FIG. 1. (Color online) The excitation energies for the H2 molecule
as a function of the distance between the nuclei, calculated using MP2
(ground state), TD-UCC[2], TD-VCC[2], and full CI methods.

than the TD-UCC[2] and TD-CC2 values, which in turn also
underestimate the TD-CCSD benchmark. This suggests that
the additional terms in the VCC Jacobian are not beneficiary
and do not lead to higher or even similar accuracy compared
to TD-CC[2], TD-UCC[2], or TD-CC2. It thus appears that
the convergence (with respect to the perturbative order n) is
slower for the TD-VCC[n] Jacobian than for the TD-UCC[n]
or TD-CCn ones.

In order to test this conjecture we compare the quality of
the perturbative expansion (truncated at second order) for the
two Ansätze VCC and UCC for a system with decreasing
quality of the reference wave function. To this end we have
plotted in Fig. 1 the TD-VCC[2] and TD-UCC[2] excitation
energies for some of the lowest excited states of the H2

molecule as a function of the internuclear distance R, along
with the benchmark curves calculated with TD-CCSD. The
latter method is, in contrast to any second-order method,
exact for two-electron systems. Furthermore, the second-
order methods are expected to deteriorate substantially with
increasing multireference character. All calculations employ
the aug-cc-pVTZ basis set. In Appendix B, analogous plots of
the corresponding ground- and excited-state potential energy
surfaces are provided, in addition.

Evidently, for bond lengths close to the ground-state
equilibrium the TD-VCC[2] excitation energies lie system-
atically below those of TD-UCC[2], as already discussed in
Sec. III B. Beyond R = 2.5 bohrs, i.e., at the onset where
the ground state starts to acquire multireference character,
the excitation energies of both second-order methods start
to deviate noticeably from the benchmark. In the range of
R = 4–6 bohrs the excitation energies of the two second-order
methods start to deviate significantly also from each other, with
TD-VCC[2] starting to diverge earlier. Furthermore, in the
range of R = 8–9 bohrs the behavior of TD-VCC[2] becomes
catastrophic, whereas the TD-UCC[2] excitation energies
are of course incorrect, but still stable at these distances.
This indicates that with decreasing weight of the reference
wave function TD-VCC[2] indeed breaks down earlier than
TD-UCC[2].

The instability problem of TD-VCC[2] between R =
8 and 9 bohrs can be traced back to the singularity of the metric
matrix M, Eq. (23), which is equal to just the identity matrix
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for the TD-UCC[2] and TD-CC2 formalisms. For TD-VCC[2],
on the other hand, additional terms 〈0|τμ1 T[1](0)†

2 T[1](0)
2 τμ1 |0〉C

contribute to M. For the simple case of H2 in the minimal basis
it can directly be shown (by summing up all corresponding di-
agrams) that these contributions have to be negative. Provided
that the reference wave function has a large weight, these
negative contributions are much smaller in magnitude than
the identity matrix, and the overall M matrix remains regular.
However, when the weight of the reference wave function
becomes very small, the MP2 ground-state doubles amplitudes
substantially grow, and, at some point, the corresponding
negative contribution to the M matrix becomes of the order of
1; hence the overall M matrix becomes itself close to singular.

The breakdown of TD-VCC[2] vs TD-UCC[2] for increas-
ing internuclear separation R in the H2 molecule indeed
supports the explanation of a slower convergence of the
perturbative expansion of the TD-VCC[n] Jacobian for the
worse performance of the TD-VCC[2] method compared to
TD-CC[2] or TD-UCC[2] as far as excitation energies are
concerned. But what could be the reason for the slower conver-
gence of the perturbative expansion of the TD-VCC Jacobian
vs TD-UCC or TD-CC? For the corresponding untruncated
methods the amount of terms entering the individual elements
or blocks of the respective Jacobian indeed strongly depends on
the Ansatz: In standard CC theory the BCH commutator series
necessarily truncates after the fourfold-nested commutator,
whereas in the connected forms of the UCC and VCC theory
the series is essentially infinite, i.e., it does not terminate even
when the excitation level exhausts the number of electrons (cf.
Secs. II B and II C). This implies that in the untruncated TD-
VCC and TD-UCC formalisms each element of the Jacobian
contains a huge amount of higher-order terms, much more
numerous than in the untruncated TD-CC Jacobian based
on traditional CC theory. By their sheer amount the overall
contribution of all these higher-order terms together might be
of lower order than is formally attributed to the individual terms
themselves. This obviously can slow down the convergence
rate of the perturbative expansion.

Nevertheless, TD-UCC[2] provides excitation energies in
close agreement with TD-CC2 and even virtually identical to
TD-CC[2], as discussed in Sec. III B. Indeed, the difference
between the Jacobians of TD-UCC[2] and TD-CC[2], although
of second order as well, is rather minor and only in the off-
diagonal elements of the singles-singles block [21], i.e.,

1
2 〈0|τμ1

(
WT[1](0)

2 + T[1](0)†
2 W

)
τν1 |0〉

⇔ 〈0|τμ1 WT[1](0)
2 τν1 |0〉.

We note in passing, that this link between the TD-CC[2]
and TD-UCC[2] Jacobians through symmetrization of the
former is lost at higher orders, and the symmetrized TD-CCSD
Jacobian no longer delivers exact results for a two-electron
system. In contrast, the TD-VCC[2] Jacobian differs from the
other two Jacobians in a more fundamental way: Here the
second-order terms

〈0|τμ1 T[1](0)†
2 FT[1](0)

2 τν1 |0〉C and 〈0|τμ1 T[1](0)†
2 T[1](0)

2 τν1 |0〉C,

either canceling out or being absent altogether in the other
two methods, enter the A and M matrices [cf. Eqs. (14)
and (23), respectively]. Terms of this type appear also in

higher orders, but again only in the TD-VCC formalism. The
influence of these terms on the excitation energies is more
substantial, as numerical experiments conducted in the course
of this work clearly showed. Therefore, we conclude that
the perturbative expansion of mainly these terms suffers from
a slow convergence with respect to perturbative orders in W.

Furthermore, the possible singularity of the M terms
appears to be a feature of the connected, but infinite summation
of the VCC formalism, cf. Eq. (18). If the disconnected
diagrams of type

〈0|τμ1 T[1](0)†
2 T[1](0)

2 τμ1 |0〉D
are added to the M matrix, the corresponding diagonal
elements become positive, as expected from the metric matrix.
The singularity problem then disappears. The initial TD-
VCC energy expression Eq. (17) indeed contains all these
disconnected terms, as well as the denominator, but is free of
EPV terms. Therefore, the series in the VCC expectation value
expression terminates at the excitation level which exhausts the
number of electrons. From this angle, a VCC approach, starting
from Eq. (17) rather than (18), should be free of at least this
particular problem of the potential singularity of the M matrix.
On the other hand, in the untruncated VCC formalism based
on the connected form (18), the M-matrix instability has to
be removed by terms of formally higher orders, which sum
up such that they cancel with the problematic lower-order
terms. This obviously cannot be fulfilled for VCC formalisms
truncated at a certain perturbative order like TD-VCC[2].

IV. CONCLUSIONS

In this contribution we discussed the time-dependent CC
linear-response theories for two possible Hermitian second-
order CC Ansätze. The performance of these two methods,
denoted as TD-VCC[2] and TD-UCC[2]-H , respectively,
was numerically tested by calculating excitation energies
and dynamic dipole polarizabilities for several test systems.
Two alternative parametrizations based on the UCC Ansatz,
denoted as TD-UCC-D and TD-UCC-T , were only analyzed
theoretically, but not implemented and numerically tested,
since they do not lead to a Hermitian eigenvalue problem for
the excitation energies. The working equations for excitation
energies and polarizabilities of the TD-UCC[2]-H method
turned out to be equivalent to those of the already known
algebraic-diagrammatic construction propagator approach of
second-order, ADC(2). Comparison with other methods re-
veals that TD-UCC[2]-H provides reasonably good results
for excitation energies and polarizabilities, quite similarly
to the TD-CC2 approach, i.e., to response theory based on
the traditional CC2 model. The performance of the other
Hermitian method, TD-VCC[2], is mixed. It provides dynamic
dipole polarizabilities of similar quality as other second-order
methods (TD-UCC[2]-H , TD-CC2), but excitation energies
are systematically too low by at least 0.2 eV (or even more for
some test cases), relative to the other second-order methods,
which, in turn, also underestimate the TD-CCSD benchmark
themselves. This failure of the TD-VCC[2] method was further
analyzed in the present work: The Jacobians of TD-VCC[2]
and TD-UCC[2]-H deviate from that of TD-CC[2] already in
second order with respect to the fluctuation potential W, even
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though the relevant singles-singles blocks of these Jacobians
include all possible second-order terms as dictated by the
respective CC Ansatz. The additive separability was checked
and compared for the individual methods, but turned out to
be unproblematic for all the methods, including TD-VCC[2].
Furthermore, the quality of the second-order description with
respect to the fluctuation potential was compared for TD-
VCC[2] and TD-UCC[2]-H for the case of a H2 molecule
with increasing distance between the nuclei. It turns out
that TD-VCC[2] breaks down earlier than TD-UCC[2]-H .
Based on the analysis presented here, we conjecture a slower
convergence of the perturbative series in the TD-VCC[n] form
of the Jacobian, as an explanation for the failure of TD-VCC[2]
for excitation energies. This is intimately connected with
the nonterminating series obtained for the expansion of the
time-dependent VCC quasienergy in its fully connected form,
and with the occurrence of additional diagrams contributing to
the metric matrix, which involve ground-state amplitudes.
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APPENDIX A: THE TD-UCC METHOD

1. Zeroth- and first-order expressions

For the TD-UCC-H Ansatz (33) the expectation value
of the UCC quasienergy (35) can be written as a double
BCH commutator expansion, with the innermost similarity
transformation (which is expanded first) originating from the
time-independent exponentials, i.e.,

QH (t) = 〈
�̃H

UCC

∣∣H̄(t)
∣∣�̃H

UCC

〉
= 〈0| exp (T(�1)†(t) − T(�1)(t)) exp(T(0)† − T(0))H̄ exp (T(0) − T(0)†) exp(T(�1)(t) − T(�1)†(t))|0〉
= 〈0| exp (T(�1)†(t) − T(�1)(t))

(
H̄ + [H̄,T(0) − T(0)†] + 1

2 [[H̄,T(0) − T(0)†],T(0) − T(0)†] + · · · )
× exp (T(�1)(t) − T(�1)†(t))|0〉

= 〈0|H̄ + [H̄,T(�1)(t) − T(�1)†(t)] + 1
2 [[H̄,T(�1)(t) − T(�1)†(t)],T(�1)(t) − T(�1)†(t)] + · · · + [H̄,T(0) − T(0)†]

+ [[H̄,T(0) − T(0)†],T(�1)(t) − T(�1)†(t)] + 1
2 [[[H̄,T(0) − T(0)†],T(�1)(t) − T(�1)†(t)],T(�1)(t) − T(�1)†(t)] + · · ·

+ 1
2 [[H̄,T(0) − T(0)†],T(0) − T(0)†] + 1

2 [[[H̄,T(0) − T(0)†],T(0) − T(0)†],T(�1)(t) − T(�1)†(t)]

+ 1
4 [[[[H̄,T(0) − T(0)†],T(0) − T(0)†],T(�1)(t) − T(�1)†(t)],T(�1)(t) − T(�1)†(t)] + · · · |0〉. (A1)

The expression for the TD-UCC-D Ansatz (34) is obtained in an analogous way, but here the innermost similarity transformation
arises from the time-dependent exponentials. For the TD-UCC-T Ansatz (32), on the other hand, there is no ad hoc exponential
factorization into a time-dependent and a time-independent part, hence there is just one (and more complex) BCH expansion for
the corresponding quasienergy.

According to Eq. (28) the commutators can be written as connected terms. This yields, e.g., for the TD-UCC-H Ansatz (we
drop postfix -H and superscript H for simplicity), the following time-averaged quasienergy of second order with respect to the
time-dependent perturbation V(t) (which is relevant for linear-response theory),

{2n+1Q(2)}T =
∑

k

〈0|(VT(1)
1

)
C

+ (
T(1)†

1 V
)
C

+ (T(1)†(F + W)T(1))C + ((T(0)†V)CT(1))C + (T(1)†(VT(0))C)C

+ 1

2
{((WT(1))CT(1))C + (T(1)†(T(1)†W)C)C + (((T(0)†(F + W))CT(1))CT(1))C + (T(1)†(T(1)†((F + W)T(0))C)C)C

+ (T(1)†(WT(0))CT(1))C + (T(1)†(T(0)†W)CT(1))C + ((T(0)†(VT(0))C)CT(1))C + (T(1)†((T(0)†V)CT(0))C)C + · · ·}
−ωk(T(1)†T(1))C |0〉. (A2)

The superscript 2n + 1 indicates that the 2n + 1 rule in V has been utilized. With the above expression at hand it is now
straightforwardly possible to derive the working equations for the different orders of TD-UCC[n].

In zeroth order, i.e., TD-UCC[0], the ground-state amplitudes, which are at least of first order with respect to the fluctuation
potential W, do not contribute. In this case, all three Ansätze TD-UCC[0]-H , TD-UCC[0]-D, and TD-UCC[0]-T yield the same
time-averaged quasienergy

{2n+1Q[0](2)}T =
∑

k

〈0|(V−ωk T[0](1)
1(ωk )

)
C

+ (
T[0](1)†

1(ωk ) Vωk
)
C

+ 1

2

{(
T[0](1)†

1(ωk )

(
(F − ωk)T[0](1)

1(ωk)

)
C

)
C

+ ((
T[0](1)†

1(ωk ) (F − ωk)
)
C

T[0](1)
1(ωk)

)
C

}|0〉

=
∑

k

〈0|V−ωk T[0](1)
1(ωk ) + T[0](1)†

1(ωk ) Vωk + T[0](1)†
1(ωk ) (F − ωk)T[0](1)

1(ωk ) |0〉C, (A3)
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which is also equivalent to that of TD-VCC[0]. Applying Eqs. (8) to (A3) yields the quantities

ηY [0]
μi

= 〈0|Yτμ1 |0〉C, (A4)

G[0]
μiνj

(ωY ) = 〈0|τ †
μ1

(F − ωY )τν1 |0〉C, (A5)

B[0]
μiνj

= 0, (A6)

which specify via Eq. (13) the eigenvalue problem and thus the excitation energies. Obviously, the TD-UCC[0] excitation energies
are identical to the HF orbital energy differences, as in the case of TD-VCC[0].

In first order the UCC quasienergies start to differ for the different Ansätze. For the TD-UCC[1]-H approach with the
time-independent exponential to the left of the time-dependent one (innermost similarity transform is time-independent) the
quasienergy reads{2n+1

Q
[�1](2)
H

}
T

=
∑

k

〈0|(T[�1](1)†
1(ωk ) Vωk

)
C

+ (
V−ωk T[�1](1)

1(ωk )

)
C

+ ((
T[1](0)†

2 V−ωk
)
C

T[�1](1)
1(ωk)

)
C

+ (
T[�1](1)†

1(ωk )

(
Vωk T[1](0)

2

)
C

)
C

+ 1

2

{(
T[�1](1)†

1(−ωk )

(
T[�1](1)†

1(ωk ) W
)
C

)
C

+ ((
T[�1](1)†

1(ωk ) (F + W − ωk)
)
C

T[�1](1)
1(ωk)

)
C

+ (
T[�1](1)†

1(ωk)

(
(F + W − ωk)T[�1](1)

1(ωk)

)
C

)
C

+ ((
WT[�1](1)

1(−ωk )

)
C

T[�1](1)
1(ωk )

)
C

+ (
T[�1](1)†

1(−ωk )

(
T[�1](1)†

1(ωk )

(
FT[1](0)

2

)
C

)
C

)
C

+ H.c.
}|0〉. (A7)

Again, the relevant quantities specifying linear-response function (=FDP) and excitation energies are obtained by applying
Eqs. (8) to (A7), which yields

ηY [�1]H
μi

= 〈0|(1 + T[1](0)†
2

)
Yτμ1 |0〉C, (A8)

G[�1]H
μiνj

(ωY ) = 〈0|τ †
μ1

(F + W − ωY )τν1 |0〉C, (A9)

B[�1]H
μiνj

= 〈0|Wτμ1τν1 + T[1](0)†
2 Fτμ1τν1 |0〉C = 0. (A10)

The TD-UCC[1]-H eigenvalue problem hence is equivalent to the CIS eigenvalue problem, since the B part of the Casida equation
cancels for converged T[1](0)

2 amplitudes. The same holds true for TD-VCC[1], as shown in Paper I, as well as ADC(1) [52]. The
equivalence between TD-UCC[1]-H , TD-VCC[1], and ADC(1) (but not CIS) is valid also for the η term and thus for the FDPs.

Next, we examine the TD-UCC[1]-D approach with the time-dependent exponential to the left of the time-independent one
(innermost similarity transform is time dependent). Here, we obtain for the time-averaged quasienergy

{2n+1
Q

[�1](2)
D

}
T

=
∑
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1(ωk ) Vωk
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(
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)
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+ ((
WT[�1](1)

1(−ωk )

)
C

T[�1](1)
1(ωk)

)
C

}|0〉,
(A11)

yielding

ηY [�1]D
μi

= 〈0|Yτμ1 |0〉C, (A12)

G[�1]D
μiνj

(ωY ) = 〈0|τ †
μ1

(F + W − ωY )τν1 |0〉C, (A13)

B[�1]D
μiνj

= 〈0|Wτμ1τν1 |0〉C. (A14)

Apparently, the expressions for excitation energies and FDP are equivalent to those of TD-HF. Interestingly, the quasienergy
does not contain any time-independent ground-state amplitudes, not even for the FDPs. Unfortunately the resulting eigenvalue
equations are not Hermitian, therefore the TD-UCC-D Ansatz is not so attractive in the present context, although due to the
absence of higher-order ground-state amplitudes in the η-term, it may allow for savings in the calculations of FDPs, compared
to the TD-UCC-H (=ADC) method.

Finally, for the TD-UCC[1]-T approach with no ad hoc factorization of the exponential into a time-dependent and a time-
independent part, the time-averaged quasienergy takes the form
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}|0〉, (A15)
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and we obtain by virtue of Eq. (8),

ηY [�1]T
μi

= 〈0|(1 + 1
2 T[1](0)†

2

)
Yτμ1 |0〉C, (A16)

G[�1]T
μiνj

(ωY ) = 〈0|τ †
μ1

(F + W − ωY )τν1 |0〉C, (A17)

B[�1]T
μiνj

= 〈0|Wτμ1τν1 + 1
2 T[1](0)†

2 Fτμ1τν1 |0〉C = 1
2 〈0|Wτμ1τν1 |0〉C. (A18)

The resulting ηY , G, and B terms correspond to the mean between those of the TD-UCC[1]-H and TD-UCC[1]-D formalisms.
For the excitation energies this translates to Casida equations with the A block identical to CIS or TD-HF, but with the B block
being that of TD-HF times a factor of 1/2.

2. M-matrix in TD-UCC-H Ansatz

In the following it is shown that for the TD-UCC-H Ansatz the metric matrix M is identical to an identity matrix. To this end,
the pure time-derivative part of the TD-UCC-H quasienergy,〈

�̃H
UCC

∣∣i ∂

∂t

∣∣�̃H
UCC

〉 = 〈0| exp(−T(�1) + T(�1)†) exp(−T(0) + T(0)†)i
∂

∂t
exp(T(0) − T(0)†) exp(T(�1) − T(�1)†)|0〉

= 〈0| exp(−T(�1) + T(�1)†) i
∂

∂t
exp(T(�1) − T(�1)†)|0〉, (A19)

from which the M terms originate [14,40], is analyzed. In the second equality in the above equation we utilize the fact that any
commutator of the inner (time-independent) BCH expansion vanishes, according to Eq. (30). The M matrix is obtained via Eqs.
(6), (8), and (14) from the second-order [with respect to the time-dependent perturbation V(t)] time-averaged quasienergy, or
more precisely, from the contribution of the time-derivative part thereof. By carrying out the second (outer) BCH expansion of
Eq. (A19) [cf. Eq. (A1)], opening the commutators according to Eq. (30), and taking into account the 2n + 1 rule, the latter is
equal to

i

2
〈0|T(1)†Ṫ(1) − Ṫ(1)†T(1)|0〉C = 1

2
〈0|τ †(ω1t

(1)†(−ω−1)e−iω−1t t (1)(ω1)e−iω1t + ω−1t
(1)†(−ω1)e−iω1t t (1)(ω−1)e−iω−1t

−ω−1t
(1)†(−ω−1)e−iω−1t t (1)(ω1)e−iω1t − ω1t

(1)†(−ω1)e−iω1t t (1)(ω−1)e−iω−1t )τ |0〉C

=
N∑

k=−N

ωk〈0|τ †(t (1)†(ωk)eiωkt t (1)(ωk)e−iωkt )τ |0〉C =
∑

k

ωk〈0|T(1)†
(ωk )T

(1)
(ωk )|0〉C. (A20)

In the first equality of this equation, the cluster operators are written out explicitly according to Eqs. (16) and (9), and in Eq. (9)
N is set to N = 1 for simplicity (cf. discussion at the beginning of Sec. II A). Note that ω−1 = −ω1. The terms where both
frequency-dependent amplitudes correspond to opposite frequencies, are usually eliminated by the time averaging in the later
step. Here, however, they appear to be identical apart from an opposite sign and thus cancel already in Eq. (A20), leading to
time-independent expression already at that stage. The last expression in Eq. (A20) indicates that, according to Eqs. (8) and (14),
the M matrix of TD-UCC[n]-H linear response theory is identical to the identity matrix for any W-order n.

3. Simplifications in TD-UCC[2]-H

By deriving Eqs. (37) and (A2) in Appendix A1, we have used the simplification,∑
k
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(A21)

which is obtained by repeated application of Eq. (28). Furthermore, in the last equality, after opening all nested commutators,
we have utilized the MP2 equations to eliminate all terms containing the Fock operator.
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TABLE IV. Dipole polarizabilities of water, formamide, and aniline (all values in a.u.).

Method αxx αyy αzz αyz
a or αxz

b

Frequency 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1

Molecule Water

TD-HF 7.726 8.097 9.175 9.399 8.422 8.762
TD-VCC[2] 9.587 10.163 10.471 10.772 10.076 10.464
TD-UCC[2] 9.475 10.013 10.383 10.674 9.976 10.346
TD-CC2 9.789 10.358 10.505 10.800 10.055 10.428
TD-CCSD 9.078 9.530 9.969 10.232 9.451 9.769
XCCSD 9.256 9.721 10.142 10.410 9.640 9.966
XCC2 9.167 9.671 10.051 10.329 9.493 9.837
XCC2A 9.347 9.863 10.394 10.680 9.775 10.129
CCSD(T) 9.051 9.909 9.403
CCSD 8.813 9.755 9.209
TD-VCC[2]A 8.954 9.456 10.044 10.326 9.537 9.891
TD-VCC[2]B 9.639 10.218 10.677 10.983 10.131 10.520
TD-VCC[2]C 9.006 9.510 10.248 10.535 9.594 9.949

Molecule Formamide

TD-HF 18.599 19.237 24.694 25.494 31.622 33.322 0.876 0.929
TD-VCC[2] 21.034 21.905 29.209 30.826 41.005 44.629 1.686 1.868
TD-UCC[2] 20.858 21.680 28.865 30.380 39.976 43.142 1.644 1.811
TD-CC2 21.029 21.881 29.459 31.075 39.566 42.562 1.115 1.225
TD-CCSD 20.227 20.986 27.296 28.508 36.530 38.958 0.850 0.868
XCCSD 20.573 21.348 27.893 29.147 37.649 40.182 0.994 1.022
XCC2 20.369 21.171 27.691 29.116 36.162 38.755 0.733 0.797
XCC2A 20.775 21.588 28.595 30.058 37.714 40.437 0.939 1.016
CCSD(T) 20.156 27.269 36.187 0.722
CCSD 19.801 26.602 35.352 0.778
TD-VCC[2]A 20.549 21.372 27.598 29.018 37.483 40.622 1.282 1.405
TD-VCC[2]B 21.186 22.062 29.681 31.318 41.361 45.001 1.528 1.693
TD-VCC[2]C 20.702 21.530 28.068 29.507 37.849 41.005 1.139 1.247

Molecule Aniline

TD-HF 50.324 52.580 84.289 90.687 97.156 105.482 0.417 0.411
TD-VCC[2] 53.656 56.498 94.366 103.928 114.086 128.881 −0.103 −0.305
TD-UCC[2] 53.262 55.926 92.846 100.973 111.299 123.729 −0.060 −0.221
TD-CC2 52.834 55.505 90.990 98.623 110.155 122.051 0.050 −0.089
TD-CCSD 51.464 53.895 86.947 93.658 103.562 113.595 0.075 −0.033
XCCSD 52.342 54.821 89.188 96.172 106.446 116.901 0.046 −0.068
XCC2 52.168 54.783 89.788 97.496 107.056 118.559 0.235 0.133
XCC2A 53.376 56.035 92.522 100.465 110.287 122.146 0.253 0.146
CCSD(T) 51.074 85.635 102.190 0.069
CCSD 50.574 84.915 100.937 0.055
TD-VCC[2]A 53.960 56.777 92.485 102.003 109.378 123.310 0.068 −0.089
TD-VCC[2]B 53.387 56.223 95.567 105.107 115.976 130.890 0.077 −0.099
TD-VCC[2]C 53.688 56.497 93.675 103.170 111.242 125.288 0.243 0.110

aFor formamide.
bFor aniline.

APPENDIX B: GROUND- AND EXCITED-STATE
POTENTIAL ENERGY CURVES FOR H2

In addition to the excitation energies, plotted in Fig. 1
as a function of the internuclear distance R of H2, we also
provide the corresponding potential energy curves in Fig. 2.
It is seen that the deficiencies in the excitation energies
in an intermediate range very well match the errors in the

MP2 ground-state energies, which have an opposite sign with
respect to the former. This unexpectedly leads to quite a
reasonable description of the potential surfaces of the excited
states for a significant range of R (even better than that of
the ground state) by both the TD-VCC[2] and the TD-UCC[2]
methods. How general this trend is, remains to be investigated.
Furthermore, the underestimation of the excitation energy by
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TD-VCC[2] relative to TD-UCC[2] compensates the error in
the ground-state correlation energy of the MP2 method (which
is the same reference for both schemes). This results in a
smaller deviation of the TD-VCC[2] excited-state energy from
the full CI value compared to TD-UCC[2] (at least for R near
the ground-state minimum). At the same time, similarly to
the excitation energies, the TD-VCC[2] excited-state energy
breaks down earlier for increasing R compared to TD-UCC[2],
and exhibits an unstable behavior at large R.

APPENDIX C: DYNAMIC DIPOLE POLARIZABILITIES

Table IV compiles, for the three test molecules water,
formamide, and aniline, the FDPs for the two frequencies
ω = 0.0 a.u. (static) and ω = 0.1 a.u., for a collection
of different methods (TD-HF, TD-VCC[2], TD-UCC[2] =
ADC(2), TD-CC2, TD-CCSD, XCCSD [34,36], XCC2, and
XCC2A [47,79]). Actually, Table IV is a more comprehensive
collection of the results of this work than Table II in Sec. III C,
the latter being extracted from the former. Orbital-relaxed
CCSD(T) and CCSD static polarizabilities were obtained by
the finite-field technique. Furthermore, some variants of the
TD-VCC[2] method, denoted as TD-VCC[2]x, x = A,B,C,
were tested.

The TD-HF polarizabilities evidently differ noticeably from
the values of the second-order methods, due to the lack of
dynamical electron correlation in the TD-HF description,
but in some cases are fortuitously close to the high-order
results. As already mentioned in Sec. III, the TD-VCC[2],
TD-UCC[2], and TD-CC2 methods provide results of a similar
quality. The same applies to the TD-CCSD and XCCSD
methods. The XCC method [34] results from an alternative
derivation of the second-order molecular properties, where
one starts from the polarization propagator formula for exact
states and replaces exact unperturbed and first-order wave
functions by their CC Ansätze. Since the same Jacobian is
used in XCC for the first-order wave function as in TD-CC,
both methods have the same set of poles on the real-valued
energy axis.

Test calculations indicate that TD-CCSD usually yields
polarizabilities in somewhat closer agreement with the full
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FIG. 2. (Color online) The ground- and excited-state dissociation
potential curves for the H2 molecule calculated using MP2 (ground
state), TD-UCC[2] [=ADC(2)], TD-VCC[2], and full CI methods.

CI result than XCCSD [36] (a possible theoretical explanation
is offered in Ref. [80]). These earlier findings are confirmed by
the results compiled in Table IV: The XCCSD polarizabilities
are usually 1%–2% larger than the corresponding TD-CCSD
values, which in turn, are in very good agreement with
(orbital-relaxed) CCSD(T), available for ω = 0.0. Interest-
ingly, orbital-relaxed CCSD polarizabilities deviate in most
cases by a larger amount from the CCSD(T) result than the
orbital-unrelaxed ones, i.e., TD-CCSD, even though from a
formal W-order analysis it follows that orbital-relaxed CCSD
should be more accurate. This shows that correctness to a
formal W order does not necessarily determine the overall
accuracy of the method.

Table IV also lists the polarizabilities obtained with a new
XCC2 method [47,79]. The XCC2 approach utilizes the TD-
CC2 Jacobian for obtaining the tX amplitude responses (so
it has the same poles as TD-CC2), but uses a modified ηX

[79], what turns out to be a deciding factor for its success to
provide improved polarizabilities relative to the TD-CC2 ones.
The propagator formula for XCC2 is a simplified XCCSD
formula. For the method denoted as XCC2A in Table II, only
the zeroth- and first W-order terms remain in ηY , i.e., the
terms 1, 3, and 6 of Eq. (22) and CC2 rather than MP2 ground-
state doubles amplitudes are employed. The original XCC2
formulation from Ref. [80] additionally neglects the exchange
diagram in the third term of Eq. (22).

Since the examples of XCC2 and XCC2A show that
the removal of second-order terms from ηX (in particu-
lar, T1 terms), is beneficial for balancing the quality of
approximate polarizabilities, we tested three modified ηX

vectors also for the TD-VCC[2] case. The removal of the
T[2](0)

1 -containing terms from ηX [cf. Eq. (22)] leads to
the TD-VCC[2]A method; the neglect of T[2](0)

2 -containing
terms instead leads to TD-VCC[2]B; finally, the simultaneous
omission of both types of terms yields the TD-VCC[2]C
method. Note that the possibility to neglect T[2](0)

2 amplitudes
is beneficial from the computational point of view, since its
evaluation scales as O(N 6) with molecular size N , while
all other steps of a TD-VCC[2] calculation scale at most as
O(N 5).

As is evident from Table IV, the omission of the
T[2](0)

1 -containing terms indeed improves the quality of the
polarizabilities with respect to the TD-CCSD benchmark.
TD-VCC[2]A and C values obviously are much closer to
the TD-CCSD benchmark than the original TD-VCC[2] or
TD-CC2 values. Furthermore, the effect of T[2](0)

2 -containing
terms is small, such that these rather expensive contribu-
tions can safely be neglected. The TD-VCC[2]C polariz-
abilities feature a much better agreement with the TD-
CCSD benchmark than TD-VCC[2] itself for the cases of
water and formamide, while for aniline the deviation from
TD-VCC[2] goes in the right direction, but is not large
enough. A similar behavior for molecules with aromatic rings
has been found before for XCC2 on a larger test set of
molecules [47].

We conclude that stripping ηX from all terms second order
with respect to W leads to systematically better polarizabilities
compared to those of the original TD-VCC[2] method. Yet this
cannot be explained by a simple W-order analysis and is rather
the result of some error cancellation.
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WÄLZ, KATS, USVYAT, KORONA, AND SCHÜTZ PHYSICAL REVIEW A 86, 052519 (2012)

[70] P. G. Szalay, T. Watson, A. Perera, V. F. Lotrich, and R. J.
Bartlett, J. Phys. Chem. A 116, 6702 (2012).

[71] H. Larsen, J. Olsen, C. Hättig, and P. Jørgensen, J. Chem. Phys.
111, 1917 (1999).

[72] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic
Structure Theory (Wiley, New York, 2000).

[73] M. Nooijen and R. J. Bartlett, J. Chem. Phys. 107, 6812 (1997).
[74] J. F. Stanton and J. Gauss, J. Chem. Phys. 111, 8785 (1999).

[75] M. Musiał and R. J. Bartlett, J. Chem. Phys. 129, 134105
(2008).

[76] T. Korona Mol. Phys. 110, 199 (2012).
[77] M. Musiał and R. J. Bartlett, J. Chem. Phys. 134, 034106 (2011).
[78] O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 103,

7429 (1995).
[79] T. Korona, Phys. Chem. Chem. Phys. (to be published).
[80] T. Korona, Mol. Phys. 108, 343 (2010).

052519-18

http://dx.doi.org/10.1021/jp300977a
http://dx.doi.org/10.1063/1.479460
http://dx.doi.org/10.1063/1.479460
http://dx.doi.org/10.1063/1.474922
http://dx.doi.org/10.1063/1.479673
http://dx.doi.org/10.1063/1.2982788
http://dx.doi.org/10.1063/1.2982788
http://dx.doi.org/10.1080/00268976.2011.638330
http://dx.doi.org/10.1063/1.3511783
http://dx.doi.org/10.1063/1.470315
http://dx.doi.org/10.1063/1.470315
http://dx.doi.org/10.1080/00268970903476654



