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Analytical two-center integrals over Slater geminal functions
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We present analytical formulas for the calculation of the two-center two-electron integrals in the basis of Slater
geminals and products of Slater orbitals. Our derivation starts with establishing an inhomogeneous fourth-order
ordinary differential equation that is obeyed by the master integral, the simplest integral with inverse powers of
all interparticle distances. To solve this equation it was necessary to introduce a new family of special functions
which are defined through their series expansions around regular singular points of the differential equation.
To increase the power of the interparticle distances under the sign of the integral we developed a family of
open-ended recursion relations. A handful of special cases of the integrals is also analyzed with some remarks on
simplifications that occur. Additionally, we present some numerical examples of the master integral that validate
the correctness and usefulness of the key equations derived in this paper. In particular, we compare our results
with the calculations based on the series expansion of the exp(−γ r12) term.
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I. INTRODUCTION

It has been a well-known fact since the landmark paper
of Kato [1] that the exact eigenfunction � of the Schödinger
Hamiltonian must satisfy certain conditions at the coalescence
points of the particles. These are the so-called cusp conditions,
expressed mathematically as

lim
rij →0

(
∂�

∂rij

)
av

= μijqiqj�(rij = 0), (1)

where qi are the charges of the particles, μij is the reduced
mass of the particles i and j , and the subscript av denotes the
spherical average over an infinitesimal sphere around rij = 0.
The above constraint must be satisfied for every single pair
of particles in the system. While the nuclear cusp condition is
naturally satisfied by the one-electron basis constructed from
the Slater orbitals, the electronic cusp condition appears to be a
far more difficult problem. Hill [2] analyzed a simple example
of a two-electron one-center system with the basis set taken as
the partial wave expansion:

�(�r1,�r2) =
L∑
lm

Ylm(θ1,ϕ1)Yl,−m(θ2,ϕ2)

×
N∑
nn′

fnlm(r1)fn′lm(r2), (2)

where Ylm are spherical harmonics, (θi,ϕi), i = 1,2, are the
spherical angles of the vector �ri , and fn are some radial
factors. He found that the error of the energy decays as
∼(L + 1)−3, so a rather slow convergence is obtained. This
saddening corollary can be attributed to the fact that the
partial wave expansion has severe difficulties in fulfilling the
electronic cusp condition. Much faster convergence can be
expected when the basis set is extended to include the r12 factor
explicitly. The latter finding is a theoretical underpinning for
a vast family of the so-called explicitly correlated methods.
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Explicitly correlated calculations in quantum mechanics
have a long history. The first calculations of this type were
performed on the 1 1S state of the helium atom by Hylleraas in
his classical 1929 paper [3]. The Hylleraas ansatz for the wave
function of He ground state was

�N = e−ζ s

N∑
k

cks
lk t2mkunk , (3)

where s = r1 + r2, t = r1 − r2, u = r12, and ri are the coordi-
nates of electrons. Using a six-term wave function of the above
form with one nonlinear parameter Hylleraas obtained a result
with three correct significant digits in the ionization energy of
helium [3]. The length of this expansion can be increased and
it is a relatively easy task to obtain a nanohartree accuracy.
Many authors tried to extend the form of the Hylleraas ansatz.
For instance, Kinoshita [4,5] suggested to include negative
powers of s and u, and Schwartz [6–8] included half-integer
powers of the latter quantities. Several researchers [9,10]
included logarithmic terms, for example, log(s), in order to
satisfy the three-particle coalescence condition of both the
electrons and the nucleus. Further extension can be done by
considering a so-called “double-basis set” [11–13] in which
each combination of powers of r1, r2, and r12 is included
twice, but with different exponential scale factors and no
logarithmic terms. Probably the most well-known calculations
in this basis set are those of Drake et al. [14], where about
20-significant-digit accuracy on the energy was reached. This
idea can further be extended to the “triple basis set” and so
forth. Important from the point of view of the present paper is
the work of Korobov [15], who obtained a 25-significant-digit
accuracy by using Slater-type geminals; that is, the wave
function expanded as a linear combination of the functions:

φk = e−αkr1−βkr2−γkr12 , (4)

where αk , βk , and γk are complex parameters which were
generated quasirandomly. Recently, Nakashima and Nakatsuji
used a method called iterative complement interaction (ICI),
described in Ref. [16], and obtained a 40-significant-digit
accuracy, which is the highest available until now. At the end
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of this short survey over the helium atom we must admit that
the exponentially correlated Gaussian (ECG) functions were
also used with success (see Ref. [17]). Of course, all of the
methodologies mentioned above can equally well be applied
to the excited states and properties [18,19] of the He atom and
and its isoelectronic series such as H− or Li+. These systems
were also subjects of intensive studies in the past [20–23].

The first explicitly correlated calculations on a molecular
system, the hydrogen molecule, were carried out in 1933 by
James and Coolidge [24] with a basis set, named after them
(JC), of the form

ξk
1 ηl

1ξ
m
2 ηn

2r
μ

12e
−αξ1−βξ2 , (5)

where ξi and ηi are elliptical coordinates. With the advent of
computers Kołos and Roothaan used this basis set to obtain
a microhartree accuracy in the energy calculations [25,26].
Later on, Kołos and Wolniewicz extended the form of the
above basis set to include the Heitler-London function, thereby
making it possible to describe the dissociation of the molecule
properly [27]. It gave rise to so-called Kołos-Wolniewicz (KW)
basis set. The approaches described above were subsequently
extended to the excited states of H2 (cf. Refs. [28–30]). During
the past decades several authors reported calculations in the
JC [31–33] or KW [34–38] basis sets with an increasing accu-
racy. Among other approaches ICI calculations presented by
Nakatsuji et al. [39] are worth noticing. It is rather astonishing
that in the field of H2 ECG calculations were proven to be very
successful and even competitive with the approaches based
on Slater functions [40–43]. Recently, Pachucki, in his tour
de force paper, derived analytical equations for the integrals
over the JC basis set [44]. This made it possible to perform
calculations on H2 with at least 15-digit accuracy [45]. Let us
end this paragraph by remarking that the two-electron analogs
of H2, HeH+ [46–50] and He2

2+ [51–53], were also studied in
the literature.

The lithium atom and three-electron ions are probably the
last example of when a Hylleraas-type basis set could still
successfully be applied. It was possible because analytical
equations for the resulting integrals [54–56] and useful
recursion relations [57,58] between them are all known. This
allowed very accurate calculations, among which those of
King [59], Yan et al. [22,60], and Puchalski and Pachucki
[61] should be mentioned. The results of Hylleraas-CI and
ECG calculations for the lithium atom are also available
[20]. The accuracy of the calculations for the lithium atom
cannot compete with that for helium. Nevertheless, the
reported energy values still agree excellently with the best
available experimental data [61]. The applicability of the
explicitly correlated calculations with the Hylleraas-like ansatz
is narrowed dramatically when passing to many-center and/or
many-electron systems. Since the Hylleraas-CI and ECG are
the only methods that can be used in practice for systems
such as the beryllium atom [62–64], the accuracy deteriorates
significantly. A similar situation holds for other few-body
systems, H3

+ [49,65,66], H3 [67,68], He2 [69], and LiH [70].
For many-electron systems explicitly correlated variational

calculations are not feasible at present. This is due to the
high complexity in the space and permutational symmetry
of the wave function. However, basis functions including the
explicit dependence on the interelectronic distance r12 can

be introduced into the many-body theory of many-electron
systems. Indeed, it was realized as early as 1966 by Byron and
Joachain [71,72] and later by Pan and King [73,74], Jeziorski,
Szalewicz, and collaborators [75–80], and Adamowicz and
Sadlej [81–83] that the pair functions appearing in the energy
expressions of the many-body perturbation theory (MBPT),
also known as the Møller-Plesset perturbation theory, can be
expanded in terms of explicitly correlated functions, provided
that the strong orthogonality condition is satisfied. Since the
strong orthogonality condition is difficult to meet, Szalewicz
et al. [77–80] suggested to weaken it without losing the
mathematical correctness of the theory. These early explicitly
correlated MBPT approaches employed the Hylleraas basis
in the case of calculations of Byron and Joachain [71,72]
on the beryllium atom and explicitly correlated Gaussian
functions in case of the calculations on the Be, LiH, Ne, and
H2O systems [84–87]. In the early 1980s explicitly correlated
Gaussian geminals were used with success by Jeziorski and
Szalewicz in the coupled cluster (CC) calculations [80]. One
important drawback of the approach summarized above is
that the perturbation theory and CC calculations involving
explicitly correlated basis functions require calculations of
three- (and in some cases four-) electron integrals. This
makes this kind of calculation prohibitively expensive and
limited to small systems. A breakthrough in this respect
was suggested by Klopper and Kutzelnigg [88–90] for the
MBPT calculations and by Noga and collaborators [91,92]
for the CC calculations. These authors suggested to include
only terms linear in the interelectronic distance r12 and
use an approximate resolution of identity to approximate
many-electron integrals with the two-electron integrals. In
this way the problem of calculating many-electron integrals
was eliminated, although only in an approximate way. Still,
this approach was shown to be very successful in many
spectroscopic and chemical applications. See, for instance,
Ref. [93] for a review. Finally, the most recent advance in this
field are the so-called explicitly correlated CC-F12 methods
[94–99], in which the interelectronic distance, r12, is explicitly
introduced into the pair functions through the exponential
correlation factor exp(−γ r12). The F12 methods have recently
been implemented in an efficient manner [100–102] and shown
to accelerate the convergence towards the basis-set limit for
a number of properties [103–105]. Unfortunately, the F12
method fails to reproduce accurate interaction potentials of
diatomic molecules [106,107], although it was shown to work
well in the Li + LiH case [108].

In this paper we introduce a basis set for accurate calcu-
lations on diatomic molecules, the basis of Slater geminals.
This basis can be used both in the variational calculations
and in the many-body MBPT/CC theories. The Slater geminal
basis has several advantages over the explicitly correlated basis
sets used in molecular calculations thus far. Among others, it
satisfies both the electron-nuclei and electron-electron cusp
conditions. Similarly to atoms, the exponential correlation
factor is expected to improve the convergence of the short-
range correlations, while the Slater-type one-electron part
will greatly reduce the size of the expansion, thus leading
to results much more accurate than possible at present. This
is especially important for the new emerging field at the
border of chemistry and physics, ultracold molecules. See
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the 2012 special issue of Chemical Reviews, in particular
papers by Quemener and Julienne [109], Weidemüller and
collaborators [110], and by Koch and Shapiro [111]. To
better appreciate the importance of high-quality basis sets for
molecular calculations on diatomic molecules, let us just quote
calculations on the Sr2 molecule [112,113], which are currently
used in the interpretation of the experimental data for the
determination of the time variation of the electron-to-proton
mass ratio [114,115]. Another very appealing application of
the Slater geminals for diatomic molecules are the calcula-
tions of the relativistic effects. Indeed, when the relativistic
corrections are calculated in the framework of the perturbation
method and with the Breit-Pauli Hamiltonian it is necessary to
calculate integrals with the 1/r2

12 factor. Analytical calculation
of such integrals in the two-center case was impossible until
now. It was necessary to use the infinite expansion in the
Gegenbauer polynomials, according to the scheme advocated
by Wolniewicz [36]. Using our analytical equations for the
integrals over the Slater geminal basis, all the necessary
relativistic integrals involving the 1/r2

12 factor are obtained
by a simple one-dimensional numerical integration. A similar
scheme was recently successfully applied to calculation of the
relativistic corrections for the lithium atom [61].

The paper is organized as follows. In Sec. II we define the
master integral, f (r), which will serve as a generating integral
for the calculations of all the integrals from the family (7)
and derive a differential equation satisfied by f (r). In Sec. III
we show how to solve the homogeneous differential equation,
thereby involving a new family of special functions. In Sec. IV
we derive solutions of the inhomogeneous differential equation
so that an analytical expression for the master integral becomes
known explicitly. In Sec. V we establish a family of recursion
relations that allow calculations of the integrals with arbitrary
powers of all electron-nuclear distances. A similar procedure
is adopted in Sec. VI to let arbitrarily grow the power of r12 in
the integrals. In Sec. VII we consider a handful of special cases
of the integrals that cannot be calculated with the results of the
previous sections. In these special cases, an analytical equation
for the master integral is found in terms of well-known special
functions. In Sec. VIII we present some numerical examples of
the master integral that validate the correctness and usefulness
of the analytical equations derived in this paper. In particular,
we compare our results with the calculations based on the
series expansion of the exp(−γ r12) term in the master integral.
Finally, in Sec. IX we conclude our paper.

In the paper we rely heavily on the known special
functions to simplify the derivation and the final formulas.
Our convention for all special functions appearing below is
the same as in Ref. [116]. We also use the Meijer G function,
which is defined according to Ref. [117].

II. THE MASTER INTEGRAL

In this paper, we consider analytical calculation of the two-
electron integrals in the basis of Slater geminals and Slater
functions for a diatomic molecule. The latter basis set has the
general form

φ(�r1,�r2) = ri
1Ar

j

1Brk
2Arl

2Brn
12

×e−u3r1A−u2r1B−w2r2A−w3r2B−w1r12 , (6)

so it gives rise to a class of two-electron two-center integrals,

fn(i,j,k,l; u2,u3,w2,w3,w1)

=
∫

d3r1

∫
d3r2 ri

1Ar
j

1Brk
2Arl

2Brn
12

× e−u3r1A−u2r1B−w2r2A−w3r2B−w1r12 , (7)

where we adopted the following notation: �ri , i = 1,2, denotes
the coordinates of the electrons and �rK , K = A,B, denotes the
coordinates of the nuclei. Consequently, riK = |�ri − �rK | and
r12 = |�r1 − �r2| denote the electron-nucleus and interelectronic
distances, respectively. The above notation is used throughout
the paper.

It is noteworthy that the requirements u2 > 0, u3 > 0,
w2 > 0, w3 > 0, and w1 > 0 are sufficient, but much too
strong to make the functions (6) square integrable. These re-
quirements can be significantly weakened by demanding only
u2 + u3 + w1 > 0 and w2 + w3 + w1 > 0. Therefore, some
of the nonlinear parameters can be negative without violation
of the square-integrability principle. This result is reminiscent
of the three-body Hylleraas integrals, which is discussed later.

If the basis set is chosen in terms of spherical harmonics
multiplied by the radial factor and the exponential correlation
factor, then using simple manipulations based on the ordinary
trigonometric relations, one can express the resulting integrals
in terms of combinations of the integrals from the family (7).

When performing calculations for a two-electron and
diatomic system described by the Schrödinger Hamiltonian
in the basis set defined by Eq. (6), all the matrix elements
of the operators are readily expressed through the integrals
(7) except for the kinetic energy operator. To express the
latter quantities through the combinations of the integrals from
the family (7), a somewhat long derivation is required. So as
not to disturb the consistency of the paper, this derivation is
reported in Appendix A. As a result, the matrix elements of
the Schrödinger Hamiltonian and all the integrals appearing
in the nonrelativistic molecular physics on the basis of (6) are
expressed fully analytically.

A. Definition and the momentum space representation

The master integral is defined as the simplest two-electron
integral with inverse powers of all electron-nuclear and
interelectronic distances, namely,

f (r) =
∫

d3r1

4π

∫
d3r2

4π

e−u3 r1A

r1A

e−u2 r1B

r1B

× e−w2 r2A

r2A

e−w3 r2B

r2B

e−w1 r12

r12
r, (8)

where the notation for all appearing quantities is the same
as in Eq. (6) and r = rAB is the internuclear distance. The
reason for the choice of the multiplicative constant r

(4π)2 and the
particular notation for the nonlinear parameters is clear from
the further derivation. Once this integral is known analytically,
all integrals fn of Eq. (7) can be obtained by multiple
differentiations of Eq. (8) over the nonlinear parameters u2,
u3, w2, w3, and w1.

Our first task is to derive an analytical equation for the
above integral. We perform a Laplace transform of the master
integral with respect to r and therefore define another integral
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g(u1):

g(u1) =
∫ ∞

0
drf (r)e−u1 r =

∫
d3r

4π

f (r)

r2
e−u1 r . (9)

This equality allows us to calculate f (r) from the inverse
Laplace transform formula: integral

f (r) = 1

2πı̇

∫ ı̇∞+ε

−ı̇∞+ε

du1 g(u1)eu1 r . (10)

The explicit form of the integral g(u1) can conveniently be
written, after the simple interchange of variables �ρ1 = �r12,
�ρ2 = �r2A, �ρ3 = �r2B , as

g(u1) =
∫

d3ρ1

4π

∫
d3ρ2

4π

∫
d3ρ3

4π

e−u3 ρ12

ρ12

e−u2 ρ31

ρ31

× e−w2 ρ2

ρ2

e−w3 ρ3

ρ3

e−w1 ρ1

ρ1

e−u1 ρ23

ρ23
, (11)

with ρ12 = | �ρ1 − �ρ2| and analogous formulas for ρ13 and ρ23.
The above representation is familiar as it is the generating
integral from the theory of three-electron one-center integrals
[54,55]. Let us recall the momentum space representation of
g(u1):

g(u1) = G(1,1,1,1,1,1), (12)

where

G(m1,m2,m3,m4,m5,m6)

= 1

8π6

∫
d3k1

∫
d3k2

∫
d3k3

1(
k2

1 + u2
1

)m1

1(
k2

2 + u2
2

)m2

× 1(
k2

3+u2
3

)m3

1(
k2

32+w2
1

)m4

1(
k2

13 + w2
2

)m5

1(
k2

21 + w2
3

)m6
.

(13)

B. Differential equation in the momentum space

In this section we establish a differential equation for
G(1,1,1,1,1,1). Let us first denote the integrand in Eq. (13)
by G̃ with an analogous notation for its parameters:

G̃(m1,m2,m3,m4,m5,m6)

= 1(
k2

1 + u2
1

)m1

1(
k2

2 + u2
2

)m2

1(
k2

3 + u2
3

)m3

× 1(
k2

32 + w2
1

)m4

1(
k2

13 + w2
2

)m5

1(
k2

21 + w2
3

)m6
. (14)

Our derivation is based on the so-called integration by parts
identities [118,119] and the fact that due to Green’s theorem
the following family of integrals vanish:

0 = Iij

= 1

8π6

∫
d3k1

∫
d3k2

∫
d3k3 �∇j · [�kiG̃(1,1,1,1,1,1)],

(15)

where the i and j indices can independently take values 1,2,
and 3. The above identity provides nine equations that relate
the values of G with different arguments. These equations can
be divided into three sets, the first set being I13,I23,I33 and the

two others obtained by a permutation of the second index. It
can be proven that to derive the desired differential equation
only one of these sets has to be considered and the results
from the others are identical. Therefore, we consider the trio
I13,I23,I33, but this choice is arbitrary. To give an example,
we show the derivation for I13. It follows from the definition
that

�∇3 · [�k1G̃(1,1,1,1,1,1)] = −2�k1 · �k3G̃(1,1,2,1,1,1)

− 2�k1 · �k32G̃(1,1,1,2,1,1)

+ 2�k1 · �k13G̃(1,1,1,1,2,1). (16)

The scalar (dot) products of several �k vectors appearing in
the above equation are expanded using the relation �k1 · �k3 =
− 1

2 [�k2
13 − �k2

1 − �k2
3] and similarly for other possible combina-

tions. This makes it possible to rewrite the right-hand side of
Eq. (16) as[�k2

13 − �k2
1 − �k2

3

]
G̃(1,1,2,1,1,1)

+ [�k2
13 − �k2

12 − �k2
3 + �k2

1

]
G̃(1,1,1,2,1,1)

+ [�k2
13 − �k2

3 − �k2
1

]
G̃(1,1,1,1,2,1). (17)

The next step is to make all the coefficients multiplying the
different G̃ functions independent of the �k vectors. The latter
are absorbed into G̃ in the following way:

�k2
1G̃(1,1,2,1,1,1) = G̃(0,1,2,1,1,1) − u2

1G̃(1,1,2,1,1,1).

(18)

After necessary simplifications the expression for I13 becomes

I13 = (
u2

3 + u2
1 − w2

2

)
G(1,1,2,1,1,1)

+ (
w2

3 + u2
3 − u2

2 − w2
2

)
G(1,1,1,2,1,1)

+ (
u2

3 − u2
1 − w2

2

)
G(1,1,1,1,2,1) + G(1,1,2,1,0,1)

−G(0,1,2,1,1,1) + G(1,1,1,2,0,1) − G(1,1,1,2,1,0)

−G(1,1,0,2,1,1) + G(1,0,1,2,1,1) − G(1,1,0,1,2,1)

+G(0,1,1,1,2,1). (19)

In a very similar way the expressions for I23 and I33 can be
derived. The final equations are

I23 = (
u2

2 + u2
3 − w2

1

)
G(1,1,2,1,1,1)

+ (
w2

3 + u2
3 − u2

1 − w2
1

)
G(1,1,1,1,2,1)

+ (
u2

3 − w2
1 − u2

2

)
G(1,1,1,2,1,1) + G(1,0,1,2,1,1)

−G(1,1,0,1,2,1) + G(0,1,1,1,2,1) − G(1,0,2,1,1,0)

−G(1,1,0,2,1,1) + G(1,1,2,0,1,1) − G(1,1,1,1,2,0)

+G(1,1,1,0,2,1), (20)

I33 = 2u2
3G(1,1,2,1,1,1) + (

w2
2 − u2

1 + u2
3

)
G(1,1,1,1,2,1)

+ (
u2

3 + w2
1 − u2

2

)
G(1,1,1,2,1,1) + G(1,0,1,2,1,1)

−G(1,1,1,1,1,1) + G(0,1,1,1,2,1)

−G(1,1,0,1,2,1) − G(1,1,0,2,1,1). (21)

By an inspection of these three equations we note that all the
G integrals fall into three classes. The first class consists of
integrals with one of the parameters m1, . . . ,m6 equal to zero.
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It is easy to verify by a direct calculation that these integrals
belong to the class of the well-known Hylleraas-type helium
(three-body) integrals,

� (n1,n2,n3; α,β,γ ) =
∫

d3r1

4π

∫
d3r2

4π
r

n1−1
1 r

n2−1
2 r

n3−1
12

× e−αr1−βr2−γ r12 , (22)

and analytical equations for these integrals are all known since
they can be obtained from the generating integral,

� (0,0,0; α,β,γ ) = 1

(α + β)(α + γ )(β + γ )
, (23)

by a proper differentiation or integration with respect to
the nonlinear parameters α,β,γ . Recursion relations that
enable generation of � with arbitrary values of n1,n2,n3 were
presented a long time ago by Kołos and co-workers [120].
An analytical expression to generate the integral �(0,0,0) was
derived earlier [121].

The second class of integrals consists of G(1,1,2,1,1,1),
G(1,1,1,2,1,1), and G(1,1,1,1,2,1), and the third class is the

master integral G(1,1,1,1,1,1). Therefore, we solve the set of
three equations (19)–(21) with respect to one of the integrals
from the second class. Let us choose G(1,1,1,2,1,1). The
result is

1

2

∂σ

∂w1
G(1,1,1,1,1,1) − 2w1σG(1,1,1,2,1,1)

+P (w1,u1; w2,u2; w3,u3) = 0, (24)

where σ is a polynomial in all nonlinear parameters:

σ = u2
1w

2
1

(
u2

1 − u2
2 − u2

3 + w2
1 − w2

2 − w2
3

)
+u2

2w
2
2

( − u2
1 + u2

2 − u2
3 − w2

1 + w2
2 − w2

3

)
+u2

3w
2
3

( − u2
1 − u2

2 + u2
3 − w2

1 − w2
2 + w2

3

)
+u2

1u
2
2w

2
3 + u2

1u
2
3w

2
2 + u2

2u
2
3w

2
1 + w2

1w
2
2w

2
3. (25)

The function P (w1,u1; w2,u2; w3,u3) is a combination of
integrals from the first class with coefficients being some
polynomials in the nonlinear parameters. Its derivation is long
and does not present any advance over already published
formulas [44,122], so we list here only the final equation:

P (w1,u1; w2,u2; w3,u3) = −u1w1
[
(u1 + w2)2 − u2

3

]
�(0,0, −1; u1 + w2,u3,u2 + w1)

−u1w1
[
(u1 + u3)2 − w2

2

]
�(0,0,−1; u1 + u3,w2,w1 + w3)

+ [
u2

1w
2
1 + u2

2w
2
2 − u2

3w
2
3 + w1w2

(
u2

1 + u2
2 − w2

3

)]
�(0,0,−1; w1 + w2,w3,u1 + u2)

+ [
u2

1w
2
1 − u2

2w
2
2 + u2

3w
2
3 + w1w3

(
u2

1 + u2
3 − w2

2

)]
�(0,0,−1; w1 + w3,w2,u1 + u3)

− [
u2(u2 + w1)

(
u2

1 + u2
3 − w2

2

) − u2
3

(
u2

1 + u2
2 − w2

3

)]
�(0,0,−1; u2 + w1,u3,u1 + w2)

− [
u3(u3 + w1)

(
u2

1 + u2
2 − w2

3

) − u2
2

(
u2

1 + u2
3 − w2

2

)]
�(0,0,−1; u3 + w1,u2,u1 + w3)

+w1
[
w2

(
u2

1 − u2
2 + w2

3

) + w3
(
u2

1 + w2
2 − u2

3

)]
�(0,0,−1; w2 + w3,w1,u2 + u3)

+w1
[
u2

(
u2

1 − w2
2 + u2

3

) + u3
(
u2

1 + u2
2 − w2

3

)]
�(0,0,−1; u2 + u3,w1,w2 + w3), (26)

where

�(0,0,−1; α,β,γ ) =
ln

(
γ+α

γ+β

)
(α − β)(α + β)

. (27)

The above identity can be checked with (e.g., Ref. [123]).
Finally, after observing that the identity

G(1,1,1,2,1,1) = − 1

2w1

∂g

∂w1
(28)

holds, one arrives at the form of the differential equation
obeyed by g in the momentum space:

σ
∂g

∂w1
+ 1

2

∂σ

∂w1
g(u1) + P (w1,u1; w2,u2; w3,u3) = 0. (29)

By exchanging the indices at the �k vectors in the definition
of G(1,1,1,1,1,1) one can obtain analogous differential
equations with respect to the other variables. In particular,

in the derivation the following one will be required:

σ
∂g

∂u1
+ 1

2

∂σ

∂u1
g(u1) + P (u1,w1; u3,w3; w2,u2) = 0. (30)

The latter two equations were recently presented by Pachucki
[44]. The solution of Eq. (30) was given by Fromm and Hill
[54] and subsequently simplified considerably by Harris [56].
Unfortunately, the explicit form of g in terms of well-known
special functions is too complicated to perform the inverse
Laplace transform directly and obtain the two-center integrals
as in Eq. (10). Therefore, the differential equation approach
seems to be the only way to derive analytical equations for the
integrals family (7).

C. Differential equation in the position space

At this point we depart from the previous works. To obtain
a differential equation for the master integral f (r) we have to
perform the inverse Laplace transform of Eq. (30). Pachucki
[44] performed such an inversion in the case of w1 = 0, so
any connection with the geminal basis was lost. Our case
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requires a generalization to an arbitrary physically acceptable
but nonzero value of w1. Let us first rewrite the polynomial σ

in the following (convenient) way:

σ = w2
1u

4
1 + �1u

2
1 + �2, (31)

�1 = −u2
2w

2
1 − u2

2w
2
2 + u2

2w
2
3 − u2

3w
2
1 + u2

3w
2
2

−u2
3w

2
3 + w4

1 − w2
1w

2
2 − w2

1w
2
3, (32)

�2 = u4
2w

2
2 + u2

2u
2
3w

2
1 − u2

2u
2
3w

2
2 − u2

2u
2
3w

2
3

−u2
2w

2
1w

2
2 + u2

2w
4
2 − u2

2w
2
2w

2
3 + u4

3w
2
3

−u2
3w

2
1w

2
3 − u2

3w
2
2w

2
3 + u2

3w
4
3 + w2

1w
2
2w

2
3, (33)

so that

∂σ

∂u1
= 4w2

1u
3
1 + 2�1u1. (34)

By inserting the above identities into Eq. (30) and collecting
terms multiplying g(u1) and ∂g

∂u1
we get

(
w2

1u
4
1 + �1u

2
1 + �2

) ∂g

∂u1
+ (

2w2
1u

3
1 + �1u1

)
g(u1)

+P (u1,w1; u3,w3; w2,u2) = 0. (35)

The inverse Laplace transform of this equation leads to

w2
1rf

(4)(r) + 2w2
1f

(3)(r) + �1rf
′′(r)

+�1f
′(r) + �2rf (r) = U (r; w1,u2,u3,w2,w3), (36)

where

U (r; w1,u2,u3,w2,w3)

= 1

2πı̇

∫ ı̇∞+ε

−ı̇∞+ε

du1 P (u1,w1; u3,w3; w2,u2)eu1 r . (37)

The explicit form of U (r) is obtained by using several Laplace
transform identities and reads

U (r) =
4∑

i=1

ciUi(r) +
8∑

i=5

Ui(r), (38)

with

c1 = 1
2

[
w2

(
u2

2 − u2
3 − w2

1

) + u3
(
w2

2 − w2
3 + w2

1

)]
, (39)

c2 = 1
2

[
w3

(
u2

2 − u2
3 + w2

1

) + u2
(
w2

2 − w2
3 − w2

1

)]
, (40)

c3 = 1
2

[
w2

(
u2

2 − u2
3 − w2

1

) − u3
(
w2

2 − w2
3 + w2

1

)]
, (41)

c4 = 1
2

[
u2

(
w2

2 − w2
3 − w2

1

) − w3
(
u2

2 − u2
3 + w2

1

)]
, (42)

and

U1(r) = er(u3−w2)Ei [−r (w1 + u2 + u3)] − er(w2−u3)Ei [−r (w1 + w2 + w3)] , (43)

U2(r) = er(w3−u2)Ei [−r (w1 + w2 + w3)] − er(u2−w3)Ei [−r (w1 + u2 + u3)] , (44)

U3(r) = e−r(u3+w2) {Ei [−r (w1 + u2 − u3)] − Ei [−r (u2 − u3 − w2 + w3)]

+ Ei [−r (w1 − w2 + w3)]} − er(u3+w2)Ei [−r (u2 + u3 + w2 + w3)]

+ e−r(u3+w2)ln

∣∣∣∣ (w1 + w2 + w3) (u2 + u3 + w1) (u2 − u3 − w2 + w3)

(w1 − w2 + w3) (w1 + u2 − u3) (u2 + u3 + w2 + w3)

∣∣∣∣ , (45)

U4(r) = e−r(u2+w3) {Ei [−r (w1 + u3 − u2)] − Ei [−r (u3 − u2 − w3 + w2)]

+ Ei [−r (w1 − w3 + w2)]} − er(u2+w3)Ei [−r (u2 + u3 + w2 + w3)]

+ e−r(u2+w3)ln

∣∣∣∣ (w1 + w2 + w3) (u2 + u3 + w1) (u2 − u3 − w2 + w3)

(w1 − w2 + w3) (w1 + u2 − u3) (u2 + u3 + w2 + w3)

∣∣∣∣ , (46)

U5(r) = −w1

r
e−r(u2+w3)

(
1

r
+ u2 + w3

)
+ w1

r
e−r(u3+w1+w3)

(
1

r
+ u3 + w1 + w3

)

− e−r(u2+w3)w1[γ (u2 + w3) δ(r) + (1 − γ ) δ′(r)] + w2
1e

−r(u3+w1+w3)

[
1

r
+ γ δ(r)

]
+ e−r(u3+w1+w3)[γ (u3 + w3 + w1) δ(r) + (1 − γ ) δ′(r)], (47)

U6(r) = −w1

r
e−r(u3+w2)

(
1

r
+ u3 + w2

)
+ w1

r
e−r(u2+w1+w2)

(
1

r
+ u2 + w1 + w2

)

− e−r(u2+w3)w1[γ (u3 + w2) δ(r) + (1 − γ ) δ′(r)] + w2
1e

−r(u2+w1+w2)

[
1

r
+ γ δ(r)

]
+ e−r(u2+w1+w2)[γ (u2 + w2 + w1) δ(r) + (1 − γ ) δ′(r)], (48)

U7(r) = w2
1 δ(r) ln(w1 + w2 + w3), U8(r) = w2

1 δ(r) ln(w1 + u2 + u3). (49)
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The results presented above require some comments. First
of all, let us establish the connection with the Pachucki
differential equation, the zero limit in w1 of Eq. (36). By
setting w1 = 0 and observing that

p2 = −�2

�1
|w1=0 , F (r) = −U (r; 0,u2,u3,w2,w3)

�1
, (50)

one arrives at

rf ′′(r) + f ′(r) − p2rf (r) + F (r) = 0, (51)

which exactly coincides with the result given by Pachucki [44]
for the case of orbital basis. Second, at the end of this section
we would like to mention that in the further derivation we will
make use of two other functions which are obtained as the
inverse Laplace transforms of P , namely,

W (r; w1,u2,u3,w2,w3)

= 1

2πı̇

∫ ı̇∞+ε

−ı̇∞+ε

du1 P (w1,u1; w2,u2; w3,u3)eu1 r , (52)

V (r; w1,u2,u3,w2,w3)

= 1

2πı̇

∫ ı̇∞+ε

−ı̇∞+ε

du1 P (w3,u3; w2,u2; w1,u1)eu1 r . (53)

Since explicit formulas for these functions have not been
presented in the literature thus far, we list them in Appendix B.

III. SOLUTION OF THE HOMOGENEOUS
DIFFERENTIAL EQUATION

First, we solve the homogeneous version of the geminal
differential equation:

w2
1rf

(4)
H (r) + 2w2

1f
(3)
H (r) + �1rf

′′
H (r) + �1f

′
H (r)

+�2rfH (r) = 0, (54)

where the subscript H was added to designate the solution
of the homogeneous equation. The above equation is a
homogeneous linear ordinary differential equation (ODE) with
nonconstant coefficients. We found it very difficult, if not
impossible, to express the solution in terms of well-known
special or analytical functions. Any manipulations performed
with Eq. (54) were proven fruitless in bringing this equation
into a characteristic form, thus enabling an analytical solution.
It was also impossible to find the solution by using a symbolic
mathematical package such as MATHEMATICA [124].

It is interesting from the mathematical point of view that
Eq. (54) can be brought to the form

w2
1

d2

dr2

(
r
d2fH

dr2

)
+ �1

d

dr

(
r
dfH

dr

)
= −r�2fH (r), (55)

so that it can be considered as a generalization of the Sturm-
Liouville (S-L) equation to the fourth-order ODE with the
weight (or density) function equal to r and eigenvalue −�2.

Because of all the above, we decided to define a family
of special functions which, by definition, form the general
solution of the differetial equation (25). We find its form by
using the generalized version of the Fröbenius method (see,
e.g., Ref. [125]). Precisely, we find a solution in terms of the
series expansion around two singular points, zero and infinity.

Our first ansatz is an ordinary regular expansion around r = 0:

fH (r) =
∞∑

k=0

akr
k. (56)

We insert this ansatz into Eq. (54), collect terms multiplying the
same power of r , and make them zero to make the differential
equation satisfied for all values of r . This establishes the
recurrence relation that connects the values of ak with different
k. The final result reads

w2
1(k + 1)(k + 2)2(k + 3)ak+3 + �1(k + 1)2ak+1

+�2ak−1 = 0 for k � 1, (57)

and the indicial equation is

12w2
1a3 + �1a1 = 0. (58)

Equations (57) and (58) need to be simultaneously satisfied.
However, there is a freedom in the choice of three initial
parameters a0, a1, and a2. Therefore, we specify three new
special functions Li(r), i = 1,2,3, using their expansions
around r = 0 given by Eq. (56) and the recurrence relation
(57). The choice of the three initial parameters is conventional
and we put

L1(r) with a0 = 1,a1 = 0,a2 = 0,

L2(r) with a0 = 0,a1 = 1,a2 = 0, (59)

L3(r) with a0 = 0,a1 = 0,a2 = 1.

This convention is used throughout the paper. Let us justify
the choice of the formulas (59). One may argue that choice
a0 = 1 in L1 is very special but by putting a0 = C �= 1, we
obtain a function which is just L1 multiplied by C. The choice
of a multiplicative constant is immaterial in our context and,
consequently, so is the choice of C. The same is true for the
values of a1 and a2 in L2 and L3, respectively. Similarly,
by defining a function with a0 = 1,a1 = 1, for example, we
obtain a linear combination of L1 and L2. Because of these
properties, we find the convention (59) justified.

It is clear that the three functions obtained in the previous
paragraph are not sufficient to give the general solution of the
homogeneous geminal differential equation. Our second trial
for the expansion around r = 0 is somewhat less obvious:

fH (r) = Li(r)ln(r) +
∞∑

k=0

bkr
k, (60)

where the coefficients bk are to be determined by inserting the
expression (60) into the homogeneous differential equation
and collecting terms multiplying rk and rkln(r). This results
in the recurrence relation:

2�1a1 + 28w2
1a3 + �1b1 + 12w2

1b3 = 0, (61)

2k�1ak + 2(k + 1)(2k2 + 4k + 1)w2
1ak+2 + �2bk−2

+ k2�1bk + w2
1k(k + 1)2(k + 2)bk+2 = 0. (62)

Additionally, as soon as w1 �= 0 the above ansatz requires
a0 = 0, a1 = 1, a2 = 0. As before, we have three parameters
which can be chosen freely, b0, b1, and b2. Since we seek for
only one function, let us put b0 = 0, b1 = 1, b2 = 0, which

052513-7



MICHAŁ LESIUK AND ROBERT MOSZYNSKI PHYSICAL REVIEW A 86, 052513 (2012)

leads to

L4(r) = L2(r)ln(r) +
∞∑

k=1

bkr
k. (63)

One can show that any function constructed with a different
choice of b0, b1, and b2 can be expressed as a linear combina-
tion of L1(r),L2(r),L3(r),L4(r). This formally completes the
solution of the homogeneous differential equation (36).

The expansions around r = 0 presented above are conver-
gent for all finite values of r since the coefficients multiplying
the powers of r decay faster than any polynomial when
k → ∞. However, the rate of convergence of these series can
be expected to be poor for large values of r and therefore
prohibit an accurate calculation in this regime. As a result,
it might be beneficial to obtain their asymptotic expansion,
which will be valid and rapidly convergent for large values of
r . The latter expansion can be constructed from the ansatz

fH (r) = etr

∞∑
k=0

akr
−k−ρ, (64)

where ak , t and ρ are coefficients to be determined. By
inserting this trial function into the differential equation and
grouping coefficients multiplying the same powers of 1/r one
obtains indicial equations specifying ρ and t ,

w2
1t

4 + �1t
2 + �2 = 0, (65)

ρ = 1
2 , (66)

and the recursion relation for ak with the value of ρ already
fixed at 1/2,

1

4
�1a0 + 3

2
t2w2

1a0 − 2�1ta1 − 4t3w2
1a1 = 0, (67)

−3tw2
1a0 + 9

4
�1a1 + 27

2
t2w2

1a1 − 4�1ta2 − 8t3w2
1a2 = 0,

(68)

and for k > 2,

0 = 1

16
w2

1ak(2k + 3)2(2k + 1)(2k + 5)

− tw2
1ak+1(k + 2)(2k + 3)(2k + 5)

+ 1

4
(2k + 5)2ak+2

(
�1 + 6t2w2

1

)
− 2(k + 3)ak+3

(
�1t + 2t3w2

1

)
. (69)

Equation (65) has four solutions ti , i = 1, . . . ,4, which
correspond to four functions determining the general solution
of the homogeneous differential equation. We see that it is
dependent on the sign of ti whether convergent or divergent
expansion is obtained. The final result can be written as

fH (r) = eti r

√
r

∞∑
k=0

ak

rk
, (70)

where a0 can freely be chosen.
It is interesting to establish a connection between the new

special functions Li and the modified Bessel functions of the
first, I0(r), and the second, K0(r), kind. By setting w1 = 0

Eqs. (57) and (58) become

�1(k + 1)2ak+1 + �2ak−1 = 0, a1 = 0, (71)

so that the recursion can be solved explicitly to give

a2k =
−�2

�1

∣∣∣k
w1=0

22kk!2
= p2k

22kk!2
, a2k−1 = 0, (72)

and the series can be brought into the closed form,
∞∑

k=0

p2kr2k

22kk!2
= I0(pr), (73)

coinciding with the Bessel function of the first kind. Similarly,
by setting w1 = 0 in Eqs. (61) and (62) one finds a linear
combination of I0(pr) and K0(pr) to be the w1 = 0 limit of
L4(r). One could force the exact relationship

lim
w1→0

L4(r) = K0(pr) (74)

by a proper choice of the initial parameters. Our choice was
made for the sake of simplicity as indicated before. Similar
result is found with the asymptotic expansions of Li(r).
Whenever w1 = 0, Eq. (65) has two solutions,

t± = ±
√

−�2

�1
= ±p, (75)

so that Eq. (70) becomes the asymptotic expansion of I0 (with
t = p) or K0 (with t = −p).

We believe that because of the interesting properties of the
Li(r) functions and their strong connection with the Bessel
functions they can be understood as a generalization to the
fourth-order differential equation. Therefore, we give them the
name hyper-Bessel functions. In analogy, L1,L2,L3 functions
are hyper-Bessel functions of the first kind and L4 is the hyper-
Bessel function of the second kind.

IV. SOLUTION OF THE INHOMOGENEOUS
DIFFERENTIAL EQUATION

The next step in our derivation is to use the properties of
the functions introduced in Sec. III to obtain solution of the
inhomogeneous differential equation (36). In this work we
decided to use the method based on the Wronskian determi-
nants. Starting with the general solution of the homogeneous
equation:

fH (r) = c1L1(r) + c2L2(r) + c3L3(r) + c4L4(r), (76)

we make coefficients ci explicit functions of r , yi(r), and
require the combination

f (r) = y1(r)L1(r) + y2(r)L2(r)

+ y3(r)L3(r) + y4(r)L4(r), (77)

to satisfy the inhomogeneous geminal equation (36). Differ-
entiation of the above equation leads to

f ′(r) = [y1(r)L′
1(r) + y2(r)L′

2(r)

+ y3(r)L′
3(r) + y4(r)L′

4(r)]

+ [y ′
1(r)L1(r) + y ′

2(r)L2(r)

+ y ′
3(r)L3(r) + y ′

4(r)L4(r)]. (78)
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The requirement that the second expression vanishes identi-
cally for all r ,

0 ≡ y ′
1(r)L1(r) + y ′

2(r)L2(r)

+ y ′
3(r)L3(r) + y ′

4(r)L4(r), (79)

enables us bring the first derivative into the form

f ′(r) = y1(r)L′
1(r) + y2(r)L′

2(r)

+ y3(r)L′
3(r) + y4(r)L′

4(r). (80)

Similarly, higher-order derivatives are found to be

f ′′(r) = y1(r)L′′
1(r) + y2(r)L′′

2(r)

+ y3(r)L′′
3(r) + y4(r)L′′

4(r), (81)

f (3)(r) = y1(r)L(3)
1 (r) + y2(r)L(3)

2 (r)

+ y3(r)L(3)
3 (r) + y4(r)L(3)

4 (r), (82)

f (4)(r) = [
y1(r)L(4)

1 (r) + y2(r)L(4)
2 (r)

+ y3(r)L(4)
2 (r) + y4(r)L(4)

4 (r)
]

+ [
y ′

1(r)L(3)
1 (r) + y ′

2(r)L(3)
2 (r)

+ y ′
3(r)L(3)

3 (r) + y ′
4(r)L(3)

4 (r)
]
, (83)

where additional constraints on yi(r) were imposed

y ′
1(r)L′

1(r) + y ′
2(r)L′

2(r) + y ′
3(r)L′

3(r) + y ′
4(r)L′

4(r) ≡ 0,

(84)

y ′
1(r)L′′

1(r) + y ′
2(r)L′′

2(r) + y ′
3(r)L′′

3(r) + y ′
4(r)L′′

4(r) ≡ 0.

(85)

By inserting Eqs. (81), (82), and (83) into the differential
equation and noting that the functions Li(r) satisfy the
homogeneous differential equation, one arrives at

U (r) = w2
1r

[
y ′

1(r)L(3)
1 (r) + y ′

2(r)L(3)
2 (r) (86)

+ y ′
3(r)L(3)

3 (r) + y ′
4(r)L(3)

4 (r)
]
. (87)

The above equation together with Eqs. (79), (84), and (85)
specify the four-dimensional system of linear equations⎡
⎢⎢⎢⎢⎣

L
(3)
1 (r) L

(3)
2 (r) L

(3)
3 (r) L

(3)
4 (r)

L′′
1(r) L′′

2(r) L′′
3(r) L′′

4(r)

L′
1(r) L′

2(r) L′
3(r) L′

4(r)

L1(r) L2(r) L3(r) L4(r)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y ′
1(r)

y ′
2(r)

y ′
3(r)

y ′
4(r)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

U (r)
w2

1r

0

0
0

⎤
⎥⎥⎥⎦ ,

(88)

which can easily be solved symbolically for y ′
i(r) by using the

Cramer’s rule. The result reads

y ′
1(r) = U (r)

w2
1r

W1(r)

W (r)
, (89)

where W (r) is the Wronskian determinant of the functions
L1(r),L2(r),L3(r),L4(r),

W (r) =

∣∣∣∣∣∣∣∣∣∣

L
(3)
1 (r) L

(3)
2 (r) L

(3)
3 (r) L

(3)
4 (r)

L′′
1(r) L′′

2(r) L′′
3(r) L′′

4(r)

L′
1(r) L′

2(r) L′
3(r) L′

4(r)

L1(r) L2(r) L3(r) L4(r)

∣∣∣∣∣∣∣∣∣∣
, (90)

and Wk(r) are the same as W (r) apart form the fact that the kth
column was replaced by the unit vector [1,0,0,0], for example:

W1(r) =

∣∣∣∣∣∣∣∣∣∣

1 L
(3)
2 (r) L

(3)
3 (r) L

(3)
4 (r)

0 L′′
2(r) L′′

3(r) L′′
4(r)

0 L′
2(r) L′

3(r) L′
4(r)

0 L2(r) L3(r) L4(r)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
L′′

2(r) L′′
3(r) L′′

4(r)

L′
2(r) L′

3(r) L′
4(r)

L2(r) L3(r) L4(r)

∣∣∣∣∣∣∣ . (91)

Some degree of suspicion may be connected with the fact that
the Wronskian appears in the denominator. However, since
the functions L1(r),L2(r),L3(r), and L4(r) span the space of
solutions of the homogeneous differential equation they cannot
be linearly dependent and thus W (r) cannot vanish identically.
Equation (89) can now formally be integrated,

y1(r) =
∫

dr
U (r)

w2
1r

W1(r)

W (r)
, (92)

so that the solution of the inhomogeneous differential equation
is

f (r) =
4∑

i=1

Li(r)
∫

dr
U (r)

w2
1r

Wi(r)

W (r)
, (93)

where the initial conditions have not been imposed yet. At
this point we observe that the solution is rather complicated
because of the presence of five determinants, including
the Wronskian itself, which is the most cumbersome in
the calculations. Therefore, it will be advantageous to intro-
duce some simplifications in the above formula. It turns out that
the appearance of the Wronskian can be eliminated altogether
by using the so-called Abel’s identity, which states that for any
nth-order homogeneous differential equation of the form

y(n)(x) + pn−1(x)y(n−1)(x) + · · · + p0(x)y(x) = 0, (94)

the Wronskian constructed from n linearly independent solu-
tions can be expressed as

W (x) = W (x0) exp

(
−

∫ x

x0

dx ′pn−1(x ′)
)

, (95)

provided that pn−1(x) is continuous on the interval [x0,x].
In the case of the geminal differential equation pn−1(r) = 2

r

(continuous on 0 < r � ∞), so that integration can easily be
carried out and the Abel’s identity is

W (r) = W (r0)

(
r0

r

)2

. (96)

We need to specify the point r0. Our choice r0 = 1 is motivated
by the fact that the above equation takes a very simple form
and that r0 = 1 is sufficiently close to r = 0 at which series
expansions of Li(r) are provided. It allows a robust calculation
of W (1) for any values of the nonlinear parameters. By
inserting the identity

W (r) = W (1)
1

r2
, (97)
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into the solution (93) considerable simplifications occur:

f (r) =
4∑

i=1

Li(r)

w2
1W (1)

∫
dr r U (r)Wi(r). (98)

Despite considerable effort we did not manage to simplify
this equation further, at least in the general case. Such a
simplification will occur for a special case considered in the
next subsection.

Finally, we have to impose four initial conditions on the
above solution to make it consistent with the definition of the
master integral. The first three initial conditions are natural:

f (0) = 0, lim
r→∞ f (r) = 0, lim

r→∞ f ′(r) = 0. (99)

The fourth initial condition is somehow more complicated, but
we see that whenever r → 0 then r1B → r1A = r1, etc., so that
in the r = 0 limit the derivative of the master integral becomes
the well-known integral:

f ′(0) =
∫

d3r1

4π

∫
d3r2

4π

e−(u3+u2) r1

r2
1

e−(w2+w3) r2

r2
2

e−w1 r12

r12
.

(100)

Analytical formula for this integral is well known (cf. Eq. (34)
of Ref. [123]). After the four initial conditions are imposed the
master integral becomes

f (r) = L1(r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W1(r ′)

− L2(r)

w2
1W (1)

∫ ∞

r

dr ′ r ′ U (r ′)W2(r ′)

− L3(r)

w2
1W (1)

∫ ∞

r

dr ′ r ′ U (r ′)W3(r ′)

+ L4(r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W4(r ′). (101)

One can check that the above formula satisfies the initial
conditions (99) and (100) and therefore is the solution of the
inhomogeneous differential geminal equation. In the further
derivation we also need the values of f ′(r), f ′′(r), and
f (3)(r). Higher-order derivatives can be obtained recursively
by differentiation of Eq. (36):

f (n+4)(r) = U (n)(r)

rw2
1

− n + 2

r
f (n+3)(r) − �1

w2
1

f (n+2)(r)

− �1(n + 1)

rw2
1

f (n+1)(r) − �2

w2
1

f (n) − �2n

rw2
1

f (n−1).

(102)

The first derivative of the master integral with respect to r is
obtained directly from the representation (101):

f ′(r) = L′
1(r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W1(r ′)

− L′
2(r)

w2
1W (1)

∫ ∞

r

dr ′ r ′ U (r ′)W2(r ′)

− L′
3(r)

w2
1W (1)

∫ ∞

0
dr ′ r ′ U (r ′)W3(r ′)

+ L′
4(r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W4(r ′)

+
4∑

i=1

Li(r)

w2
1W (1)

r U (r)Wi(r). (103)

The nonintegral term is equal to
4∑

i=1

Li(r)

w2
1W (1)

r U (r)Wi(r) =
4∑

i=1

Li(r)y ′
i(r), (104)

so it vanishes identically on the basis of the initial assumption
(79). The first derivative of f (r) becomes

f ′(r) = L′
1(r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W1(r ′)

− L′
2(r)

w2
1W (1)

∫ ∞

r

dr ′ r ′ U (r ′)W2(r ′)

− L′
3(r)

w2
1W (1)

∫ ∞

r

dr ′ r ′ U (r ′)W3(r ′)

+ L′
4(r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W4(r ′). (105)

Similarly, using the conditions (84) and (85), explicit formulas
for f ′′(r) and f (3)(r) are obtained:

f ′′(r) = L′′
1(r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W1(r ′)

− L′′
2(r)

w2
1W (1)

∫ ∞

r

dr ′ r ′ U (r ′)W2(r ′)

− L′′
3(r)

w2
1W (1)

∫ ∞

r

dr ′ r ′ U (r ′)W3(r ′)

+ L′′
4(r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W4(r ′), (106)

f (3)(r) = L
(3)
1 (r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W1(r ′)

− L
(3)
2 (r)

w2
1W (1)

∫ ∞

r

dr ′ r ′ U (r ′)W2(r ′)

− L
(3)
3 (r)

w2
1W (1)

∫ ∞

r

dr ′ r ′ U (r ′)W3(r ′)

+ L
(3)
4 (r)

w2
1W (1)

∫ r

0
dr ′ r ′ U (r ′)W4(r ′), (107)

so that values of the latter three quantities can be calculated
with an insignificant additional cost once the numerical
integration of the integrals appearing in f (r) is done.

V. RECURSION RELATIONS FOR THE POWERS
OF r1A,r1B,r2A,r2B

With the analytical expression for the master integral
at hand, we turn to the calculation of the integrals with
arbitrary powers of r1A,r1B,r2A,r2B . They are obtained by
differentiation of the master integral with respect to the
nonlinear parameters. Explicit differentiation of Eq. (55) is
cumbersome and connected with painful and expensive nu-
merical integrations. Therefore, to start the recursion relations,
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we must establish an equation that connects the value of the
derivative of the master integral with respect to, say, w3, to the
master integral and optionally its derivatives with respect to
r . The latter quantities can be computed by using the theory
presented in the previous section.

The desired recursion relation can be derived from two
differential equations in the momentum space. The first was
already derived in the Sec. II B,

σ
∂g

∂u1
+ 1

2

∂σ

∂u1
g(u1) + P (u1,w1; u3,w3; w2,u2) = 0, (108)

and the second is obtained by the proper exchange of the
nonlinear parameters, making use of the fact that both g and
σ are invariant under the latter operations:

σ
∂g

∂w3
+ 1

2

∂σ

∂w3
g(u1) + P (w3,u3; w2,u2; w1,u1) = 0.

(109)

By taking the inverse Laplace transform of both equations one
obtains

−w2
1rf

(4)(r) − 2w2
1f

(3)(r) − �1rf
′′(r) − �1f

′(r)

− �2rf (r) + U (r; w1,u2,u3,w2,w3) = 0, (110)

w2
1
∂f (4)

∂w3
+ �1

∂f ′′

∂w3
+ �2

∂f

∂w3
+ 1

2

∂�1

∂w3
f ′′(r)

+ 1

2

∂�2

∂w3
f (r) + V (r; w1,u2,u3,w2,w3) = 0, (111)

and by differentiation of the first equation with respect to w3

one obtains a pair,

E1 ≡ −w2
1 r

∂f (4)

∂w3
− 2w2

1
∂f (3)

∂w3
(r)

− ∂�1

∂w3
rf ′′(r) − �1r

∂f ′′

∂w3
− ∂�1

∂w3
f ′(r) − �1

∂f ′

∂w3

− ∂�2

∂w3
rf (r) − �2r

∂f

∂w3
+ ∂U (r)

∂w3
= 0,

E2 ≡ w2
1

∂f (4)

∂w3
+ �1

∂f ′′

∂w3
+ �2

∂f

∂w3
+ 1

2

∂�1

∂w3
f ′′(r)

+ 1

2

∂�2

∂w3
f (r) + V (r) = 0, (112)

where the notation for the nonlinear parameters in U and V was
suppressed for brevity. These two equations provide a starting
point to establish an explicit recursion relation. However, its
derivation is still a nontrivial task since E1, E2, apart from the
desired term ∂f

∂w3
, consist of the derivatives of the latter with

respect to r up to the fourth order. Our approach was based on
the following three additional identities that are defined as

E3 = ∂

∂r
(E1 + r E2) , (113)

E4 = ∂

∂r
(r E3 − 2 E1) , (114)

E5 = ∂

∂r
(E4 − 4 E2) . (115)

The reason for making the combinations above is as follows. At
each step we cancel out the fourth-order derivative of ∂f

∂w3
with

respect to r and then create it back by doing a differentiation

with respect to r . By repeating this procedure three times we
figure out that the Eq. (113) is a set of equations with five
unknown quantities,

∂f

∂w3
,

∂f ′

∂w3
,

∂f ′′

∂w3
,

∂f (3)

∂w3
,

∂f (4)

∂w3
,

so it can be solved analytically. The differentiation performed
at each step guarantees that Ei , i = 1,5, are linearly inde-
pendent as long as none of the coefficients multiplying the
unknown quantities in the initial equations for E1 and E2

vanishes. Higher-order derivatives of ∂f

∂w3
over r do not appear.

The final result is

∂f

∂w3
= 2w2

1
�2

D0

{
6V (r) + 2rV ′(r) + 2

∂U ′(r)

∂w3

+ ∂�2

∂w3
[f (r) + rf ′(r)]

− ∂�1

∂w3
[f ′′(r)+rf (3)(r)]

}
+�2

1

D0

{
−4V (r)−2rV ′(r)

− 2
∂U ′(r)

∂w3
+ ∂�2

∂w3
rf ′(r) + ∂�1

∂w3
[2f ′′(r) + rf (3)(r)]

}

+w2
1
�1

D0

{
−10V ′′(r) − 2rV (3)(r) − 2

∂U (3)(r)

∂w3

+ ∂�2

∂w3
[f ′′(r)+rf (3)(r)]+∂�1

∂w3
[3f (4)(r)+rf (5)(r)]

}
,

(116)

where D0 is the common denominator:

D0 = 2�2
(
�2

1 − 4w2
1�2

)
. (117)

It is noteworthy that the procedure in which the required set
Ei , i = 1,5, was obtained is somehow ambiguous. Only the
first step of this procedure, formation of E3, is unique since
there is only one correct method to obtain a useful equation by
canceling out the fourth-order derivative of ∂f

∂w3
. In the further

steps such an elimination can be performed using different
equations which were obtained previously and the number of
possibilities grows with the number of steps taken. We cannot
prove that the particular choice of equations for Ei , i = 1,5,
which we used here is “the best.” However, in our procedure
we tried to minimize the order of the derivatives of functions
U (r) and V (r) that appeared in the final result. It leads to
Eq. (116), which turns out to be regular.

By multiplying both sides of the relation (116) by D0 and
by further differentiation one can calculate arbitrary derivative
over the nonlinear parameters, thus advancing the powers of
r1A,r1B,r2A,r2B as much as necessary. The recursion relations
for the derivatives over w2, u3, and u2 that cannot directly be
calculated from the above formula are obtained with the use
of the symmetry of the master integral. Namely, by permuting
w2 ↔ w3 and u2 ↔ u3 (exchange of the nuclei A ↔ B in the
master integral) and noting that the master integral is invariant
with respect to this permutation, analogous recursion relation
for ∂f

∂w2
is obtained. Similarly, the exchange of u2 ↔ w3 and

u3 ↔ w2 (change of the electrons’ numbering 1 ↔ 2) results
in the derivative over u2. Finally, the use of both of these
permutations gives the derivative over u3.
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We listed only the formula for ∂f

∂w3
despite the fact that by

solving the set of equations for Ei , i = 1,5, its derivatives over
r up to the fourth order are obtained as by-products. From the
mathematical point of view equivalent formulas can be derived
by differentiating Eq. (116) over r . Although numerical results
obtained in this manner are the same, formulas for higher-order
derivatives over r calculated from the solution of Eqs. (113)
are much more transparent. In particular, they do not include
higher-order derivatives of the functions U (r) and V (r) and of
the master integral. Therefore, we list all the missing formulas
in Appendix C.

VI. RECURSION RELATIONS FOR THE POWERS OF r12

Since the integrals in the Slater geminal basis considered
here already include explicit correlation factor, there is little
point in growing powers of r12 in the initial basis set. However,
such a possibility is open and we elaborate it in this section.
In particular, we derive an analytical equation for the overlap
integral over Slater geminals which, despite its simplicity at
first glance, has not found analytical solution yet. Our approach
is similar to the one presented in the previous section. We es-
tablish a relation that connects the value of ∂f

∂w1
with the master

integral and its derivatives over r . In the derivation we use the
following differential equations for g in the momentum space:

σ
∂g

∂u1
+ 1

2

∂σ

∂u1
g(u1) + P (u1,w1; u3,w3; w2,u2) = 0, (118)

σ
∂g

∂w1
+ 1

2

∂σ

∂w1
g(u1) + P (w1,u1; w2,u2; w3,u3) = 0.

(119)

The first of these equations is differentiated with respect to w1

and then the inverse Laplace transform is performed to give

E1 = −rw2
1
∂f (4)

∂w1
− 2w2

1
∂f (3)

∂w1
− �1r

∂f ′′

∂w1

−�1
∂f ′

∂w1
− �2r

∂f

∂w1

− 2rw1f
(4)(r) − 4w1f

(3)(r) − r
∂�1

∂w1
f ′′(r)

− ∂�1

∂w1
f ′(r) − r

∂�2

∂w1
f (r) + ∂U (r)

∂w1
= 0, (120)

E2 = w2
1
∂f (4)

∂w1
+ �1

∂f ′′

∂w1
+ �2

∂f

∂w1
+ w1f

(4)(r)

+ 1

2

∂�1

∂w1
f ′′(r) + 1

2

∂�2

∂w1
f (r) + W (r) = 0. (121)

Using a similar procedure as for the derivatives over w3 we
form a set of equations,

E3 = ∂

∂r
(E1 + rE2), (122)

E4 = ∂

∂r
(E3 + 2E2), (123)

E5 = ∂E4

∂r
, (124)

which are then solved for the following quantities:

∂f

∂w1
,

∂f ′

∂w1
,

∂f ′′

∂w1
,

∂f (3)

∂w1
,

∂f (4)

∂w1
.

The final equation for ∂f

∂w1
is given by

∂f

∂w1
= −2w2

1
�2

D0

{
−6W (r) − 2rW ′(r) − 2

∂U ′(r)

∂w1
− ∂�2

∂w1
[f (r) − rf ′(r)]

+ ∂�1

∂w1
[f ′′(r) + rf (3)(r)] + 6w1f

(4)(r) + 2w1f
(5)(r)

}

+ �2
1

D0

{
− 4W (r) − 2rW ′(r) − 2

∂U ′(r)

∂w1
+ ∂�2

∂w1
rf ′(r) + ∂�1

∂w1
[2f ′′(r) + rf (3)(r)] + 8w1f

(4)(r) + 2rw1f
(5)(r)

}

+w2
1
�1

D0

{
−10W ′′(r) − 2rW (3)(r) − 2

∂U (3)(r)

∂w1
+ ∂�2

∂w3
[f ′′(r) + rf (3)(r)]

+ ∂�1

∂w3
[3f (4)(r) + rf (5)(r)] + 10w1f

(6)(r) + 2w1rf
(7)(r)

}
. (125)

Higher powers of r12 are obtained by further differentiation
of the above equation. As before, useful formulas resulting
from the solution of the set for Ei , i = 1,5, are listed in
Appendix C.

VII. SPECIAL CASES

In this section we consider four special cases of the integrals
corresponding to situations when coefficients �1 and/or �2

vanish. From the mathematical point of view the recursion
relations for the coefficients ak and bk remain valid since
in their recursive evaluation one never divides by �1 or �2.
Therefore, the representation of the master integral given by
Eq. (100) is still correct. However, for practical reasons it
is useful to consider these two special cases in detail since
the solution of the homogeneous differential equation can
be expressed in terms of well-known special functions. This
makes the implementation of the method much simpler.
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A. Vanishing �2 coefficient

Vanishing �2 coefficient is probably the most important
special case since it occurs for a handful of physically
important classes of integrals. This includes an exponentially
correlated analog of the symmetric James-Coolidge basis
set [24] (u2 = u3 = w2 = w3 = x) and symmetric exchange
integrals over atomic orbitals (u3 = w2 = x, u2 = w3 = y).
Singularities also appear whenever

w2
1 = (

u2
2w

2
2 − u2

3w
2
3

) (
1

u2
2 − w2

3

− 1

u2
3 − w2

2

)
. (126)

Moreover, the recursion relations established in the previous
sections are not valid in this case since �2 appears in the
denominator in the key formulas.

In this special case the geminal differential equation takes
the form

w2
1rf

(4)(r) + 2w2
1f

(3)(r) + �1rf
′′(r) + �1f

′(r) = U (r),

(127)

so that the homogeneous equation is

w2
1rf

(4)
H (r) + 2w2

1f
(3)
H (r) + �1rf

′′
H (r) + �1f

′
H (r) = 0.

(128)

The simplest way to obtain the solution of the latter equation
is to use the recursion relations for the coefficients in the series
expansions that were derived for the general case [Eqs. (57),
(58), (61), and (62)]. By setting �2 = 0 they become

w2
1(k + 2)2(k + 3)ak+3 + �1(k + 1)ak+1 = 0 for k � 1,

(129)

12w2
1a3 + �1a1 = 0. (130)

As before, there are three initial parameters that can freely be
chosen, a0, a1, a2. Let us make the same choice as in Eq. (59):

L̃1(r) with a0 = 1,a1 = 0,a2 = 0,

L̃2(r) with a0 = 0,a1 = 1,a2 = 0, (131)

L̃3(r) with a0 = 0,a1 = 0,a2 = 1.

The solutions of Eq. (128) are denoted by tildes to distinguish
them from the solutions in the general case. The resulting
functions can be expressed in terms of the generalized
hypergeometric function (pFq[a1, . . . ,ap; b1, . . . ,bq ; z]) and
some elementary functions:

L̃1(r) = 1, (132)

L̃2(r) = r 1F2

[
1

2
; 1,

3

2
; −�1

w2
1

r2

]
, (133)

L̃3(r) = r2
2F3

[
1,1;

3

2
,
3

2
,2; −�1

w2
1

r2

]
. (134)

The recursion relation for the coefficients bk becomes

2�1a1 + 28w2
1a3 + �1b1 + 12w2

1b3 = 0, (135)

2k�1ak + 2(k + 1)(2k2 + 4k + 1)w2
1ak+2

+ k2�1bk + w2
1k(k + 1)2(k + 2)bk+2 = 0. (136)

At this point it is very useful to depart slightly from the previous
approach and choose a little less obvious initial conditions for
the series bk:

b0 = 0, b1 = 4

π

[
ln

(√
�1

2w1

)
+ γ − 1

]
, b2 = 0. (137)

With this choice the function L4(r) takes a very appealing
form:

L̃4(r) = π r

[
Y0

(√
�1

w1
r

)
H−1

(√
�1

w1
r

)
(138)

+ Y1

(√
�1

w1
r

)
H0

(√
�1

w1
r

)]
, (139)

where Yα is the Bessel function of the second kind and Hα is
the Struve function, both of the order α. This completes the
solution of Eq. (128). In this particular case we found a closed
expression for fH (r) in terms of the known special functions,
so that the implementation and numerical realization become
significantly simpler. Since the initial conditions for f (r) in
this special case are the same as in the general case, the solution
of (127) takes the form

f (r) = L̃1(r)

w2
1W̃ (1)

∫ r

0
dr ′ r ′ U (r ′)W̃1(r ′)

− L̃2(r)

w2
1W̃ (1)

∫ ∞

r

dr ′ r ′ U (r ′)W̃2(r ′)

− L̃3(r)

w2
1W̃ (1)

∫ ∞

r

dr ′ r ′ U (r ′)W̃3(r ′)

+ L̃4(r)

w2
1W̃ (1)

∫ r

0
dr ′ r ′ U (r ′)W̃4(r ′), (140)

and the formulas for the derivatives are analogous to
Eqs. (105)–(107).

Whenever the �2 coefficient vanishes, the recursion rela-
tions established in the previous sections are no longer correct.
Equations for Ei , i = 1,5, become a system of linear equations
with a singular coefficients matrix. To give an example of how
to circumvent this problem, let us derive an analytical equation
for ∂f

∂w3
. In this special case E1 and E2 are

E1 = −w2
1 r

∂f (4)

∂w3
− 2w2

1
∂f (3)

∂w3
(r) − ∂�1

∂w3
rf ′′(r)

−�1r
∂f ′′

∂w3
− ∂�1

∂w3
f ′(r) − �1

∂f ′

∂w3
− ∂�2

∂w3
rf (r)

+ ∂U (r)

∂w3
= 0, (141)

E2 = w2
1

∂f (4)

∂w3
+ �1

∂f ′′

∂w3
+ 1

2

∂�1

∂w3
f ′′(r)

+ 1

2

∂�2

∂w3
f (r) + V (r) = 0. (142)

We form the combinations

E3 = ∂

∂r
(E1 + r E2) , (143)

E4 = ∂

∂r
(r E3 − 2 E1) , (144)
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and solve Eqs. (141)–(144) for ∂f ′
∂w3

instead of ∂f

∂w3
. The result

is

∂f ′

∂w3
= − 1

2�1

{
−2rV (r) − 2

∂U (r)

∂w3
+ ∂�2

∂w3
rf (r)

+ ∂�1

∂w3
[2f ′(r) + rf ′′(r)]

}
−w2

1

�2
1

{
−8V ′(r)−2rV ′′(r)

−2
∂U ′′(r)

∂w3
+∂�2

∂w3
rf ′′(r)+∂�1

∂w3
[2f (3)(r) + rf (4)(r)]

}
.

(145)

This result needs now to be formally integrated over r . The
resulting integrals can be expanded as

[rf (r)](−1) = rf (−1)(r) − f (−2)(r), (146)

where the superscript (−I ) was introduced to denote the I -fold
integration over r with the boundary condition f (−I )(∞) = 0
(the so-called antidifferentiation). The integrals of f (r) over r

can be obtained by the consecutive integration of Eq. (127):

f (−1)(r) = 1

�1

[
w2

1rf
′′(r) + �1rf (r) − U (−2)(r)

]
. (147)

The result becomes

∂f

∂w3
= − 1

2�1

{
−2rV (−1)(r) + 2V (−2)(r) − 2

∂U (−1)(r)

∂w3
+ ∂�2

∂w3
[rf (−1)(r) − f (−2)(r)] + ∂�1

∂w3
[f (r) + rf ′(r)]

}

−w2
1

�2
1

{
−8V (r) − 2rV ′(r) + 2V (r) − 2

∂U ′(r)

∂w3
+ ∂�2

∂w3
[rf ′(r) − f (r)] + ∂�1

∂w3
[f ′′(r) + rf (3)(r)]

}
. (148)

Antiderivatives of the functions U (r) and V (r) can all be obtained in an analytical way. For example, in the special case
u2 = u3 = w2 = w3 = x mentioned earlier they are

∂U (−1)(r)

∂w3
= w1e

−r(w1+2x)

8(w1 + 2x)
{−4rw1e

rw1 (w1 + 2x)[2Ei(−rw1) − e4rxEi(−4rx) − ln(4r)

+ 2ln(w1 + 2x) − 2ln(w1) − ln(x)] + 4erw1 [γ rw1(w1 + 2x) − 4x] + 8(w1 + 2x)}, (149)

V (−1)(r) = w1e
−r(2x+w1)

2r2(2x + w1)

{
−r2w1e

rw1 [e4rx(2x + w1)Ei(−4rx) − 2(2x + w1)Ei(−rw1) + w1ln(4rx) + 2xln(rx) + x ln(16)]

+ erw1

[
− γ r2w1(2x + w1) + 4r2w1(2x + w1) tanh−1

(
x

x + w1

)
+ 4rx + 2

]
− 2[r(2x + w1) + 1]

}
, (150)

V (−2)(r) = w1e
−r(4x+w1)

4rx(2x + w1)

{
er(2x+w1)

[ − rw2
1e

4rxEi(−4rx) + 2rw2
1e

2rxEi[−r(2x + w1)]

− 2rxw1e
4rxEi(−4rx) + 4rxw1e

2rxEi[−r(2x + w1)] + rw2
1ln(4rx) + γ rw1(2x + w1)

]
+ er(2x+w1)

[
2rxw1ln(rx) + rxw1ln(16) − 4rw1(2x + w1) tanh−1

(
x

x + w1

)
− 4x

]

− 2rw1(2x + w1)Ei(−rw1)er(2x+w1) + 4xe2rx

}
. (151)

In a similar way higher-order derivatives over the nonlinear
parameters can be calculated. One needs to use the expressions
for E1 and E2 differentiated the desired number of times
over u2,u3,w2,w3 as a starting point and form the same
combinations as in the above example.

B. Vanishing �1 coefficient

Vanishing �1 is a by far less troublesome special case than
the one considered in the previous section. Conditions under
which �1 vanishes are found by recasting it into a particular
form,

�1 = w4
1 − w2

1

(
u2

2 + u2
3 + w2

2 + w2
3

) + (
u2

2 − u2
3

)(
w2

3 − w2
2

)
,

(152)

so we may solve �1 = 0 against w2
1. The result is triv-

ially found to be w2
1 = 1

2 (u2
2 + u2

3 + w2
2 + w2

3 ± √
�), with

� = (u2
2 + u2

3 + w2
2 + w2

3)2 − 4(u2
2 − u2

3)(w2
3 − w2

2), and we
see that �1 vanishes after some coincidental choice of the
nonlinear parameters defined by the above equation rather
than for some particular class of the integrals. In this
special case the homogeneous differential equation takes
the form

w2
1rf

(4)
H (r) + 2w2

1f
(3)
H (r) + �2rfH (r) = 0. (153)

This equation can be solved by using the recursion relations for
the coefficients in the series expansions derived in the general
case, by setting �1 = 0 and recognizing the resulting series
in terms of the well-known special functions. Since we have
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already presented a detailed example of such a procedure,
here we only list the final equations in a convenient form.
The solutions of Eq. (153) are denoted by double-tilde to
distinguish them from the previous ones:

≈
L1(r) = 0F3

[
1

2
,
3

4
,
3

4
; − �2

256w2
1

r4

]
, (154)

≈
L2(r) = r 0F3

[
3

4
,1,

5

4
; − �2

256w2
1

r4

]
, (155)

≈
L3(r) = r2

0F3

[
5

4
,
5

4
,
3

2
; − �2

256w2
1

r4

]
, (156)

≈
L4(r) = G20

04

(
− �2

256w2
1

r4

∣∣∣∣ 0
1
4 , 1

4 ,0, 1
2

)
, (157)

where Gmn
pq (z| a1, . . . ,ap

b1, . . . ,bq
) is the Meijer G function. The solution

of the inhomogeneous equation can now formally be written as

f (r) =
≈
L1(r)

w2
1

≈
W (1)

∫ r

0
dr ′ r ′ U (r ′)

≈
W 1(r ′)

−
≈
L2(r)

w2
1

≈
W (1)

∫ ∞

r

dr ′ r ′ U (r ′)
≈
W 2(r ′)

−
≈
L3(r)

w2
1

≈
W (1)

∫ ∞

r

dr ′ r ′ U (r ′)
≈
W 3(r ′)

+
≈
L4(r)

w2
1

≈
W (1)

∫ r

0
dr ′ r ′ U (r ′)

≈
W 4(r ′), (158)

with the definitions of
≈
W (r) and

≈
Wi(r) analogous to Eqs. (90)

and (91), respectively.
Since the recursion relations derived in the general case

remain valid for �1 = 0 we can rewrite them as they take
much simpler form here, for instance,

∂f

∂w3
= 1

4�2

{
6V (r) + 2rV ′(r) + 2

∂U ′(r)

∂w3

+∂�2

∂w3
[f (r) + rf ′(r)] −∂�1

∂w3
[f ′′(r) + rf (3)(r)]

}
,

(159)

so that higher-order derivatives over the nonlinear parameters
are calculated from the recursion relation for the general case
by putting �1 = 0 at the end of each recursive step.

C. Vanishing �1 and �2 coefficients

The situation where �1 = 0 and �2 = 0 is quite rare
since the conditions given in the two previous sections
that make �1 and �2 vanish must mutually be satisfied.
This occurs, for example, when u2 = u3 = w2 = w3 = x

and additionally w1 = 2x. The homogeneous differential
equation has a disarmingly simple four linearly independent

solutions:

Ľ1(r) = 1, (160)

Ľ2(r) = r, (161)

Ľ3(r) = r2, (162)

Ľ4(r) = r ln(r) − r. (163)

The above solutions were denoted by check mark to separate
them from the previous ones. The Wronskian W (r) and the
Wi(r) determinants can be brought into the closed forms

W̌ (r) = − 2

r2
, (164)

W̌1(r) = r, (165)

W̌2(r) = 2 − 2 ln(r), (166)

W̌3(r) = −1

r
, (167)

W̌4(r) = −2, (168)

so that the solution of the inhomogeneous differential equation
takes the form

f (r) = 1

w2
1

{
− 1

2

∫ r

0
dr ′ r ′2U (r ′)

+ r

∫ ∞

r

dr ′ r ′U (r ′)[1 − ln(r)] − 1

2
r2

∫ ∞

r

dr ′ U (r ′)

+ r[ln(r) − 1]
∫ r

0
dr ′ r ′U (r ′)

}
, (169)

where, for example, in the case u2 = u3 = w2 = w3 = x,
w1 = 2x:

U (r) = 4xe−4rx

r2
{2r2x2e2rx[e4rxEi(−4rx) − 2Ei(−2rx)

+ ln(rx)] + 6rx + e2rx[2rx(γ rx − 1) − 1] + 1}.
(170)

However, even in such a simple case not all of the above
integrals can be calculated fully analytically, so we still need
to struggle with the numerical integration. A little bit more
difficult is the differentiation of the master integral with respect
to the nonlinear parameters. For example, the derivative over
w3 is obtained from the special forms of the two identities
which were derived in the previous sections:

Ě1 = −w2
1 r

∂f (4)

∂w3
− 2w2

1
∂f (3)

∂w3
(r)

−∂�1

∂w3
rf ′′(r) − ∂�1

∂w3
f ′(r)

−∂�2

∂w3
rf (r) + ∂U (r)

∂w3
= 0, (171)

Ě2 = w2
1

∂f (4)

∂w3
+ 1

2

∂�1

∂w3
f ′′(r)

+1

2

∂�2

∂w3
f (r) + V (r) = 0. (172)
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We take the combination (Ě1 + r Ě2) to cancel out the term
∂f (4)

∂w3
and solve the resulting equation against ∂f (3)

∂w3
:

∂f (3)

∂w3
= 1

2w2
1

[
∂U (r)

∂w3
+ rV (r) − ∂�1

∂w3
f ′(r)

− 1

2

∂�1

∂w3
rf ′′(r) − 1

2

∂�2

∂w3
rf (r)

]
. (173)

This equation needs now to be antidifferentiated three times to
give

∂f

∂w3
= 1

2w2
1

{
∂U (−3)(r)

∂w3
+ rV (−3)(r) − 3V (−4)(r)

−∂�1

∂w3
f (−2)(r) − 1

2

∂�1

∂w3
[rf (−1)(r) − 3f (−2)(r)]

− 1

2

∂�2

∂w3
[rf (−3)(r) − f (−4)(r)]

}
. (174)

The antiderivatives of the master integral are obtained by
consecutive antidifferentiation of the expression

w2
1rf

(4)(r) + 2w2
1f

(3)(r) = U (r),

e.g., f (−1)(r) = rf (r) − U (−4)(r)

w2
1

. (175)

Higher-order derivatives with respect to the nonlinear param-
eters are obtained using the same procedure, albeit E1 and E2

need to be differentiated an arbitrary number of times with
respect to u2,u3,w2,w3 before putting �1 = 0 and �2 = 0.

D. Vanishing �2
1 − 4w2

1�2 coefficient

In the special case �2 = ( �1
2w1

)2 two pairs of roots of the
σ polynomial [Eqs. (25) and (31)], lying on the same side of
the complex plane coincide, so that σ = w2

1(t2 + �1

2w2
1
)2. As

a result, the homogeneous differential equation (54) can be
brought into the form

w2
1Â[rÂfH (r)] = 0, (176)

where Â is a differential operator defined as

Â = ∂2

∂r2
− q2, (177)

with q2 = − �1

2w2
1
. Equation (176) can be solved by decompos-

ing it into a system of two second-order differential equations:

w2
1Â [rh(r)] = 0, (178)

ÂfH (r) = h(r). (179)

The first of these equations has the form rh′′(r) + 2h′(r) −
rq2h(r) = 0, so that the general solution is

h(r) = C1
eqr

r
+ C2

e−qr

r
, (180)

and Eq. (179) takes the form

f ′′
H (r) − q2fH (r) = C1

eqr

r
+ C2

e−qr

r
. (181)

The latter equation is solved with elementary methods. Finally
we conclude that Eq. (176) has four linearly independent

solutions that can be chosen as

e−qr , eqr , e−qr Ei[2qr] − eqr ln[2qr],

and eqr Ei[−2qr] − e−qr ln[2qr]. (182)

The solution of the inhomogeneous differential equation takes
the form analogous to Eq. (101). Similarly, Eqs. (105)–(107)
are the derivatives of the master integral with respect to r .

Since D0 = �2
1 − 4w2

1�2 appears in the denominator in
nearly all recursion relations derived for the general case
they become invalid here. However, this problem can be
circumvented by using the same trick as in the �2 = 0 case,
namely solving the system of Eqs. (141)–(144) with respect
to ∂f ′

∂w3
and performing consecutive antidifferentiations. Since

the derivation is exactly the same as in the Sec. VII A there is
little point in repeating it here.

VIII. NUMERICAL EXAMPLES

In this section we present results of calculations on the
representative set of master integrals with some hand-picked
values of the nonlinear parameters. We implemented a general
code that is able to calculate the values of the master integral
with arbitrarily chosen nonlinear parameters. The code is
written in the C programming language and all the calculations
were performed in the quadruple arithmetic precision using the
GCC Libquadmath library. A handful of the results presented
here were additionally checked using an independent program
written in MATHEMATICA with the octuple arithmetic precision.
Comparison with the results obtained in the extended precision
shows that calculations performed in quadruple precision,
using 101 points of the Tanh-Sinh quadrature [126,127] for
all numerical integrations, gave an accuracy of at least long
double precision (around 20 significant digits) and much better
on the average.

It is easy to verify that for the calculation of the master
integral one can also use a different procedure, based on the
series expansion of exp(−w1r12) around w1 = 0 under the sign
of the integral in Eq. (8). Since the latter expansion is uniformly
convergent for any positive value of w1 one can perform term
by term integration what leads to the identity

f0(r; w1) =
∞∑

n=0

fn(r; 0)
(−1)nwn

1

n!
. (183)

The above series is convergent for any value of w1 and
gives exactly the same numerical result as Eq. (101). The
prescription for how to calculate the integrals with an arbitrary
power of r12 but w1 = 0, fn(r; 0), was recently presented by
means of the open-ended recursion relation (cf. Eq. (48) of
Ref. [44]). Therefore, Eq. (176) is an interesting alternative
to the analytical equation derived in the previous section. It is
worth considering in detail how fast the above series expansion
converges for a given value of w1 and how many terms are
necessary to obtain long double precision which one can easily
get by using Eq. (101) throughout. To make such a comparison
possible, we implemented the mentioned recursion relation to
advance the power of r12 in fn(r; 0) as much as necessary in the
MATHEMATICA package. However, the first problem encoun-
tered was the numerical stability of this recursion. Although the
starting values for the recursion were computed in the octuple
arithmetic precision, after n = 75 steps only few digits were
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TABLE I. Comparison of the values of the master integral
with u2 = w2 = 1, u3 = w3 = 2, w1 = 1.0 calculated according
to Eqs. (176) and (101). Calculations performed for r = 2.
[k] denotes 10k .

Expansion length f (r) value

10 2.385 283 238 131 237 790 81 [−04]
20 2.391 211 576 428 702 083 23 [−04]
30 2.391 211 701 580 610 513 14 [−04]
40 2.391 211 701 582 629 801 40 [−04]
50 2.391 211 701 582 629 832 84 [−04]
60 2.391 211 701 582 629 832 84 [−04]
70 2.391 211 701 582 629 832 84 [−04]
75 2.391 211 701 582 629 832 84 [−04]
Eq. (101) 2.391 211 701 582 629 832 84 [−04]

estimated to be correct. Therefore, it is rather pointless to go
beyond this value of n. On the other hand, further extension of
the arithmetic precision which is already two times bigger than
for calculations based on Eq. (101) will slow down the code
dramatically and make it inferior to the numerical integration
approach. In Tables I–V we present a comparison of the values
of the master integral obtained according to the Eq. (176)
with different expansion lengths and obtained by numerical
integration in Eq. (101). We have chosen representative values
of the nonlinear parameters (u2 = w2 = 1, u3 = w3 = 2)
which were kept fixed and we have varied the value of w1

to examine the behavior of the expansion Eq. (176) with
increasing w1. We see that for w1 = 1 series expansion defined
by Eq. (176) converges fast and smoothly towards the correct
value and only a few tens of terms are necessary to obtain
the long double precision result. An even better behavior is
met for lower values of w1. However, when w1 increases
beyond one the convergence of Eq. (176) deteriorates and
even for w1 = 1.5 as much as 75 terms of the expansion are
not enough to obtain a reliable precision of 21 significant digits.
For w1 = 2.5 only three significant digits are recovered after
75 terms and for w1 = 3.0 the series converges so badly that
no useful information about the value of the master integral
is obtained after 75 terms. Moreover, the result for w1 = 3.0
is clearly wrong since by a simple inspection of Eq. (8) we
observe that the value of the master integral is always positive.

TABLE II. Comparison of the values of the master integral
with u2 = w2 = 1, u3 = w3 = 2, w1 = 1.5 calculated according
to Eqs. (160) and (101). Calculations performed for r = 2.
[k] denotes 10k .

Expansion length f (r) value

10 1.329 520 816 045 925 011 91 [−04]
20 1.631 282 021 221 431 126 08 [−04]
30 1.631 651 606 696 872 148 17 [−04]
40 1.631 651 950 791 715 159 95 [−04]
50 1.631 651 951 100 638 063 39 [−04]
60 1.631 651 951 100 914 576 99 [−04]
70 1.631 651 951 100 914 825 55 [−04]
75 1.631 651 951 100 914 825 78 [−04]
Eq. (101) 1.631 651 951 100 914 825 97 [−04]

TABLE III. Comparison of the values of the master inte-
gral with u2 = w2 = 1, u3 = w3 = 2, w1 = 2.0 calculated accord-
ing to Eqs. (176) and (101). Calculations performed for r = 2.
[k] denotes 10k .

Expansion length f (r) value

10 −3.630 119 046 255 042 455 73 [−04]
20 1.070 421 921 389 016 547 74 [−04]
30 1.173 671 324 160 235 219 71 [−04]
40 1.175 380 214 096 797 535 24 [−04]
50 1.175 407 461 586 619 038 54 [−04]
60 1.175 407 894 643 606 977 59 [−04]
70 1.175 407 901 555 664 109 29 [−04]
75 1.175 407 901 658 970 039 51 [−04]
Eq. (101) 1.175 407 901 668 450 706 30 [−04]

Although a simple comparison provided in the above clearly
shows that the numerical integration approach is superior
compared to the series expansion method, we must admit that
the numerical integration has its own problems. They appear
for small values of w1, say, lower than 0.2. In this regime,
the integrands in Eq. (101) vanish slowly and significant
contribution to the value of the master integral comes from the
large r ′ in integration over the interval [r, + ∞]. The treatment
of such situations requires an efficient matching of the series
expansion around 0 with the asymptotic expansions of the
functions Li(r). Moreover, for large r ′ accurate calculation
of Wi(r ′) becomes difficult because significant loss of digits
occurs due to the subtraction of two near-equal numbers.
Therefore, we believe that the most efficient method of
calculation of the master integral will be a suitable union
of the two algorithms described here. Series expansion is
to be used for small w1, where it converges fast and only
a handful of terms is required to obtain desired accuracy.
For larger w1 numerical integration is superior and is able
to provide arbitrary accuracy. In Table VI we additionally
listed values of the master integral with some combinations
of the nonlinear parameters corresponding to the general case
without comparing them to the series expansion method.

Special cases of the master integral were implemented
separately, taking advantage of the fact that Li(r) functions are
expressed in terms of known special functions. All necessary

TABLE IV. Comparison of the values of the master inte-
gral with u2 = w2 = 1, u3 = w3 = 2, w1 = 2.5 calculated accord-
ing to Eqs. (176) and (101). Calculations performed for r = 2.
[k] denotes 10k .

Expansion length f (r) value

10 −3.963 824 548 353 598 661 93 [−03]
20 −7.394 533 803 914 365 183 95 [−04]
30 −3.922 534 357 111 556 877 31 [−05]
40 6.940 930 190 407 504 160 82 [−05]
50 8.555 013 409 879 120 834 54 [−05]
60 8.793 765 644 766 649 249 36 [−05]
70 8.829 222 228 539 903 511 31 [−05]
75 8.837 871 552 224 364 384 80 [−05]
Eq. (101) 8.835 455 860 398 344 467 78 [−05]
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TABLE V. Comparison of the values of the master integral
with u2 = w2 = 1, u3 = w3 = 2, w1 = 3.0 calculated according
to Eqs. (176) and (101). Calculations performed for r = 2.
[k] denotes 10k .

Expansion length f (r) value

10 −2.285 092 132 216 817 479 00 [−02]
20 −2.902 204 388 154 522 817 70 [−02]
30 −2.770 162 995 062 714 932 55 [−02]
40 −2.546 625 633 397 138 405 90 [−02]
50 −2.333 510 298 021 168 682 89 [−02]
60 −2.147 292 702 104 883 235 95 [−02]
70 −2.198 741 099 645 234 679 27 [−02]
75 −2.192 990 423 157 987 209 06 [−02]
Eq. (101) 3.896 924 382 867 342 390 05 [−06]

special functions were implemented using Chebyshev interpo-
lation method. In Table VII we give examples of the values of
the master integral in one important special case corresponding
to the exponential version of the symmetric James-Coolidge
basis set, namely u2 = u3 = w2 = w3 = x with an arbitrary
value of w1 and x (vanishing �2 coefficient).

IX. OUTLINE FOR THE FUTURE

In this paper we introduced an explicitly correlated basis
set for state-of-the-art ab initio calculations for diatomic
molecules and reported analytical formulas ready to apply for
all molecular integrals appearing in the nonrelativistic calcu-
lations. While a physical application of the theory presented
here will be reported soon, we would like to stress that our
theoretical results will find several important applications.

First of all, the Slater geminal basis is expected to improve
the convergence of molecular calculations on two-electron
diatomic molecules by several orders of magnitude. With the
advent of new experimental tools that allow measurements of
the dissociation energy of H2 with an astonishing accuracy of
10−4 cm−1 [128] and with the announcements that this level
of accuracy will be improved by two orders of magnitude,
new molecular calculations will be necessary to reproduce the
experimental data. Especially important in this respect will be
the calculation of the relativistic integrals in the basis of the
Slater geminals. We expect that the accuracy of the relativistic

TABLE VI. Examples of the values of the master integral with
u2 = w2 = x, u3 = w3 = y calculated according to Eq. (101). The
symbol [k] denotes the powers of 10, 10k .

w1 x y r f (r) value

2.0 2.0 3.0 2.0 1.201 629 296 541 321 185 57 [−06]
2.0 2.0 3.0 6.0 1.856 901 834 734 240 180 70 [−15]
3.0 2.0 3.0 4.0 2.546 518 235 628 700 248 18 [−11]
3.0 2.0 3.0 1.0 1.270 207 041 003 930 246 56 [−04]
2.0 2.5 1.5 5.0 5.468 451 264 859 307 911 42 [−11]
2.0 2.5 1.5 10.0 1.230 852 624 131 342 228 73 [−11]
5.0 1.0 3.5 1.0 1.348 628 792 547 450 383 43 [−04]
5.0 1.0 3.5 3.0 1.124 458 143 821 066 488 15 [−08]
8.0 2.0 4.0 1.0 1.120 127 360 296 310 672 77 [−05]
8.0 2.0 4.0 0.5 2.734 827 621 588 948 643 78 [−04]

TABLE VII. Examples of the values of the master integral with
u2 = w2 = u3 = w3 = x, calculated according to Eq. (140). The
symbol [k] denotes the powers of 10, 10k .

w1 x r f (r) value

1.0 1.0 1.0 1.703 125 280 928 411 227 96 [−02]
1.0 2.0 1.0 1.014 022 114 173 744 267 56 [−03]
1.0 3.0 1.0 8.004 150 114 345 362 264 69 [−05]
3.0 1.0 1.0 5.951 801 370 434 581 206 93 [−03]
3.0 2.0 1.0 4.274 030 135 492 893 397 48 [−04]
3.0 3.0 1.0 3.729 764 549 603 920 888 36 [−05]
1.0 1.0 6.0 7.056 468 173 179 733 644 15 [−07]
1.0 2.0 6.0 1.844 671 299 421 804 291 18 [−12]
1.0 3.0 6.0 6.550 119 462 337 850 009 32 [−18]
3.0 1.0 6.0 1.434 427 682 763 861 672 06 [−07]
3.0 2.0 6.0 4.476 440 831 180 785 306 69 [−13]
3.0 3.0 6.0 1.768 710 162 179 272 839 12 [−18]

corrections reported in Ref. [129], computed in the basis of
explicitly correlated Gaussian geminals, can be improved by
a few orders of magnitude. Also, the QED effects could be
accounted for in a more accurate way to produce not only
state-of-the-art estimates of the dissociation energy, but also
of the rotational and vibrational spacings [130].

The second important application of the theory presented
above is the numerical calculation of the integrals in the
basis set of Slater orbitals for diatomic molecules. While
the theoretical background was introduced by Pachucki in
2009 [44], his algorithms for certain classes of integrals turned
out to be inefficient for practical implementation. Using the
geminal recursion relations and putting the exponent in the
correlation factor w1 equal to zero, one obtains much simpler
and numerically more convenient recursion relations.

Also worth mentioning are the calculations of the rela-
tivistic integrals in the basis set of the Slater orbitals for
diatomic molecules. At present, no ab initio program for
molecular calculations has available all integrals appearing
in the Breit-Pauli theory, even in the Gaussian basis set. We
plan to apply our theory to the expressions for the most difficult
class involving the r−2

12 factor and perform actual calculations
with just one numerical integration in one dimension. In this
way, accurate calculations of the fine and hyperfine structure
of diatomics will become possible.

Finally, the basis set of the Slater geminals can be used
in the explicitly correlated MBPT/CC theories, thus greatly
improving the accuracy of the present approaches based on the
Gaussian orbitals and linear or exponential correlation factors.
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APPENDIX A: MATRIX ELEMENTS OF THE KINETIC
ENERGY OPERATOR

Let us consider the two-center two-electron Schödinger
Hamiltonian:

Ĥ = −1

2
∇2

1 − 1

2
∇2

2 − ZA

r1A

− ZA

r2A

− ZB

r1B

− ZB

r2B

+ 1

r12
+ 1

r
,

(A1)

where ZK denotes the nuclear charge of the nucleus K and
the notation for the other quantities is the same as in Eq. (7).
The basis functions are of the form (6). The overlap integrals
between these basis functions and the matrix elements of
the nuclear attraction and electronic repulsion operators are
obviously expressed through the integrals from the family (7)
with proper powers of riK and r12. The only difficulty is to
express the matrix elements of the kinetic energy operator
through the integrals (7). Let us introduce a shorthand notation
that will be used throughout this Appendix:

|ijkln〉 = ri
1Ar

j

1Brk
2Arl

2Brn
12e

−u3r1A−u2r1B−w2r2A−w3r2B−w1r12

= ϕij (1)ϕkl(2)rn
12e

−w1r12 . (A2)

Our derivation was inspired by the procedure given by Kołos
et al. [25,26]. In fact, their result is the w1 = w′

1 = 0 limit of
our equation. The matrix element is transformed as

〈ijkln| − ∇2
1 |i ′j ′k′l′n′〉

=
∫

d3r2 ϕkl(2) ϕk′l′(2)
∫

d3r1 ∇1
[
ϕij (1)rn

12e
−w1r12

]
·∇1

[
ϕi ′j ′ (1)rn′

12e
−w′

1r12
]
, (A3)

where the Green’s theorem was used. Let us now consider only
the integration over the coordinates of the first electron. For
simplicity we consider the case n = n′ = 0. The general form
of the matrix element will then be obtained by differentiating
n times with respect to w1 and n′ times with respect to w′

1

and multiplying by the factor (−1)n+n′
. The latter integral is

rewritten as∫
d3r1 ∇1[ϕij (1)e−w1r12 ] · ∇1[ϕi ′j ′ (1)e−w′

1r12 ]

=
∫

d3r1

(
[∇1ϕij (1)][∇1ϕi ′j ′ (1)]e−(w1+w′

1)r12

+w1w
′
1ϕij (1)ϕi ′j ′(1)e−(w1+w′

1)r12

+ 1

w1 + w′
1

{w′
1[∇1ϕij (1)]ϕi ′j ′(1)

+w1ϕij (1)[∇1ϕi ′j ′ (1)]}[∇1e
−(w1+w′

1)r12 ]

)

=
∫

d3r1

(
w1w

′
1ϕij (1)ϕi ′j ′(1)e−(w1+w′

1)r12

− 1

w1 + w′
1

{w′
1[�1ϕij (1)]ϕi ′j ′(1)

+w1ϕij (1)[�1ϕi ′j ′ (1)]}e−(w1+w′
1)r12

)
, (A4)

where the Green’s theorem was used in the last step to remove
the gradient operator working on terms containing the r12

factor. The equation for the Laplacian of the ϕij (1) is rather
straightforward to derive and the final result is

�1ϕij (1) = i(i + j + 1)ϕi−2,j (1) + j (i + j + 1)ϕi,j−2(1)

+ (
u2

3 + u2
2

)
ϕij (1) − u3

(
i + j

2
+ 2

)
ϕi−1,j (1)

−u2

(
j + i

2
+ 2

)
ϕi,j−1(1) − r2ijϕi−2,j−2(1)

+ 1

2
iu2r

2ϕi−2,j−1(1) + 1

2
ju3r

2ϕi−1,j−2(1)

+u2u3[ϕi+1,j−1(1)+ϕi−1,j+1(1)−r2ϕi−1,j−1(1)]

− 1

2
iu2ϕi−2,j+1(1) − 1

2
ju3ϕi+1,j−2(1). (A5)

By inserting the formulas (A4) and (A5) into Eq. (A3) one
arrives at

〈ijkl0| − ∇2
1 |i ′j ′k′l′0〉 = w1w

′
1〈ijkl0|i ′j ′k′l′0〉 − w′

1

w1 + w′
1

[
i(i + j + 1)〈i − 2,jkl0|i ′j ′k′l′0〉

+ j (i + j + 1)〈ij − 2,kl0|i ′j ′k′l′0〉 + (u2
3 + u2

2)〈ijkl0|i ′j ′k′l′0〉
− u3

(
i + j

2
+ 2

)
〈i − 1,jkl0|i ′j ′k′l′0〉 − u2

(
j + i

2
+ 2

)
〈ij − 1,kl0|i ′j ′k′l′0〉

− r2ij 〈i − 2,j − 2,kl0|i ′j ′k′l′0〉 + 1

2
iu2r

2〈i − 2,j − 1,kl0|i ′j ′k′l′0〉

+ 1

2
ju3r

2〈i−1,j−2,kl0|i ′j ′k′l′0〉+u2u3〈i+1,j−1,kl0|i ′j ′k′l′0〉+u2u3〈i − 1,j + 1,kl0|i ′j ′k′l′0〉

− r2u2u3〈i − 1,j − 1,kl0|i ′j ′k′l′0〉− 1

2
iu2〈i−2,j+1,kl0|i ′j ′k′l′0〉− 1

2
ju3〈i+1,j−2,kl0|i ′j ′k′l′0〉

]

− w1

w1 + w′
1

[
i ′(i ′ + j ′ + 1)〈ijkl0|i ′ − 2,j ′k′l′0〉 + j ′(i ′ + j ′ + 1)〈ij,kl0|i ′j ′ − 2,k′l′0〉

+ (
u′2

3 + u′2
2

) 〈ijkl0|i ′j ′k′l′0〉 − u′
3

(
i ′ + j ′

2
+ 2

)
〈ijkl0|i ′ − 1,j ′k′l′0〉

− u′
2

(
j ′ + i ′

2
+ 2

)
〈ijkl0|i ′j ′ − 1,k′l′0〉 − r2i ′j ′〈ijkl0|i ′ − 2,j ′ − 2,k′l′0〉
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+ 1

2
i ′u′

2r
2〈ijkl0|i ′ − 2,j ′ − 1,k′l′0〉 + 1

2
j ′u′

3r
2〈ijkl0|i ′ − 1,j ′ − 2,k′l′0〉

+ u′
2u

′
3〈ijkl0|i ′+1,j ′−1,k′l′0〉+u′

2u
′
3〈ijkl0|i ′−1,j ′ + 1,k′l′0〉 − r2u′

2u
′
3〈ijkl0|i ′ − 1,j ′ − 1,k′l′0〉

− 1

2
i ′u′

2〈ijkl0|i ′ − 2,j ′ + 1,k′l′0〉 − 1

2
j ′u′

3〈ijkl0|i ′ + 1,j ′ − 2,k′l′0〉
]
, (A6)

where the notation 〈ijkl0|i ′j ′k′l′0〉 was used to designate
ordinary overlap integrals which belong to the integral family
(7). The above equation is already symmetric with respect
to the interchange of primed and nonprimed indices. It is
noteworthy that the singularity appearing when w1 = w′

1 = 0
is only apparent. It can easily be removed by taking first
the limit w′

1 → w1 and then putting w1 = 0. To obtain the
most general matrix element of the kinetic energy operator,
〈ijkln| − ∇2

1 |i ′j ′k′l′n′〉, one needs to differentiate Eq. (A6)
with respect to w1 and w′

1. This differentiation is easily carried
out explicitly with any symbolic mathematical program.
The resulting formulas are quite compact and make their
direct implementation straightforward. On the other hand, by
multiplying both sides of Eq. (A6) by w1 + w′

1 and performing
consecutive differentiation, it is quite easy to derive a recursion
relation that connects the values of 〈ijkln| − ∇2

1 |i ′j ′k′l′n′〉
with different n and n′. However, this recursion is inherently
unstable with the increasing n and n′, and can be considered
inferior to the approach based on the analytical equations, at
least for larger n and n′.

APPENDIX B: ANALYTICAL FORMULAS FOR
THE FUNCTIONS W (r) AND V (r)

In this Appendix we list explicit analytical formulas for the
functions W (r; w1,u2,u3,w2,w3) and V (r; w1,u2,u3,w2,w3),
which are defined as the inverse Laplace transforms in
Eqs. (52) and (53), respectively. We would like to stress that
in the formulas given below all the terms proportional to the
Dirac δ distribution or its derivatives were omitted. This can
be done because for r > 0 these terms never contribute to the
values of the master integral derivatives calculated from the
recursion relations presented in the text. However, the missing
terms can be recovered by taking the Laplace transform of
the listed equations and comparing with the proper analog
of Eq. (26). This can easily be done by using any symbolic
mathematical package.

The function W (r) takes the form

W (r) =
6∑

i=1

Wi(r), (B1)

with

W1(r) = w1e
−r(u2+w1+w2)

(
1

r2
+ u2 + w1 + w2

r

)
, (B2)

W2(r) = w1e
−r(u3+w1+w3)

(
1

r2
+ u3 + w1 + w3

r

)
, (B3)

W3(r) = w1w2
(
u2

2 − w2
3

) + u2
2w

2
2 − u2

3w
2
3

(w1 + w2)2 − w2
3

1

r
[e−r(u2+w2+w1) − e−r(u2+w3)]

+ w1(w1 + w2)

(w1 + w2)2 − w2
3

1

r3
{−e−r(u2+w3)[2 + 2r(u2 + w3) + r2(u2 + w3)2]

+ e−r(u2+w2+w1)[2 + 2r(u2 + w2 + w1) + r2(u2 + w2 + w1)2]}, (B4)

W4(r) = w1w3
(
u2

3 − w2
2

) + u2
3w

2
3 − u2

2w
2
2

(w1 + w3)2 − w2
2

1

r
[e−r(u3+w3+w1) − e−r(u3+w2)]

+ w1(w1 + w3)

(w1 + w3)2 − w2
2

1

r3
{−e−r(u3+w2)[2 + 2r(u3 + w2) + r2(u3 + w2)2]

+ e−r(u3+w3+w1)[2 + 2r(u3 + w3 + w1) + r2(u3 + w3 + w1)2]}, (B5)

W5(r) = w1u2
(
w2

2 − u2
3

) + u2
2w

2
2 − u2

3w
2
3

(u2 + w1)2 − u2
3

1

r
[e−r(u2+w2+w1) − e−r(u3+w2)]

+ u2
2 − u2

3 + u2w1

(u2 + w1)2 − u2
3

1

r3
{e−r(u3+w2)[2 + 2r(u3 + w2) + r2(u3 + w2)2]

−e−r(u2+w2+w1)[2 + 2r(u2 + w2 + w1) + r2(u2 + w2 + w1)2]}, (B6)

052513-20



ANALYTICAL TWO-CENTER INTEGRALS OVER SLATER . . . PHYSICAL REVIEW A 86, 052513 (2012)

W6(r) = w1u3
(
u2

2 − w2
3

) + u2
2w

2
2 − u2

3w
2
3

−(u2 + w1)2 + u2
2

1

r
[e−r(u3+w3+w1) − e−r(u2+w3)]

+ u2
2 − u2

3 − u3w1

−(u3 + w1)2 + u2
2

1

r3
{e−r(u2+w3)[2 + 2r(u2 + w3) + r2(u2 + w3)2]

−e−r(u3+w3+w1)[2 + 2r(u3 + w3 + w1) + r2(u3 + w3 + w1)2]}. (B7)

Let us denote the permutation u2 ↔ w3, u3 ↔ w2 by P12 and the permutation u2 ↔ u3, w2 ↔ w3 by PAB . The reason for
adopting such a notation becomes clear when one considers the symmetries of the master integral. Calculation of W (r) is
simplified by the relations

PABW1(r) = W2(r), PABW3(r) = W4(r), PABW5(r) = W6(r), (B8)

so that the programming effort is halved. Further simplifications occur after observing, for instance, that

e−r(u3+w2)

r3
[2 + 2r(u3 + w2) + r2(u3 + w2)2] = ∂2

∂r2

[
e−r(u3+w2)

r

]
(B9)

so that in the implementation one can concentrate on the calculation of the derivatives of the quantities like e−ar/r since any
derivative of W (r) with respect to the nonlinear parameters and r is expressed through them.

The explicit form of V (r) is expressed conveniently as

V (r) = V1(r) + V2(r) + V3(r) + c̄1V4(r) + c̄2V5(r), (B10)

with

V1(r) = e−r(u3+w2+w1)

r

(
w2

1 − u2
3 − u3w3

) + e−r(u3+w2)

r

(−w2
1 + u2

3 − u2w3
)

+ u3w3
e−r(u2+w2)

r
+ u2w3

e−r(u2+w2+w1)

r
, (B11)

V2(r) = w1w3
(
u2

3 − w2
2

) + u2
3w

2
3 − u2

2w
2
2

(w1 + w3)2 − w2
2

1

r
[e−r(u3+w3+w1) − e−r(u3+w2)]

+ w1(w1 + w3)

(w1 + w3)2 − w2
2

1

r3
{−e−r(u3+w2)[2 + 2r(u3 + w2) + r2(u3 + w2)2]

+ e−r(u3+w3+w1)[2 + 2r(u3 + w3 + w1) + r2(u3 + w3 + w1)2]}, (B12)

V3(r) = w1w3
(
w2

2 − u2
3

) + w2w3
(
u2

3 − u2
2 + w2

1

)
(w1 + w2)2 − w2

3

1

r
[e−r(u2+w2+w1) − e−r(u2+w3)]

− w1w3

(w1 + w2)2 − w2
3

1

r3
{−e−r(u2+w3)[2 + 2r(u2 + w3) + r2(u2 + w3)2]

× e−r(u2+w2+w1)[2 + 2r(u2 + w2 + w1) + r2(u2 + w2 + w1)2]}, (B13)

V4(r) = e−r(u2+w3) {−Ei [−r (w1 + u3 − u2)] + Ei [−r (u3 − u2 − w3 + w2)]

− Ei [−r (w1 − w3 + w2)]} − er(u2+w3)Ei [−r (u2 + u3 + w2 + w3)]

+e−r(u2+w3)ln

∣∣∣∣ (w1 + w2 − w3) (w1 − u2 + u3) (u2 + u3 + w2 + w3)

(w1 + w2 + w3) (u2 + u3 + w1) (u2 − u3 − w2 + w3)

∣∣∣∣ , (B14)

V5(r) = er(w3−u2)Ei [−r (w1 + w2 + w3)] + er(u2−w3)Ei [−r (w1 + u2 + u3)] , (B15)

and

c̄1 = 1
2

[
u2

(
w2

1 − w2
2 + w2

3

) + w3
(
u2

2 − u2
3 + w2

1

)]
, (B16)

c̄2 = 1
2

[
u2

(
w2

1 − w2
2 + w2

3

) − w3
(
u2

2 − u2
3 + w2

1

)]
. (B17)

We see that the form of V2(r) and V3(r) is analogous to
the Wi(r), i = 3,6. Similarly, V4(r) and V5(r) are expressed

through the same combinations of functions as U3(r) and
U2(r), respectively. The only difference is that some terms
contribute with the sign reversed. Since the form of U1(r)
is relatively simple and straightforward to implement, arbi-
trary derivatives of the function V (r) can be computed by
using a proper union of the algorithms for U (r) and W (r)
functions.
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APPENDIX C: AUXILIARY RECURSION RELATIONS

In this Appendix we list formulas for the derivatives of ∂f

∂w3

and ∂f

∂w1
over r up to the third order which result from the

solution of the set of equations for Ei and Ei , i = 1,5. Higher-
order derivatives can be obtained by successive differentiation
of the geminal differential equation:

∂f ′

∂w3
= �1

2
(
4w2

1 �2 − �2
1

) {
−2rV (r) − 2

∂U (r)

∂w3
+ ∂�2

∂w3
rf (r) + ∂�1

∂w3
[2f ′(r) + rf ′′(r)]

}

+ w2
1

4w2
1 �2 − �2

1

{
−8V ′(r) − 2rV ′′(r) − 2

∂U ′′(r)

∂w3
+ ∂�2

∂w3
rf ′′(r) + ∂�1

∂w3
[2f (3)(r) + rf (4)(r)]

}
, (C1)

∂f ′′

∂w3
= �1

2
(
4w2

1 �2 − �2
1

) {
−2V (r) − 2rV ′(r) − 2

∂U ′(r)

∂w3
+ ∂�2

∂w3
[rf ′(r) + f (r)] + ∂�1

∂w3
[rf (3)(r) + 3f ′′(r)]

}

+ w2
1

4w2
1 �2 − �2
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{
−10V ′′(r) − 2rV (3)(r) − 2

∂U (3)(r)

∂w3
+ ∂�2

∂w3
[rf (3)(r) + f ′′(r)] + ∂�1
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[rf (5)(r) + 3f (4)(r)]
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, (C2)
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∂w3
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∂w3
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2
(
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∂w3
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}
, (C3)
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2
(
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}
, (C4)
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1

4w2
1 �2 − �2

1
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+ ∂�2
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∂w3
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}
, (C5)
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= − �2
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1
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−2rW (r) − 2

∂U (r)

∂w1
+ ∂�2
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[rf ′′(r) + 2f ′(r)] + 4w1[2f (3)(r) + rf (4)(r)]

}

− �1

2
(
4w2

1 �2 − �2
1

) {
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∂w1
+ ∂�2

∂w1
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}
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