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Calculation of parity nonconservation in xenon and mercury
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We use configuration interaction technique to calculate parity nonconservation in metastable Xe and Hg
[proposal of the experiment in L. Bougas et al., Phys. Rev. Lett. 108, 210801 (2012)]. Both nuclear-spin-
independent and nuclear-spin-dependent (dominated by the nuclear anapole moment) parts of the amplitude are
considered. The amplitudes are strongly enhanced by the proximity of states of opposite parity.
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I. INTRODUCTION

The study of parity nonconservation (PNC) in atoms is
a low-energy, relatively inexpensive alternative to the high-
energy search for new physics beyond the standard model
(see, e.g., [1–3]). For example, PNC in cesium is currently
the best low-energy test of the electroweak theory [1,3]. This
is due to the high accuracy of the measurements [4] and
their interpretation [5] (see also [6]). Since the cesium result
is unlikely to be significantly improved, the focus of PNC
study in atoms has shifted to two important areas: (i) PNC
measurements for a chain of isotopes and (ii) measurements of
the nuclear anapole moment (see, e.g., [3]). Most of current or
planed PNC experiments in atoms consider both possibilities.

Experiments are in progress at Berkeley for Dy and Yb
atoms [7,8], at TRIUMF for Rb and Fr atoms [9,10], and
at Groningen (KVI) for Ra+ ions [11]. There was an an
interesting recent suggestion to measure PNC in metastable
Xe and Hg [12]. In the present paper we support this proposal
by atomic calculations.

The advantages of using Xe and Hg for measurements of
PNC in a chain of isotopes and measurements of anapole
moments include (i) the large number of stable isotopes of
both atoms (maximal difference in number of neutrons is
�N = 12 for Xe and �N = 8 for Hg); (ii) the presence of
two stable isotopes for each of the atoms with nonzero nuclear
spin (129Xe, I = 1/2; 131Xe, I = 3/2; 199Hg, I = 1/2; 201Hg,
I = 3/2)—these isotopes are suitable for anapole moment
measurements; and (iii) PNC amplitudes in Xe and Hg atoms
are enhanced due to the high nuclear charge and strong mixing
with close states of opposite parity.

An extra advantage comes from the fact that xenon and
mercury nuclei with nonzero spin have a valence neutron,
therefore nuclear anapole measurements will provide the
strength constant for the neutron-nucleus PNC potential. The
anapole moment so far has been measured only for 133Cs [4],
which has a valence proton. The data for xenon and mercury
would be complementary to those obtained for cesium.

In the present work we use the configuration interaction (CI)
technique to calculate the nuclear-spin-independent (SI) PNC
amplitudes caused by the weak nuclear charge and nuclear
spin-dependent (SD) PNC amplitudes dominated by nuclear
anapole moments. The result is presented in a convenient form
as the sum of two contributions for different hyperfine structure
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components. This would allow the extraction of both the value
and the sign of anapole moments by comparing the measured
amplitudes with the calculated ones.

II. GENERAL FORMALISM

The Hamiltonian describing parity-nonconserving
electron-nuclear interaction can be written as the sum of
the nuclear SI and nuclear SD parts (we use atomic units:
h̄ = |e| = me = 1):

HPNC = HSI + HSD

= GF√
2

(
−QW

2
γ5 + κ

I
α I

)
ρ(r), (1)

where GF ≈ 2.2225 × 10−14 a.u. is the Fermi constant of the

weak interaction, QW is the nuclear weak charge, α = ( 0 σ
σ 0 )

and γ5 are the Dirac matrices, I is the nuclear spin, and
ρ(r) is the nuclear density normalized to 1. The strength of
the spin-dependent PNC interaction is proportional to the
dimensionless constant κ, which is to be found from the
measurements. There are three major contributions to κ,
arising from (i) electromagnetic interaction of atomic electrons
with the nuclear anapole moment [13], (ii) electron-nucleus
SD weak interaction [14], and (iii) the combined effect of
SI weak interaction and magnetic hyperfine interaction [15]
(see also [1]). In this work we do not distinguish different
contributions to κ and present the results in terms of total κ,
which is the sum of all possible contributions.

Within the standard model the weak nuclear charge QW is
given by [16]

QW ≈ −0.9877N + 0.0716Z. (2)

Here N is the number of neutrons, and Z is the number of
protons.

The PNC amplitude of an electric dipole transition between
states of the same parity |i〉 and |f 〉 is equal to

E1PNC
fi =

∑
n

[ 〈f |d|n〉〈n|HPNC|i〉
Ei − En

+ 〈f |HPNC|n〉〈n|dq |i〉
Ef − En

]
,

(3)

where d = −e
∑

i r i is the electric dipole operator. To extract
from the measurements the parameter of the nuclear SD
weak interaction κ, one needs to consider PNC amplitudes
in specific hyperfine structure components of the initial versus
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the final state. These amplitudes can be expressed as

E1PNC
fi = (−1)Ff −Mf

(
Ff 1 Fi

−Mf q Mi

)
〈Jf Ff ||dPNC||JiFi〉.

(4)

Here F = J + I , where I is nuclear spin. Detailed expres-
sions for the reduced matrix elements of the SI and SD PNC
amplitudes can be found, e.g., in Refs. [17] and [18]. For the
SI amplitude we have

〈Jf ,Ff ||dSI||Ji,Fi〉

= (−1)I+Fi+Jf +1
√

(2Ff + 1)(2Fi + 1)

{
Ji Jf 1
Ff Fi I

}

×
∑

n

[ 〈Jf ||d||n,Jn〉〈n,Jn||HSI||Ji〉
Ei − En

+ 〈Jf ||HSI||n,Jn〉〈n,Jn||d||Ji〉
Ef − En

]

≡ c(Ff ,Jf ,Fi,Ji)E
′
fi. (5)

Here c(Ff ,Jf ,Fi,Ji) is the angular coefficient and the sum
over n, E′

fi, does not depend on Ff or Fi :

E′ =
∑

n

[ 〈Jf ||d||n,Jn〉〈n,Jn||HSI||Ji〉
Ei − En

+ 〈Jf ||HSI||n,Jn〉〈n,Jn||d||Ji〉
Ef − En

]
. (6)

For the SD PNC amplitude we have

〈Jf ,Ff ||dSD||Ji,Fi〉
= GF√

2
κ

√
(I + 1)(2I + 1)(2Fi + 1)(2Ff + 1)/I

×
∑

n

[
(−1)Jf −Ji

{
Jn Ji 1

I I Fi

} {
Jn Jf 1

Ff Fi I

}

× 〈Jf ||d||n,Jn〉〈n,Jn||αρ||Ji〉
En − Ei

+ (−1)Ff −Fi

{
Jn Jf 1

I I Ff

}{
Jn Ji 1

Fi Ff I

}

× 〈Jf ||αρ||n,Jn〉〈n,Jn||d||Ji〉
En − Ef

]
. (7)

The PNC amplitude between different hfs components of the
initial and final states can be presented in the form

EPNC(F1,F2) = c(F1,F2)E′Qw[1 + R(F1,F2)κ], (8)

where c is an angular coefficient and R is the ratio of SD-to-SI
PNC amplitudes.

If at least two PNC amplitudes E1 and E2 are measured,
then the value of κ can be expressed via the measured ratio of
the amplitudes E1/E2 and the calculated ratios R of the SD
and SI PNC amplitudes.

E1 = c1E
′QW (1 + R1κ), E2 = c2E

′QW (1 + R2κ), (9)

κ = c1/c2 − E1/E2

R2E1/E2 − R1c1/c2
. (10)

The ratios R1 and R2 are much less sensitive to numerical
uncertainties than each of the SD and SI PNC amplitudes [19].

III. CALCULATIONS

Calculations for xenon and mercury were performed with
the use of the CI method. We treat Hg as an atom with two
valence electrons and Xe as an atom with six valence electrons.
Calculations for Hg are very similar to what we did before for
Hg [20] and Yb [21]. We use the V N−2 approximation in
which the initial Hartree-Fock procedure is done for the Hg2+
ion. The complete set of single-electron orbitals is constructed
using the B-spline technique [22]. Core-valence correlations
are included by adding the second-order correlation potential
�̂ to the CI Hamiltonian in the framework of the CI + MBPT
method [23]. The accuracy of the energies is further improved
by rescaling the core-valence correlation operator � (see [20]
and [21] for details). The rescaling coefficients are λs = 0.82
for s states and λp = 0.9 for p states. The calculated energies
and g factors of mercury are presented in Table I together
with the corresponding experimental numbers. The g factors
are useful for the identification of states. The accuracy of the
calculated energies is within 1% for the majority of states. It
is not perfect in spite of the fitting because we use only two
fitting parameters for all states.

A similar approach for xenon is problematic due to the
larger number of valence electrons. We treat all 5p electrons
as valence ones, so that the total number of valence electrons
is six. Using the same technique as for Hg would lead to
a very large CI matrix. It was suggested in [12] that the
hole-particle formalism can be used for calculation of the
electron structure of xenon. In this case only two active
particles enter the CI calculations and the calculations might
not be more complicated than for mercury. This assumes that
only single excitations are allowed from the 5p subshell.
However, in our experience double excitations are also impor-
tant. Inclusion of double excitations within the hole-particle
formalism hugely complicates the problem. Therefore, we use
a simpler approach. We use standard CI technique for six
valence electrons. The initial Hartree-Fock procedure is done
for neutral xenon (the V N approximation). Single-electron
basis states above the core are calculated as the Hartree-Fock
states in the V N−1 potential of the frozen core. Many-electron
basis states for the CI calculations are formed by allowing
single and double excitations from the 5p subshell to the states
above the core.

Accurate treatment of the core-valence correlations for
xenon within the CI + MBPT method is problematic due to

TABLE I. Energy levels (in cm−1) and g factors of low states of
mercury. States considered for PNC transitions are labeled A and B.

Calculations Experiment

Configuration State Energy g Energy g

6s2 1S0 0 0.000 0 0.000
6s6p

A1
3P o

0 38 202 0.000 37 645 0.000
A2

3P o
1 39 955 1.480 39 412 1.486

A3
3P o

2 44 812 1.500 44 043 1.501
B 1P o

1 53 584 1.020 54 069 1.015
6s7s 3S1 61 879 2.000 62 350 2.003

1S0 63 399 0.000 63 928 0.000
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TABLE II. Energy levels (in cm−1) and g factors of low states of
xenon. States considered for the PNC transition are labeled A and B.

Calculations Experiment

Configuration J Energy g Energy g

5p6 0 0 0.000 0 0.000
5p56s

A 2 64 680 1.500 67 068 1.501
1 66 089 1.214 68 046 1.206
0 74 844 0.000 76 197 0.000

B 1 75 999 1.314 77 186 1.321
5p56p 1 76 083 1.853 77 270 1.852

1 77 914 1.024 78 957 1.022

the large contribution of the subtraction diagrams [23]. On the
other hand, the core-valence correlations are relatively small
for xenon compared to the valence-valence correlations due to
the large number of valence electrons. Therefore, they can be
included approximately.

To simulate the effect of core-valence correlations we
include in the CI Hamiltonian the core polarization potential

δV = − αc

a4 + r4
, (11)

where αc is the polarizability of the core and a is a cutoff
parameter. We use a = aB and treat αc as a fitting parameter.
This allows us to fit the energy interval �E = 84 cm−1

between state B and a close state of the same total momentum
J and opposite parity belonging to the 5p56p configuration.
This is important because the PNC amplitude is very sensitive
to this energy interval. We use αc = 0.554 a.u. for s states of
valence electrons and αc = 0 for other states.

The results for energies and g factors of xenon are presented
in Table II. Note that the accuracy is similar to what we have
for mercury. This is because the the core-valence correlations
are strong for mercury; they are significantly stronger than the
correlations between two valence electrons. This is a limitation
factor for the accuracy of the calculation. In contrast, the core-
valence correlations are low for xenon.

A. Dalgarno-Lewis method for matrix elements

To calculate PNC amplitude we need to calculate matrix el-
ements between many-electron states and perform summation
over the complete set of many-electron basis states [see, e.g.,
(6) and (7)]. We use the random phase approximation [24,25]
for the matrix elements and the Dalgarno-Lewis method [26]
for the summation.

Matrix elements are given by

E1vw = 〈	v||f̂ + δVf ||	w〉, (12)

where δV is the correction to the core potential due to the core
polarization by an external field f̂ . In the present calculations f̂

represents either the external electric field, SI weak interaction,
or SD PNC interaction.

Summation over the complete set of many-electron states
is reduced to calculation of the correction δ	v to the many-
electron wave function of state v due to the weak interaction

perturbation HPNC. Then the PNC amplitude is given by

Avw = 〈δ	v||d||	w〉. (13)

The correction δ	v is found by solving the system of linear
inhomogeneous equations

(Ĥ eff − Ev)δ	v = −(ĤPNC + δVPNC)	v. (14)

The proposal in [12] considers PNC transitions between the
exited states A and B in Hg and Xe (see Tables I and II). The
upper state B in both atoms is very close to another state of
the same total momentum J but opposite parity. The interval
is 8282 cm−1 for Hg and only 84 cm−1 in Xe. This is a strong
advantage of using these transitions from the experimental
point of view because the proximity of states of the same
total angular momentum but opposite parity leads to strong
enhancement of the PNC amplitude. On the other hand, this
is a complication from the theoretical point of view. The PNC
amplitudes are sensitive to small energy intervals where a small
error in the calculated energy of the states can lead to a large
error in the value of the PNC amplitude. To get around this
problem we use a stabilizing procedure which consists of the
following steps. First, we use the procedure described above
[see Eqs. (13) and (14)] without modifications. Then we repeat
the calculations applying the orthogonality conditions for δ	B

to a close state of the same J and parity. The contribution
of the close state is found by comparing the two results. Finally,
this contribution is added back to the PNC amplitude with the
rescaling parameter �Etheor/�Eexpt.

The procedure described above corresponds to the exact
fitting of the energy denominators in (6) and (7). Therefore,
the same results should be obtained if the important energy
intervals are fitted exactly by rescaling the correlation potential
�̂ (for Hg) or polarization potential δV (for Xe). This is another
important test which we used in the calculations.

B. Accuracy of the calculations

The accuracy of similar calculations for two-valence-
electron atoms Hg and Yb were discussed in detail in our earlier
works [20,21,27]. It was demonstrated that the accuracy for
transition amplitudes and polarizabilities is on the level of 5%.
Note that the PNC amplitude is a second-order effect similar to
the polarizability but with one electric dipole operator replaced
by a weak interaction. In the present work we assume the
same 5% uncertainty for the PNC effect in mercury. This is
supported by the study of the limitation factors which are
discussed below.

The uncertainty for xenon is higher due to the larger number
of valence electrons, which makes it difficult to saturate
the basis. We assume a 10% uncertainty which comes from
comparing the results obtained with two different basis sets,
the B-spline basis set and the Hartree-Fock basis set.

The main factor limiting the accuracy of the calculations of
PNC amplitudes in xenon and mercury is the proximity of the
levels of the same total momentum J and opposite parity.
These states are mixed by weak interaction and the small
energy interval between them leads to a stong enhancement of
the PNC effect. This is one of the main reasons for the choice
of atoms and transitions. However, it represents a challenge
for the calculations. Even a small theoretical error in the
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energies of the mixed states can lead to a large error in the
PNC amplitude. There are two ways around this problem. One
is to fit the energy interval exactly. Another is to isolate the
resonant contribution from the rest of the amplitude and to
rescale it to the correct energy interval. We did both things for
xenon and found that they give the same results. Therefore,
for mercury we just fit the energies. As long as the problem of
small energy intervals is understood and properly dealt with,
it does not contribute much to the uncertainty of the results.

Another important limitation factor for xenon, which is
harder to deal with, is the large number of valence electrons.
It was suggested in Ref. [12] that xenon can be treated as a
system with one electron and one hole in the 5p subshell.
This would make it a two-particle system similar to mercury.
However, this approach assumes that only single excitations
from the 5p subshell are considered. In our experience full
saturation of the basis is not possible without the inclusion of
double and maybe even triple excitations. This would lead to
a CI matrix of extremely large size. Probably, this can be done
with the use of supercomputers. Another open question for
xenon is whether and how to include core-valence correlations.
Incomplete saturation of the basis is the main source of the
uncertainty of the present calculations for xenon.

Saturation of the basis is not a problem for mercury when
it is considered as a system with two valence electrons.
However, here we have another problem: strong core-valence
correlations. The outermost subshell of the mercury core,
5d, is strongly mixed with the valence 6s electrons. This is
evident from the presence in the discrete spectrum of mercury
states with excitations for the 5d subshell. The core-valence
correlations are included in the present work with the use of the
second-order correlation operator �̂. Probably the correlations
are too strong to be treated accurately within the second-order
approach. The answer may come from the use of some all-order
technique similar to what was recently developed in Ref. [28].

Even though some improvement in the accuracy of the
calculations is possible, there is little chance that it will
ever match the accuracy for cesium [5]. Therefore the main

focus of the PNC study in Xe and Hg should be directed at
measurements of the anapole moments and the study of the
ratio of PNC effects in different isotopes.

IV. RESULTS AND DISCUSSION

The calculated nuclear SI PNC amplitude for Xe (z
component) is

EPNC(A → B) = 1.76 × 10−10(−QW/N)ieaB. (15)

The SI PNC amplitudes for Hg are

EPNC(A1 → B) = 2.09 × 10−10(−QW/N )ieaB,

EPNC(A2 → B) = 1.77 × 10−10(−QW/N )ieaB, (16)

EPNC(A3 → B) = 1.25 × 10−10(−QW/N )ieaB.

The difference in the value of the PNC amplitude for different
isotopes is mostly due to the different value of the weak nuclear
charge QW . Therefore, the amplitudes (15) and (16) may be
used for any isotope.

Detailed data on both SD and SI PNC amplitudes for
isotopes with nonzero nuclear spin are presented in Table III
for Xe and Table IV for Hg.

A. M1 amplitudes

The experimental proposal [12] is aimed at the mea-
surement of PNC optical rotation. The angle of rotation is
proportional to the ratio R = Im(EPNC/M1). Therefore, we
need to know the values of the magnetic dipole amplitudes
for the transitions proposed for PNC measurements. The most
accurate values of the M1 amplitudes can be found analytically
using experimental values of the magnetic g factors to find the
coefficients for configuration mixing.

This is especially important for the case of mercury, where
numerical calculations of the M1 amplitudes give unstable
results. The reason for this instability is easy to understand.
The transitions considered for PNC measurements in mercury
are between states of different spin (S = 1 for states A1,2,3

TABLE III. PNC amplitudes (z components) for |5p56s2 2[3/2]o2,F1〉 → |5p56s 2[1/2]o1,F2〉 transitions in 129Xe and 131Xe. I is the nuclear
spin, F = J + I . E′ is given by (6).

E′ PNC amplitude

A I (units of 10−10iea0) F1 F2 (units of E′QW ) (units of 10−10iea0)

129 1/2 3.16 3/2 1/2 (1/3)(1 + 0.0387κ) 1.05(1 + 0.0387κ)

3/2 3/2 −1/
√

(50)(1 + 0.010κ) −0.45(1 + 0.010κ)

5/2 3/2
√

(2/25)(1 − 0.0226κ) 0.89(1 − 0.0226κ)

131 3/2 3.25 1/2 1/2 −1/
√

18(1 + 0.0345κ) −0.766(1 + 0.0345κ)

1/2 3/2 −1/
√

90(1 + 0.0252κ) −0.343(1 + 0.0252κ)

3/2 1/2 1/
√

18(1 + 0.0282κ) 0.766(1 + 0.0282κ)

3/2 3/2 −√
8/125(1 + 0.0189κ) −0.822(1 + 0.0189κ)

3/2 5/2 −1/
√

375(1 + 0.0034κ) −0.178(1 + 0.0034κ)

5/2 3/2
√

7/125(1 + 0.0083κ) 0.769(1 + 0.0083κ)

5/2 5/2 −√
3/70(1 − 0.0072κ) −0.673(1 − 0.0072κ)

7/2 5/2
√

2/35(1 − 0.0220κ) 0.777(1 − 0.02204κ)
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TABLE IV. PNC amplitudes (z components) for |6s6p 3Po
J ,F1〉 → |6s6p 1Po

1,F2〉 transitions in 199Hg and 201Hg. I is the nuclear spin,
F = J + I . E′ is given by (6).

E′ PNC amplitude

A I J (units of 10−10iea0) F1 F2 (units of E′QW ) (units of 10−10iea0)

199 1/2 0 3.41 1/2 1/2 (1/3)(1 + 0.0084κ) 1.14(1 + 0.0084κ)

1/2 3/2 −√
2/9(1 − 0.0042κ) −1.61(1 − 0.0042κ)

1 5.31 1/2 1/2
√

2/27(1 + 0.0538κ) 1.44(1 + 0.0538κ)

1/2 3/2
√

1/27(1 − 0.0860κ) 1.02(1 − 0.0860κ)

3/2 1/2
√

1/27(1 + 0.0308κ) 1.02(1 + 0.0308κ)

3/2 3/2 1/
√

6(1 − 0.0105κ) 2.17(1 − 0.0105κ)

2 3.71 3/2 1/2 (1/3)(1 + 0.0381κ) 1.24(1 + 0.0381κ)

3/2 3/2 −1/
√

50(1 + 0.0471κ) −0.525(1 + 0.0471κ)

5/2 3/2
√

2/25(1 − 0.0264κ) 1.05(1 − 0.0264κ)

201 3/2 0 3.47 3/2 1/2 (1/3)(1 + 0.0069κ) 1.16(1 + 0.0069κ)

3/2 3/2 1/
√

5(1 + 0.0028κ) 1.55(1 + 0.0028κ)

3/2 5/2 −√
2/15(1 − 0.0041κ) −1.27(1 − 0.0041κ)

1 5.40 1/2 1/2 −1/
√

54(1 + 0.0171κ) −0.735(1 + 0.0171κ)

1/2 3/2
√

5/54(1 + 0.00362κ) 1.64(1 + 0.00362κ)

3/2 1/2
√

5/54(1 + 0.0419κ) 1.64(1 + 0.0419κ)

3/2 3/2
√

2/75(1 + 0.0607κ) 0.882(1 + 0.0607κ)

3/2 5/2 (1/5)(1 − 0.0515κ) 1.08(1 − 0.0515κ)

5/2 3/2 (1/5)(1 + 0.0122κ) 1.08(1 + 0.0122κ)

5/2 5/2 1/
√

6(1 − 0.0103κ) 2.20(1 − 0.0103κ)

2 3.78 1/2 1/2 −1/
√

18(1 + 0.0385κ) −0.890(1 + 0.0385κ)

1/2 3/2 −1/
√

90(1 + 0.0414κ) −0.398(1 + 0.0414κ)

3/2 1/2 1/
√

18(1 + 0.0240κ) 0.890(1 + 0.0240κ)

3/2 3/2 −√
8/125(1 + 0.0269κ) −0.956(1 + 0.0269κ)

3/2 5/2 −1/
√

375(1 + 0.0318κ) −0.195(1 + 0.0318κ)

5/2 3/2
√

7/125(1 + 0.00286κ) 0.894(1 + 0.00286κ)

5/2 5/2 −√
3/70(1 + 0.00774κ) −0.782(1 + 0.00774κ)

7/2 5/2
√

2/35(1 − 0.0260κ) 0.903(1 − 0.0260κ)

and S = 0 for state B). This means that the M1 amplitudes
between these states vanish in the nonrelativistic limit. In
relativistic calculations the amplitudes are not 0, but low. These
small values are obtained as a result of strong cancellation
between different contributions. This stong cancellation leads
to unstable results.

On the other hand, analytical evaluation of the M1 ampli-
tudes is simple and produces very accurate results. The oper-
ator of the magnetic dipole transition [Mz = (Lz + 2Sz)μB]
has no radial part and cannot change a principal quantum
number in the nonrelativistic limit. Therefore, the magnetic
g factors and M1 amplitudes are mainly sensitive to the
mixing of states belonging to the same configuration. Mixing
with other configurations normally produces corrections at the
10−3 level [29]. We can see this in Tables I and II, where g

factors of “pure” sp states with J = 2 and the sum of the
g factors for mixed states J = 1 differ from the experimental
values by less than 0.1%. Therefore, the mixing coefficients for
states belonging to the same configuration and M1 amplitudes

can be found almost exactly from the known values of the g

factors. Note that we use the calculated value of the overlap
between the radial wave functions p1/2 and p3/2, which is
close, but not equal, to 1. For Hg it is 0.988.

We get, for states A and B of xenon,

	A = |5p3/26s〉,
	B = 0.05|5p3/26s〉 + 0.999|5p1/26s〉. (17)

This leads to the M1 amplitude

M1AB = 1.22μB = 0.00446eaB. (18)

Using E′ from Table III we get R = 7.1(7)(35) × 10−8 for
129Xe and R = 7.3(7) × 10−8 for 131Xe. Here we assume a
10% uncertainty as discussed above. These values of M1 and
R are close to, but not in perfect agreement with, what was
found in Ref. [12]: M1 = 0.0042eaB , R = 11(3) × 10−8. The
reason for the difference in M1 is not clear. The authors of
Ref. [12] use slightly different coefficients of configuration
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TABLE V. Magnitudes of the M1 and PNC amplitudes (reduced matrix elements) and ratios R ≡ Im(EPNC/M1) for 3PJ –1P1 transitions in
mercury. Values for M1 from Ref. [12] are also presented for comparison.

M1 amplitude Im(EPNC) R

This work Ref. [12] 199Hg 201Hg 199Hg 201Hg

Transition (units of 10−4eaB ) μB (units of 10−4eaB ) μB (units of 10−10eaB ) (units of 10−7)

3P o
0 –1P o

1 8.37 0.229 14 0.384 3.4(2) 3.5(2) 4.1(2) 4.2(2)
3P o

1 –1P o
1 7.26 0.199 42 1.15 5.3(3) 5.4(3) 7.3(4) 7.4(4)

3P o
2 –1P o

1 9.94 0.272 57 1.56 3.7(2) 3.8(2) 3.7(2) 3.8(2)

mixing in (17). Their values are 0.062 and 0.998. However, if
we use these coefficients, we get M1 = 0.00444eaB , which
is different from the value M1 = 0.0042eaB presented in
Ref. [12].

The situation is more complicated for mercury. All the M1
transitions of interest happen between states with different
total spins and vanish in the nonrelativistic limit since the
operator Lz + 2Sz conserves the total spin. This leads to
strong suppression. The values of M1 amplitudes presented
in Ref. [12] are too large for the spin-forbidden transitions. No
choice of the configuration mixing coefficients can reproduce
them.

The wave functions for states A1,2,3 and B for Hg have the
form

	A1 = |6p1/26s〉,
	A2 = 0.432|6p3/26s〉 − 0.902|6p1/26s〉,
	A3 = |6p3/26s〉, (19)

	B = 0.902|6p3/26s〉 + 0.432|6p1/26s〉.
The coefficients 0.902 and 0.432 are chosen to fit the
experimental g factors of states A2 and B. When projections
are included, all |2S+1PJJz

〉 states of the 6s6p configuration
can be written as

∣∣A1: 3P o
00

〉 = − 1√
2

[∣∣6s 1
2

1
2
6p 1

2 − 1
2

〉 − ∣∣6s 1
2 − 1

2
6p 1

2
1
2

〉]
,

∣∣A2: 3P o
11

〉 = −0.216
∣∣6s 1

2
1
2
6p 3

2
1
2

〉
+ 0.374

∣∣6s 1
2 − 1

2
6p 3

2
3
2

〉 + 0.902
∣∣6s 1

2
1
2
6p 1

2
1
2

〉
,∣∣A3: 3P o

22

〉 = ∣∣6s 1
2

1
2
6p 3

2
3
2

〉
, (20)∣∣B: 1P o

11

〉 = −0.451
∣∣6s 1

2
1
2
6p 3

2
1
2

〉
+ 0.781

∣∣6s 1
2 − 1

2
6p 3

2
3
2

〉 − 0.432
∣∣6s 1

2
1
2
6p 1

2
1
2

〉
.

Here we use (19) for the expansion. The results for M1 am-
plitudes obtained with the use of these formulas are presented
in Table V together with the values from Ref. [12]. Note that
there must be M1 	 μB for spin-forbidden transitions. This

holds for the results of the present work but not for the results
in Ref. [12]. Table V also presents the PNC amplitudes and
the ratios R = Im(EPNC/M1). The numbers include 5% error
bars according to the estimated uncertainty of the calculations
discussed in Sec. III B. Note that the values of the M1
amplitudes obtained in the present work are practically exact
due to the fitting of the experimental g factors.

The values of the ratios R are larger than in Ref. [12] due
to the lower M1 amplitudes. The values of R for mercury are
about an order on magnitude larger than those for xenon (see
above) and about an order of magnitude larger than those for
Tl, Pb, and Bi [30–32].

B. Optical rotation

The angle of optical rotation is given by [33]

φPNC = −4πl

λ
[n(ω) − 1] R, (21)

where l is the path length in vapor, λ is the wavelength of laser
light, ω is its frequency, and n(ω) is the refractive index due
to absorption. Although the angle is proportional to the ratio
R = Im(EPNC/M1), the low values for the M1 amplitudes
do not necessarily translate into a large angle of rotation.
This is because the refractive index also depends on the M1
amplitude, n(ω) − 1 ∼ |M1|2, which leads to φ ∼ M1EPNC.
However, the suppression due to the low M1 amplitude can
be compensated at a sufficiently high vapor pressure by the
appropriate choice of the path length l. These questions are
discussed in detail in Ref. [33]. Here we just note that the
angle of rotation per unit length is φ ∼ M1EPNC. However,
the angle of rotation per absorption length φ ∼ R and it is
large for small M1.
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