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Electrostatic patch effects in Casimir-force experiments performed in the sphere-plane geometry
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Patch potentials arising from the polycrystalline structure of material samples may contribute significantly to
measured signals in Casimir force experiments. Most of these experiments are performed in the sphere-plane
geometry; yet, up to now all analysis of patch effects has been taken into account using the proximity force
approximation which, in essence, treats the sphere as a plane. In this paper we present the exact solution for
the electrostatic patch interaction energy in the sphere-plane geometry and derive exact analytical formulas for
the electrostatic patch force and minimizing potential. We perform numerical simulations to analyze the distance
dependence of the minimizing potential as a function of patch size, and we quantify the sphere-plane patch force
for a particular patch layout. Once the patch potentials on both surfaces are measured by dedicated experiments
our formulas can be used to exactly quantify the sphere-plane patch force in the particular experimental situation.
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I. INTRODUCTION

In distinction to what one is taught in introductory physics
courses, the surfaces of real metals are not equipotentials but
are rather described by a locally varying surface voltage,
known simply as patch potentials. Patch potentials exist
for several reasons. One is that the work function of a
crystalline structure depends upon which crystallographic
plane an electron is extracted from [1,2]. Real metal surfaces
are typically composed of a network of crystallites with
random crystallographic orientations, thereby giving rise to
a nonuniform potential over the metal’s surface. In addition,
surface contamination by adsorbates is well-known experi-
mentally [3–6] and theoretically [7] to lead to changes in the
work function. Even for monocrystaline surfaces a spatially
varying potential has been observed [8]. Patch potentials have
important implications in various experimental disciplines,
including gravitational measurements on elementary charged
particles [9], tests of the general theory of relativity [10–13],
ion trapping [14–16], and the physics of Rydberg atoms [8,17].
In this paper we focus on the effects that electrostatic patches
can have on measurements of the Casimir force [18–23].

Most Casimir force measurements to date have been
performed in the sphere-plane geometry in order to skirt
alignment difficulties. The electrostatic interaction is used to
calibrate the system and to determine the absolute separation
between the sphere and the plane. In the idealized case of
equipotential surfaces, i.e., no patches on the surfaces, the
exact analytical expression for the sphere-plane electrostatic
force (the Coulomb force) is well known [24], valid for
arbitrary values of the ratio D/R, where D is the sphere-plane
separation and R is the radius of the sphere. In typical
experiments D/R � 1, and the exact expression reduces to
its proximity force approximation (PFA). This approximation
replaces the sphere by infinitesimal planar surface elements
and computes the electrostatic force by adding plane-plane
contributions, as if they were independent. For nonequipo-
tential surfaces PFA has also been used to compute the
electrostatic patch force between the sphere and the plane
[18,19,22,23]. A further assumption in the computation of

patch effects has been the ergodic hypothesis, which assumes
that the actual realization of patches on both surfaces can be
well represented by statistical properties of their sizes, shapes,
and voltages. Since the sphere has a compact cross section the
sphere-plane interaction can be characterized by an effective
area of interaction, and the ergodic hypothesis is expected to be
satisfied when there are many patches within the interaction
area, thereby providing a fair representation of the patches’
statistical properties.

The main goal of this paper is to derive the exact analytical
expression for the sphere-plane electrostatic patch force which
to the best of our knowledge has not yet been reported in the
literature. Previous theoretical [19,21,22] and experimental
[25,26] works have used PFA to address the implications of
patch potentials on the electrostatic calibration process for
Casimir force measurements. In this paper we also address
the same issue using our exact expression for the sphere-plane
electrostatic patch force.

Measurements of the Casimir force between vacuum-
separated bodies rely on an electrostatic calibration which is
performed by sweeping through various values of an externally
applied potential between the bodies. This procedure generates
a parabolic force curve as a function of applied voltage, the
minimum of which identifies the minimizing potential. In the
absence of patches, the minimizing potential is independent of
D, and an external voltage equal to the minimizing potential
allows for the nullification of all electrostatic forces. However,
when patches are present this is no longer the case. As we show
below using our exact expression for the sphere-plane patch
force, the presence of patches on the samples implies that
there is no external voltage that can nullify the electrostatic
interaction—at most the force can be minimized by applying a
voltage equal to the minimizing potential. Also, the existence
of patches implies that this minimizing potential is, in general,
a function of sphere-plane distance D. However, we show that
when many patches are contained within the effective area of
interaction the spatial variation of the minimizing potential
is suppressed. In this regime the minimizing potential may
appear, in experiment, to be distance independent. Even in this
situation the residual electrostatic force is nonzero.
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With a detailed knowledge of the patch potentials on
the sphere and plane surfaces, to be provided by dedicated
ongoing and future measurements, the results contained here
can be used to exactly quantify the contribution of electrostatic
patches to measured signals in Casimir force experiments.

II. EXACT SPHERE-PLANE PATCH FORCE

We seek the solution to the boundary value problem for the
electrostatic potential V (x) in the space between the sphere
and the plane. The potential satisfies the Laplace equation

∇2V (x) = 0, (1)

subject to the following boundary conditions:

V (x)|x∈P = Vp(x), V (x)|x∈S = Vs(x). (2)

Here Vp(x) and Vs(x) are the potentials on the plane and the
sphere, respectively, and P and S denote the set of points
belonging to the plane and the sphere, respectively. Once
we have the solution for the potential we can calculate the
electric field, E = −∇V , and thus the electrostatic energy in
the sphere-plane configuration

Esp = εo

2

∫
V

d3x (∇V )2, (3)

where V denotes the volume between the sphere and the plane,
and εo is the permittivity of vacuum. Finally, the electrostatic
sphere-plane force is obtained by taking the gradient of the
energy, Fsp = +∇Esp.

In the following subsections we outline the techniques
used to arrive at the exact solution for the potential given
general electrostatic patchy boundary conditions, the resulting
interaction energy and force, and finally the minimizing
potential. To this end we make use of bispherical coordinates
[27]. The key advantages of the bispherical coordinate system
for this problem are that the Laplacian separates and the two
surfaces on which we define our boundary conditions are
described by constant coordinate surfaces.

A. Electrostatic patch energy—Bispherical coordinates

Bispherical coordinates (η,ξ,φ) can be used to label each
point in R3. The correspondence with Cartesian coordinates is
given by the following relations:

x = a sin ξ cos φ

cosh η − cos ξ
; y = a sin ξ sin φ

cosh η − cos ξ
;

z = a sinh η

cosh η − cos ξ
. (4)

See Figure 1 for a visual representation. For the sphere-plane
geometry the adoption of bispherical coordinates leads to
a significant simplification of the expression of the energy
through the use of Gauss’ divergence theorem in curvilinear
coordinates:

Esp = εo

2

∫
P
da · E(η = 0,ξ,φ)Vp(ξ,φ)

− εo

2

∫
S
da · E(η = �,ξ,φ)Vs(ξ,φ), (5)
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FIG. 1. Slice of the bispherical coordinate system along the z axis.
The solid lines are η-constant surfaces, and the dashed lines represent
ξ -constant surfaces. To span R3 the coordinate system pictured above
is rotated about the z axis; the η-constant (η �= 0) surfaces will sweep
out spheres and the ξ -constant surfaces will sweep out “apples” for
0 < ξ < π/2 and “lemons” for π/2 < ξ < π . The cross section of
the η = � surface corresponds to the sphere, and η = 0 is the plane.
The relations between the geometrical parameters D and R and the
bispherical parameters a and � are indicated in the figure.

where Eη is the η component of the electric field and
da = √

�(η)dξdφη̂ is the oriented measure for the inte-
gration over an η-constant surface. The factor

√
�(η) =

(a2 sin ξ )/(cosh η − cos ξ )2 is the square root of the deter-
minant of the metric induced on an η-constant surface. In
these coordinates it is useful to relate � (the η coordinate for
the sphere) and a (the location of the foci of the bispherical
coordinate system) to the radius of the sphere R and the
sphere-plane separation D:

cosh � = 1 + D/R,
(6)

a =
√

(D + R)2 − R2 = R sinh �.

The Laplacian of the potential in these coordinates is

∇2V = (cosh η − cos ξ )3

a2 sin ξ

[
∂

∂η

(
g(η,ξ )

∂V

∂η

)

+ ∂

∂ξ

(
g(η,ξ )

∂V

∂ξ

)
+ g(η,ξ )

sin2 ξ

∂2V

∂φ2

]
, (7)

where g(η,ξ ) = sin ξ/(cosh η − cos ξ ). By making the ansatz
V = √

cosh η − cos ξH (η)
(ξ )�(φ) the Laplace equation
separates,

sin2 ξ
H ′′(η)

H (η)
+ � ′′(φ)

�(φ)
− 1

4
sin2 ξ

+ sin ξ cos ξ

′(ξ )


(ξ )
+ sin2 ξ


′′(ξ )


(ξ )
= 0. (8)

To arrive at this equation we have divided through by
csc2(ξ )(cosh η − cos ξ )5/2H (η)
(ξ )�(φ). Each of the func-
tions 
(ξ ), H (η), and �(φ) can be solved for by separation of
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variables giving the following general solution:

V (η,ξ,φ) =
√

cosh η − cos ξ

∞∑
l=0

l∑
k=−l

eikφP k
l (cos ξ )[Alke

λlη + Blke
−λlη], (9)

where λl = l + 1/2, and Akl and Bkl are constants to be determined by the boundary conditions on the potential. The function
P k

l is the associated Legendre polynomial [28].
The expansion coefficients are obtained by using the orthonormality properties of the eigenfunctions which serve as the basis

for V (η,ξ,φ). By imposing the boundary conditions (2), we find the exact solution for the electrostatic potential with general
patchy boundary conditions on the sphere and the plane, namely,

V (η,ξ,φ) =
∞∑

=0

∑
k=−

λ

2π
(−1)k

∫ 2π

0
dφ′

∫ π

0
dξ ′ sin ξ ′eik(φ−φ′)P k

 (cos ξ )P −k
 (cos ξ ′)

×
[√

cosh η − cos ξ

cosh � − cos ξ ′
sinh λη

sinh λ�
Vs(ξ

′,φ′) −
√

cosh η − cos ξ

1 − cos ξ ′
sinh λ(η − �)

sinh λ�
Vp(ξ ′,φ′)

]
. (10)

Using Eq. (10) the general expression for the electrostatic energy of the sphere-plane system can be written by noting that the η

component of the electric field is Eη = −a−1(cosh η − cos ξ ) ∂
∂η

V (η,ξ,φ), where we have used the expression for the gradient in
curvilinear coordinates. By combining the result for Eη with the expression for the energy (5) we find the general expression for
the electrostatic energy:

Esp = εo

2
R sinh �

∞∑
=0

∑
k=−

λ

2π
(−1)k

∫
d�

∫
d�′eik(φ−φ′)P k

 (cos ξ )P −k
 (cos ξ ′)

×
[

Vs(�)Vs(�′)√
cosh � − cos ξ

√
cosh � − cos ξ ′

(
λ coth λ� + sinh �

2(cosh � − cos ξ )

)
+ Vp(�)Vp(�′)√

1 − cos ξ
√

1 − cos ξ ′ λ coth λ�

− Vs(�)Vp(�′)√
cosh � − cos ξ

√
1 − cos ξ ′

λ

sinh λ�
− Vp(�)Vs(�′)√

1 − cos ξ
√

cosh � − cos ξ ′
λ

sinh λ�

]
. (11)

Here
∫

d� is the integration over the “solid angle”∫ π

0 dξ
∫ 2π

0 dφ sin ξ , and V (�) ≡ V (ξ,φ) in bispherical coor-
dinates.

Self-energy terms, both for the sphere and for the plane, are
contained within Eq. (11), and their expression in bispherical
coordinates can be found by taking the limit of infinite sphere-
plane separation D → ∞. We describe the calculation of these
self-energy terms in Appendix A. In order to obtain the sphere-
plane electrostatic interaction energy these self-energy terms
must be subtracted from the above expression for the energy.

B. Electrostatic patch force

We can find the sphere-plane patch force by taking the
derivative of the interaction energy with respect to the
separation, Fsp = (∂/∂D)Eint

sp . The expression for the energy in
bispherical coordinates (11) is, however, not very transparent
for computing the force. This is due to the fact that in
bispherical coordinates the sphere and plane potentials, which
prescribe our boundary conditions, are a function of the
sphere-plane separation [29]. To circumvent this complication
and to connect with the natural basis in which the patch
potentials are to be measured, we transform to the natural
coordinate system for each body. Therefore, we make the
following change of variables (see Appendix A for details
of coordinate transformations from bispherical to spherical or

polar coordinates):

∫
d� Vs(�)(. . .) →

∫
d�s Vs(�s)

sinh2 �

(cosh � + cos θ )2
(. . .),∫

d� Vp(�)(. . .) →
∫

d�p Vp(�p)
4a2

(ρ2 + a2)2
(. . .), (12)

where �s ≡ (θ,φ) are spherical coordinates on the sphere and
�p ≡ (ρ,φ) are polar coordinates on the plane. The integration

measure
∫

d�s is given by
∫ 2π

0 dφ
∫ π

0 dθ sin θ , with θ defined

as the polar angle on the sphere, and
∫

d�p = ∫ 2π

0 dφ
∫ ∞

0 dρρ,
where ρ is the radius for a polar coordinate system defined on
the plane. We can then express the sphere-plane electrostatic
interaction energy in terms of the natural basis for the two
bodies,

Esp =
∑

a,b=s,p

∫
d�a

∫
d�bVa(�a)Ea,b(�a; �b; D)Vb(�b),

(13)

where all dependence of the energy on the sphere-plane
separation is now contained in the kernels Ea,b(�a; �b; D).
Since the functions Ea,b(�a; �b; D) are complicated we place
their explicit derivations and expressions in Appendix B. By
taking the derivative of the energy equation, Eq. (13), with
respect to D, the exact electrostatic patch force between the
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sphere and the plane can now be computed as

Fsp =
∑

a,b=s,p

∫
d�a

∫
d�bVa(�a)Fa,b(�a; �b; D)Vb(�b),

(14)

where Fa,b(�a; �b; D) = (∂/∂D)Ea,b(�a; �b; D). The force
above is general for arbitrary boundary conditions on the
sphere and the plane.

It is important to emphasize that in these expressions the
origin of the polar coordinate system on the plane is assumed
to be right below the sphere, at the point of closest approach
between the two bodies. Generally, the measured electrostatic
patch potential distribution on the plane will be done with
respect to a different coordinate system, say a Cartesian system
on the plane. In this case, the appropriate change of coordinate
system on the plane must be performed prior to using Eqs. (11)
and (14).

In Appendix C we show how to obtain from our exact
expressions for the energy equation, Eq. (11), and the
force equation, Eq. (14), for patchy boundary conditions the
corresponding well-known formulas for the special case of
equipotential surfaces.

C. Minimizing potential and residual electrostatic force

As mentioned above, in most Casimir force measurements
an external voltage, V0, is applied between the two surfaces

to perform the calibration of the system. By sweeping V0

between positive and negative values, the total interaction force
(or its gradient) versus V0 is measured for fixed sphere-plane
separation D, resulting in a force “parabola” vs potential due
to the quadratic dependence of Fsp on V0. These measurements
are then repeated for each separation. The minima of each of
the parabolas defines the minimizing potential, namely,

∂Fsp

∂V0

∣∣∣∣
V0=Vmin

= 0. (15)

An explicit exact expression for the minimizing potential can
be found in this way (see also Refs. [19,22] for a similar
approach using PFA). To do so we replace in Eq. (14)
the patchy potential on the sphere Vs by V0 + Vs(�s), i.e.,
by the addition of the constant applied potential and the
nonconstant patchy one. Alternatively, we can do a similar
replacement for the patchy potential on the plane and, of
course, an identical minimizing potential is obtained. The
surface potentials on each of the objects are assumed to
fluctuate around the potential given by the average work
function of the surface material. For convenience we write the
potentials in terms of their average value and a term describing
fluctuations around zero. For example, the potential on the
sphere becomes Vs(�s) = V̄s + �Vs(�s), where V̄s denotes
the average potential and �Vs(�s) its fluctuations. By solving
Eq. (15) we find

Vmin(D) = −
∫

d�s
∫

d�′
s[V̄s + �Vs(�s)]Fs,s(�s; �′

s; D) + ∫
d�p

∫
d�s[V̄p + �Vp(�p)]Fp,s(�p; �s; D)∫

d�s
∫

d�′
sFs,s(�s; �′

s; D)

= −V̄s + V̄p −
∫

d�s
∫

d�′
s�Vs(�s)Fs,s(�s; �′

s; D) + ∫
d�p

∫
d�s�Vp(�p)Fp,s(�p; �s; D)∫

d�s
∫

d�′
sFs,s(�s; �′

s; D)︸ ︷︷ ︸
�Vmin(D)

. (16)

In the second line above the integrations against the average potentials have been done. This result can be easily understood for
the case when there are no patches altogether, �Vs = �Vp = 0. In this case the minimizing potential is the applied potential
necessary to nullify the force between an equipotential sphere and plane [see Eq. (C9)] and does not depend on D. The integrals
against the fluctuating parts of the potential above, �Vmin(D), represent a sort of weighted average of the patchy part of the
potential and are responsible for all of the spatial dependence of the minimizing potential.

In general, the minimizing potential depends on the sphere-plane separation D through the distance dependency of the kernels
Fs,s and Fp,s. This is shown explicitly in our numerical examples below, where we also discuss the special conditions under
which Vmin may appear to be distance independent even in the presence of patches. One should also note that, in general, setting
the applied potential V0 equal to the minimizing potential Vmin does not nullify the electrostatic patch contribution to the total
sphere-plane force. This can be seen by evaluating the electrostatic force at V0 = Vmin:

Fsp(V0 = Vmin) =
∑

a,b=s,p

∫
d�a

∫
d�bVa(�a)Fa,b(�a; �b; D)Vb(�b) − V 2

min

∫
d�s

∫
d�′

sFs,s(�s; �
′
s; D)

=
∑

a,b=s,p

∫
d�a

∫
d�b�Va(�a)Fa,b(�a; �b; D)�Vb(�b) − �V 2

min(D)
∫

d�s

∫
d�′

sFs,s(�s; �
′
s; D), (17)

which is generally different from zero. The second line shows that the electrostatic calibration completely eliminates the
equipotential component of the force, but does not eliminate the fluctuating part. This residual electrostatic force, together with
any other voltage-independent interactions (such as the Casimir force), make up the signal in Casimir force measurements.

The expression (17) gives the minimum magnitude that the sphere-plane electrostatic force can take for arbitrary surface
potentials �Va. Let us now consider what particular form �Va must take in order to minimize the residual force given by
Eq. (17). To do this we will take the variational derivative of Fsp(V0 = Vmin) with respect to the surface potentials and set the
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result to zero:

0 = δFsp(V0 = Vmin)

δ�Va(�a)
= 2

∑
b=s,p

∫
d�bFa,b(�a; �b; D)�Vb(�b) − 2�Vmin(D)

∫
d�s

∫
d�′

sFs,s(�s; �
′
s; D)

δ�Vmin(D)

δ�Va(�a)

= 2
∑
b=s,p

∫
d�b

[
Fa,b(�a; �b; D) −

∫
d�s

∫
d�′

sFs,b(�s; �b; D)Fs,a(�′
s; �a; D)∫

d�s
∫

d�′
sFs,s(�s; �′

s; D)

]
�Vb(�b). (18)

Since the above equation must be satisfied for all D and the
distance dependence cannot be factored out of the integral, the
function in square brackets can take on nearly any value at
each point in the integration domain. This leads to the solution
for the above integral equation �Va(�a) = 0 for which it is
easy to verify the Fsp(V0 = Vmin) = 0. Since this particular
choice for the fluctuating potentials gives the extremum for the
electrostatic force, any spatial variation of the potentials on the
surfaces leads to a nonvanishing patch force. This proves that it
is impossible to nullify the electrostatic force by an externally
applied potential when patches are present.

D. Insights on the spatial dependence of the minimizing
potential from the PFA

Before discussing the results of our numerical simulations,
we would like to give some theoretical arguments related to
the conditions under which the minimizing potential depends
on distance and to what one can infer about patches in the
cases where the minimizing potential is distance independent.
To begin let us explain the reasons why an externally applied
potential is necessary.

In Casimir force experiments there exists an intrinsic
potential difference between the samples, the contact potential,
Vcon, which is an average surface potential difference whose
physical origin is the electrical connections between the two
bodies, differences in work function between the samples, and
the presence of patches. In the following considerations we
neglect the effects from connecting wires, solder joints, etc.,
and focus entirely on the contact potential difference arising
from work function differences and patches. The contact
potential leads to electrostatic forces between the bodies
which can dominate over the desired Casimir force signal. By
applying an appropriate bias voltage (the minimizing potential)
the additional force arising from Vcon can be nullified. Thus, we
can understand the nature of the minimizing potential via its
direct relationship to Vcon. We should emphasize that this bias
voltage does not nullify the total electrostatic force, which has
components arising from fluctuating patch voltages that are
not accounted for in Vcon.

Our goal now is to try to understand the spatial dependence
of the contact potential. To do this we lay out two ideas;
the first quantifies the electrostatic sphere-plane force via
an effective area of interaction, and the second relates the
contact potential to a weighted average of patch voltages.
To begin, consider two patchy surfaces interacting within the
PFA limit, where the sphere is treated as a large but finite
plane. In distinction to the case of two infinite planes the
sphere-plane force can be characterized by an effective area
of interaction. This is not surprising given that the sphere

has a finite cross section. Within the PFA we can estimate this
effective area of interaction by equating the sphere-plane force
to the product of the plane-plane pressure and the effective area
of interaction, Fsp = PppAeff , where Fsp is the sphere-plane
force and Ppp is the plane-plane electrostatic pressure. In
the PFA limit the sphere-plane force can be approximated
by the plane-plane energy per area Epp, Fsp ≈ 2πREpp. By
noting that Epp ∼ DPpp we can solve for the effective area of
interaction giving

Aeff ∼ 2πRD. (19)

Now we connect the idea of an effective area of interaction
with the contact potential. To do so we assume that each of
the bodies are polycrystalline structures for which the work
function varies above the surface due to the different local
grain crystallographic orientation. Given the variation of the
potential over the surface we roughly identify the contact
potential with the average work function difference between
the samples observed within the effective area. Thus, we can
write the contact potential formally as

Vcon ∼
N∑
i,j

Vijwij , (20)

where the indices i and j are used to label the patches on the
surfaces, N is the number of patches within the effective area,
and wij is a normalized weight which is meant to roughly
account for the fact that patches far from the point of the
sphere and plane’s nearest approach should contribute less to
the value of the contact potential.

In order to make these assertions more precise we derive
an expression for the minimizing potential (which equals the
contact potential) within the PFA limit. We should stress that
this analysis only roughly characterizes the spatial variation
of the minimizing potential and is used here to gain physical
insight.

Our starting point is the expression for the sphere-plane
force found in Ref. [19]:

Fsp ≈ ε0

2

∫ 2π

0
dφ

∫ R

0
dρ ρ

[V0 − V (�p)]2

(D + ρ2/2R)2
, (21)

where V (�p) is the spatially varying potential difference
between the two plates, measured at the the polar coordinate
on the plane described by �p [note that V (�p) should not be
confused with the patch potential on the plane, Vp(�p)]. By
using Eq. (15) we can compute the minimizing potential [this
equation also appears in Ref. [19] see Eq. (22)]. After replacing
V (�p) with its average value and its fluctuating component,
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i.e., V (�p) = V̄ + �V (�p), we find

Vmin = V̄ +
∫ 2π

0 dφ
∫ R

0 dρ ρ
�V (�p)

(D+ρ2/2R)2∫ 2π

0 dφ
∫ R

0 dρ ρ 1
(D+ρ2/2R)2

. (22)

In order to proceed we assume that �V (�p) is a piecewise
constant function, and we prescribe the geometry of the
patches. The simplest choice for the patch layout is to break
each surface into rings centered at the point of closest approach
and then to divide each annulus into several pieces [see
Fig. 2(c)]. Adopting this prescription, evaluating the integral
in the denominator above, and using the fact that D � R, we
can write the minimizing potential as

Vmin = V̄ +
M∑
i=1

K(i)∑
j=1

∫ φj (i)

φj−1(i)

dφ

2π

∫ ρi

ρi−1

dρ

R

ρD�Vij

(D + ρ2/2R)2
. (23)

Above, the indices i and j label each of the patches, i denoting
the ring and j denoting the angular sector. The term �Vij

gives the fluctuating part of the potential which is constant
within the boundary of each patch. The total number of rings
is given by M , K(i) is the number patches in the ith ring, the
coordinates φj (i) denote the angular boundaries of the patch
sectors in the ith ring, and ρi denotes the outer radius of the
ith ring. For simplicity we consider the case where ρi = irave

and divide the ith ring into 2i − 1 equal pieces. In this way
each patch has a fixed area, πr2

ave, and our expression above for
the minimizing potential can be simplified. This discretization
of the surface certainly does not correspond precisely with
a realistic distribution of patches on the sample surfaces and
is not unique either. Despite this limitation we believe that
this crude approximation can provide some insights into the
behavior of the minimizing potential.

After applying this discretization we find the simplified
expression for the minimizing potential:

Vmin = V̄ +
M∑
i=1

2i−1∑
j=1

r2
ave

2DR
�Vij(

1 + (i − 1)2 r2
ave

2DR

)(
1 + i2 r2

ave
2DR

) , (24)

where M = R/rave (since M must be an integer one should
take M to be the floor of R/rave in numerical computations).
Since the minimizing and contact potentials are equal we can
use Eq. (24) with Eq. (20) to obtain an expression for the
weights:

wij =
r2

ave
2DR(

1 + (i − 1)2 r2
ave

2DR

)(
1 + i2 r2

ave
2DR

) . (25)

It is interesting to note that these weights are parametrized by
r2

ave/2DR, which is the ratio of the patch area to the effective
area of interaction. One can see that when many patches
fit inside the effective area of interaction, i.e., r2

ave/2DR �
1, then wij ∝ r2

ave/2DR for small i (innermost rings), and
becomes successively smaller for larger rings. At the outermost

ring wij ≈ r2
ave

2DR
4D2

R2 . Therefore, in this case, all rings contribute
to the average but their influence is suppressed for large i

as 1/i4. In comparison, when the patch area is much larger
than the effective area of interaction, i.e., r2

ave/2DR � 1, the
weight for the innermost ring is close to 1, and the weights for
all other rings are strongly suppressed, roughly proportional

to 2DR/r2
ave. Therefore, in the large patch scenario only the

patch located at the position of closest approach contributes to
the contact potential.

So far we have considered the contact potential for a fixed
microrealization of patches, meaning that the voltages and
geometry of each patch have been assigned and fixed. This is
the case one would encounter in an experiment. At this stage
our calculation cannot proceed without a direct knowledge
of the patch layout on the surfaces. However, based on the
simple arguments made above it is not hard to make some
qualitative statements about the expected sample-to-sample
fluctuations of the contact potential as a function of separation.
These arguments would apply to statistics on an ensemble of
minimizing potential measurements performed with samples
fabricated in the same way. Since the contact potential is
roughly an average, the more patches which contribute to the
average the more suppressed will be the sample-to-sample
fluctuations. This can be roughly understood because the
uncertainty in an average value scales like 1/

√
N , where N

is the number of data points used to compute the average.
Therefore, a small patch size will lead to small minimizing
potential fluctuations because more patches will determine the
contact potential. The converse is true for large patches. For
the same reasons large separations will lead to suppressed
minimizing potential fluctuations since the effective area of
interaction grows with separation. Likewise, at small separa-
tions as the ratio r2

ave/2DR becomes large one should expect
large sample-to-sample fluctuations of the contact potential.

We can make these qualitative assertions more concrete
by making statistical assumptions about the patch voltages. If
each of the potentials is assumed to be assigned randomly and
statistically independently of one another, and with the same
variance, then the expected variation of the sum on j takes the
form

∑2i−1
j=1 �Vij = ±√

2i − 1Vrms, where Vrms characterizes
the expected rms fluctuations of the assigned potential for a
single patch. This leads to the expected range of minimizing
potential values given by

V̄ ± Vrms

M∑
i=1

r2
ave

2DR

√
2i − 1[

1 + (i − 1)2 r2
ave

2DR

](
1 + i2 r2

ave
2DR

)︸ ︷︷ ︸
σVmin (D)

. (26)

Thus, in a given experiment, i.e., one microrealization of
patches, we would expect the minimizing potential to vary in
position within a few σVmin (D) of V̄ . The variation is suppressed
at large distances because averaging is performed over larger
and larger effective areas. However in the case of large patches,
r2

ave/2DR � 1, the i = 1 term in the sum dominates and the
expected variation is given roughly by Vrms.

Above we have made some rough arguments in order to
characterize the expected variation of the contact potential. We
should stress that this expected variation will tell us nothing
about the minimizing potential in a single experiment: Eq. (26)
will not yield a prediction for the minimizing potential as a
function of distance. Rather, the arguments above apply to
an ensemble of measurements of the minimizing potential for
different samples prepared in the same way. The expected
fluctuations will only tell us the envelope within which roughly
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66% of minimizing potential measurements of various samples
will lie.

The above analysis makes it clear that, in principle,
the minimizing potential always depends on distance when
patches are present. However, when the expected variation of
the contact potential is much smaller than the uncertainty in the
measurements, the minimizing potential will appear in practice
to be independent of distance. This behavior is expected when
the typical patch size is much smaller than the effective area
of interaction and, as we soon show, can be accompanied by a
nonvanishing patch force.

III. NUMERICAL RESULTS

In this section we present our numerical results for
the sphere-plane minimizing potential (16) and the residual
electrostatic force (17) for various patch sizes.

A. Minimizing potential and electrostatic patch force

To compute the minimizing potential we evaluate Eq. (16)
in several steps. First, the sphere and the plane are tesselated
(see Fig. 2), and then each patch is independently and
randomly assigned a potential from the values 5.15, 5.04,
and 5.10 V, corresponding to the work functions of the three
principal crystallographic orientations of gold [30]. For each
microrealization, defined by a given layout of potentials and
patch geometries, we compute the minimizing potential using
Eq. (16). Given an ensemble of minimizing potential “mea-
surements” we perform statistics to recover the mean value
and the expected variation. For numerical simplicity we keep
the geometry of the patch layout fixed in all microrealizations.
Another point to acknowledge is that we assume that the
average potential for the sphere and the plane are equal, as if
they are made from the same material, and therefore V̄p = V̄s.

The tesselation is performed using a ringlike division of
the sphere and the plane as is depicted in Fig. 2(a). The plane

{

Δφ

Δθ

rave

rave
ρ4

ρmax

(a) (b)

(c)

FIG. 2. (a) Illustration of the tesselation used for our simulations.
(b) Rings chosen on the sphere. (c) Patch layout on the plane. In the
numerics the parameter ρmax is chosen to be larger than 5R [although
in panel (a) ρmax ≈ R for illustration purposes]. For the PFA analysis
of the spatial dependence of the minimizing potential both plates are
tesselated as is depicted in panel (c).

is divided into annuli in the same manner described above for
the PFA treatment of the spatial dependence of the minimizing
potential. The outer radius of the ith annulus, ρi , is given by
irave and therefore the width of each annulus is given by rave.
The ith ring is divided into 2i − 1 equal pieces so that all
patches have the same area. In order to manage the computation
time we set the patch potentials to the average potential for
radii greater than ρmax, which is chosen large enough so that
all results converge. As we mentioned in our PFA analysis
above, we acknowledge that this type of tesselation of the
plane does not correspond with any realistic layout of patches
on the plane. We believe, however, that this approximation is
sufficient to gain some insight about the patch size dependence
of the force. Next, the sphere is tesselated in a similar manner
by being divided into a fixed number of latitudinal lines, any
neighboring pair subtending polar angle �θ ; afterward the
lines of longitude dividing a given ring are chosen so that
all of the patches have the same area. We chose �θ to take
the value R�θ = rave. For this particular tesselation the polar
angle describing the upper boundary of the ith ring is given
by θi = π − rave

R
i where we have chosen i = 0 to correspond

with the polar angle of the “south pole.” With the particular
choice we have adopted for the polar angles of the rings we
find the number of patches in the ith ring on the sphere is given
by |Floor[(2R2/r2

ave)(cos θi−1 − cos θi)]|.
The numerical results for the minimizing potential are

presented in Fig. 3. All of the plots employ the same
convention: the solid line denotes the average minimizing
potential as a function of distance, and the dashed lines are
computed from the standard deviations of all the minimizing
potential values at each separation. Thus, by definition, the
envelope created by the two dashed lines contains roughly 66%
of all minimizing potential measurements. The data points
indicated by the various plot markers are the values of the
minimizing potential from five random microrealizations. The
figure illustrates the spatial dependence of the minimizing
potential on patch size. In line with our PFA analysis, as
the patch size grows [from Figs. 3(a) to 3(c)] the expected
minimizing potential fluctuations are enhanced. Additionally,
for each patch size the effective area of interaction decreases as
the sphere-plane distance becomes smaller. Thus, the shorter
the distance, the fewer the patches which contribute to the
average that determines the minimizing potential, and hence
the larger are the fluctuations.

To obtain the sphere-plane electrostatic patch force Eq. (14),
we employ the tesselation described above (see Fig. 2). Once
we have an ensemble of realizations we find the average
patch force and its expected fluctuations. The results of our
simulations are depicted in Fig. 4. We also compare these
numerical results with the patch force computed by performing
an average over voltage microrealizations analytically while
keeping the patch geometrical layout fixed. To do this we
compute the two-point voltage correlation functions on the
plates, where we assume that the voltages on each patch
are statistically independent, random variables (so-called
“quasilocal correlation,” see Eqs. (10)–(12) of Ref. [23]),

〈Va(x)Vb(x′)〉v = δabV
2

rms

∑
i

�i(x)�i(x′), (27)
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FIG. 3. Minimizing potential (16) as a function of distance for
various patch sizes: (a) 100 nm, (b) 300 nm, and (c) 600 nm. The
solid curve is the average minimizing potential computed from 400
microrealizations. The dashed curves enclose the range of expected
fluctuations computed from the standard deviation of all minimizing
potential values at a fixed distance. The data points denote the
minimizing potential for five random microrealizations. The radius
of the sphere is R = 150 μm and the average potentials of the sphere,
V̄s, and the plane, V̄p, are set equal.

where the function �i(x) is 1 for points x within the ith
patch and 0 otherwise. Using this equation in Eq. (14) we
compute the ensemble-averaged patch force 〈Fsp〉v . In Fig. (4)
we compare the exact numerics with the patch force computed
via the voltage correlation method. As seen in the figure,
the agreement between the two is excellent. In the inset we
compare the residual electrostatic force (17) with the above
patch force (14). The two forces are very similar, illustrating
that the electrostatic calibration does not nullify the patch
force.
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F
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0.996

1

D Μm

F
re

si
du

al
sp

F
sp

FIG. 4. (Color online) Sphere-plane electrostatic patch force (14)
as a function of separation for different patch sizes, from top to
bottom: 600 nm (magenta), 300 nm (red), and 100 nm (blue). The
data points are the average patch force, the error bars are not visible at
the scale shown, the dashed lines are the patch force computed with
the voltage correlation method, and the solid lines denote the patch
force computed using the PFA and averaging over patch layouts and
voltages (as in Ref. [23]). Inset: Ratio of the residual force (17) to
the patch force (14) as a function of separation for different patch
sizes. From bottom to top: 600 nm (magenta), 300 nm (red), and
100 nm (blue). The radius of the sphere is R = 150 μm, the average
potentials of the sphere, V̄s, and the plane, V̄p, are set equal, and the
rms potential is Vrms = 45 mV.

B. Comparison with the PFA

Here we compare our computations of the sphere-plane
patch force using the exact expression with the results of a
previous paper [23] that used the PFA and treated the product
of surface voltages using an ensemble-averaging scheme.

As discussed in Sec. II D, the PFA to the sphere-plane
electrostatic force is

F PFA
sp = 2πREpp, (28)

where Epp is the plane-plane electrostatic interaction energy
per unit area. This is given by

Epp = − ε0

2A

∫
d2x

∫
d2x′

∫
d2k
4π2

eik·(x−x′)k

×
{

2

e2kD − 1
[V1(x)V1(x′) + V2(x)V2(x′)]

− 1

sinh kD
[V2(x)V1(x′) + V1(x)V2(x′)]

}
, (29)

where A is the area of the plates and Vi is the potential
of the ith plate. Using the same tesselation as before [as
in Fig. 2(c)] we could compute this plane-plane energy per
unit area and the PFA equivalent sphere-plane force, both for
individual microrealizations and when an ensemble averaging
is performed over the surface voltage layout. If arbitrary
tesselations could be generated numerically we could also
include a second level of ensemble averaging over patch
geometries. For simplicity we compare our exact numerics,
which uses a fixed patch layout, with the patch force computed
in Ref. [23], which used the PFA and an ensemble average over
both patch voltages and geometries.
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The solid lines in the main Fig. 4 correspond with the
patch force computed using the PFA and the two-point voltage
correlation function 〈V (x)V (x′)〉 computed with the quasilocal
correlation model (see Eqs. (2) and (14) of Ref. [23]), with the
further assumption that the distribution of patch sizes �()
defined in Eq. (13) of Ref. [23] is given by a δ function (i.e.,
single patch size). As can be seen, the results of Ref. [23]
(solid lines) are in very good agreement with the exact patch
force computation (using the particular tesselation employed
in this paper, see Fig. 2), depicted as dashed lines. The small
differences between them are attributed to the geometrical
averaging done in the latter method. Indeed, at larger distances
the shape of the individual patches becomes less important, and
hence the results of the two calculations converge to each other
(note that this is only true because, for the distances shown,
we are still well within the regime of validity for the PFA). In
addition, our results indicate that the patch force is remarkably
robust with regard to the details of the geometry of the patches.

IV. CONCLUSIONS

In this paper we derived the exact expression for the sphere-
plane electrostatic potential, interaction energy, and force for
patchy boundary conditions. With knowledge of the potentials
on the sample surfaces used in Casimir force experiments
in the sphere-plane geometry, to be measured by dedicated
experiments, these expressions can be used to exactly quantify
the sphere-plane force due to patch potentials.

As an added benefit of the exact solution we were able to
derive an exact formula for the minimizing potential used to
calibrate many Casimir force experiments. We found that when
patches are present the minimizing potential always depends
on position. However, the magnitude of the spatial fluctuations
is controlled by the ratio of the typical patch size to the effective
area of interaction. In the limit where this ratio is small
the expected spatial modulation of the minimizing potential
is suppressed, and provided that the expected variation is
smaller than the experimental uncertainty it will appear to be
independent of position. We verified this behavior numerically.
Using proximity force arguments and numerical computations
we were also able to show the following qualitative behavior:
the typical fluctuations of the minimizing potential decay as
a function of sphere-plane separation and correlate with the
typical patch size. Our PFA analysis suggests that both of
these observations can be understood in terms of a weighted
average over the patches on both surfaces. When many
patches contribute to the average (by having comparable
weights) the expected fluctuations of the minimizing potential
are suppressed. This happens when many patches fit within
the effective area of interaction. In contrast, the expected
fluctuations are greatly enhanced when the typical patch area is
comparable to the effective area of interaction, as the patch at
the point of nearest approach dominates the weighted average.

We also derived an explicit formula for the residual electro-
static force (17) that persists in Casimir force measurements
after an electrostatic calibration has been performed. By
analyzing the residual electrostatic force we proved that the
electrostatic interaction cannot be nullified by an applied field
unless there are no patches. This behavior was also verified in
our simulations.

Finally we compared our exact results with previous work
[23] that used the PFA in conjunction with an averaging
scheme for the surface voltages and patch geometries to
evaluate the sphere-plane patch force. Despite the limited
nature of the tesselations used in our simulations of the exact
patch force, we found a remarkable agreement between the two
calculations. This suggests that the sphere-plane patch force
is robust with regard to the details of the geometrical patch
layout.
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APPENDIX A: ELECTROSTATIC SELF-ENERGIES

In this Appendix we compute the large separation limit of
the electrostatic sphere-plane energy (11) in order to identify
the self-energies of the sphere and the plane in bispherical
coordinates and show that they correspond to the well-known
self-energies of each of these objects.

We start with the computation of the self-energy for the
sphere. First, we briefly recall the derivation of its electrostatic
self-energy in spherical coordinates. The electrostatic potential
for an isolated sphere of radius R with surface patch potentials
Vs(�) = Vs(θ,φ) is given by the known solution of the Laplace
equation in spherical coordinates,

V (x) =
∞∑

=0

∑
m=−

λ

2π
(−1)m

(
R

r

)+1 ∫
d�′

se
im(φ−φ′)

×P m
 (cos θ )P −m

 (cos θ ′)Vs(�
′
s). (A1)

Similar to the procedure used in the main text, we use the
Gauss divergence theorem to express the sphere self-energy as

Eself
s = −εo

2

∫
S

da · Vs(�)r̂
∂

∂r
V (x)

∣∣∣∣
r=R

, (A2)

where the integration is over the sphere’s surface. In this way
we obtain the known electrostatic self-energy of the sphere in
spherical coordinates

Eself
s = εo

2
R

∞∑
=0

∑
m=−

λ(λ + 1/2)

2π
(−1)m

∫
d�s

∫
d�′

s

× eim(φ−φ′)P m
 (cos θ )P −m

 (cos θ ′)Vs(�s)Vs(�
′
s), (A3)

where we used that λ =  + 1/2.
Next we show that by taking the large distance limit in

Eq. (11), the piece which is a quadratic function of the sphere’s
potential gives exactly this result for the sphere’s self-energy.
When D → ∞, or equivalently when � → ∞, we get from
Eq. (11)

Eself
s = lim

�→∞
εo

2
R

∞∑
=0

∑
k=−

λ(λ + 1/2)

2π
(−1)k

∫
d�

∫
d�′

× eik(φ−φ′)P k
 (cos ξ )P −k

 (cos ξ ′)Vs(�)Vs(�
′). (A4)
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We use the following identities that relate bispherical
coordinates with spherical coordinates centered on the
sphere:

cos ξ = 1 + cosh � cos θ

cosh � + cos θ
, (A5)

sin ξ = sinh � sin θ

cosh � + cos θ
, (A6)

sin ξ dξ = sinh2 �

(cosh � + cos θ )2
sin θ dθ, (A7)

1

(cosh � − cos ξ )n
= (cosh � + cos θ )n

sinh2n �
. (A8)

For � → ∞ we obtain cos ξ → cos θ , d� → d�s, and there-
fore the sphere self-energy in bispherical coordinates (A4) is
identical to that in spherical coordinates (A3), as expected.

We now consider the self-energy for the plane. The
electrostatic potential for an isolated plane located at z = 0
having surface patch potentials Vp(�) = Vp(r) [r = (x,y)] is

V (x) =
∫

d2k
(2π )2

eik·re−kzVp(k), (A9)

where Vp(k) is the two-dimensional Fourier transform of the
patchy potential. The self-energy is

Eself
p = εo

2

∫
d2xVp(x)

∂

∂z
V (x)

∣∣∣∣
z=0

= εo

2

∫
d2r

∫
d2r′Vp(r)f (r − r′)Vp(r′), (A10)

where f (r − r′) = (2π )−2
∫

d2k|k|eik·(r−r′) = −(2π )−1|r −
r′|−3.

As for the case of the self-energy for the sphere, we take the
D → ∞ limit (or, equivalently, the a → ∞ limit) of Eq. (11)
and focus on the term that depends on the plane. We get

Eself
p = εo

2
a

∞∑
=0

∑
k=−

λ2


2π
(−1)k

∫
d�

∫
d�′

× eik(φ−φ′)P k
 (cos ξ )P −k

 (cos ξ ′)Vp(�)Vp(�′)√
1 − cos ξ

√
1 − cos ξ ′ . (A11)

In order to show that this is identical to (A10) we
first perform the summation over k in Eq. (A11). For
this we use the addition theorem of Legendre polynomi-
als,

∑
k=−(−1)keik(φ−φ′)P k

 (cos ξ )P −k
 (cos ξ ′) = P(cos γ ),

where

cos γ = cos ξ cos ξ ′ + sin ξ sin ξ ′ cos(φ − φ′). (A12)

In the resulting equation we then change the coordinate system
from bispherical coordinates to polar coordinates on the plane
(η = 0), centered at the point of closest approach between the
sphere and the plane, i.e., right below the sphere. The polar
coordinate ρ relates to the bispherical coordinate ξ through
ρ = a cot ξ/2. The following identities are useful to relate
both coordinate systems:

cos ξ = (ρ/a)2 − 1

(ρ/a)2 + 1
, (A13)

sin ξ = 2(ρ/a)

(ρ/a)2 + 1
, (A14)

sin ξdξ√
1 − cos ξ

= − 2
√

2ρdρ

a2[1 + (ρ/a)2]3/2
. (A15)

Then Eq. (A11) takes the form

Eself
p = lim

a→∞
2εo

πa3

∫
d�p

∫
d�′

pVp(�p)Vp(�′
p)

×
∞∑

=0

λ2
P(cos γ ), (A16)

where �p = (ρ,φ) are the polar coordinates on the plane and
d�p is the corresponding measure. The above summation
can be evaluated using the generating function of Legendre
polynomials, which verifies

S(t,u) ≡
∞∑

=0

tP(u) = 1√
1 − 2tu + t2

. (A17)

Recalling that λ =  + 1/2, we obtain

∞∑
=0

λ2
t

P(u) =
(

t
∂

∂t
t

∂

∂t
+ t

∂

∂t
+ 1

4

)
S(t,u)

= 1 − 10t2 + t4 + 4t(1 + t2)u

4(1 + t2 − 2tu)5/2

≡ G(t,u). (A18)

Setting t = 1 we derive the identity
∑∞

=0 λ2
P(cos γ ) =

−[2(1 − cos γ )]−3/2. Using Eqs. (A13) and (A14) in the
definition of cos γ and taking the a → ∞ limit we obtain
1 − cos γ ≈ 2|r − r′|/a2. Hence Eq. (A16) is equal to

Eself
p = − εo

4π

∫
d2r

∫
d2r′Vp(r)|r − r′|−3Vp(r′), (A19)

which is exactly the plane self-energy in polar coordi-
nates (A10), as it should.

APPENDIX B: DERIVATION AND EXPRESSION OF
SPHERE-PLANE ENERGY KERNELS

In this Appendix we give the derivation of the kernels
appearing in Eq. (13). We first write the energy (11) in a
compact form, Esp = Es,s

sp + E
s,p
sp + E

p,s
sp + E

p,p
sp , where the

superscripts denote which surface potentials contribute to each
term. For example, let us consider the Es,s

sp term:

Es,s
sp = εo

2
R sinh �

∞∑
=0

∑
k=−

λ

2π
(−1)k

×
∫

d�

∫
d�′eik(φ−φ′)P k

 (cos ξ )P −k
 (cos ξ ′)

× Vs(�)Vs(�′)√
cosh � − cos ξ

√
cosh � − cos ξ ′

×
(

λ coth λ� + sinh L

2(cosh � − cos ξ )

)
. (B1)

In order to simplify the above expression we first notice that
the second term in the parentheses is independent of , which
allows us to use the completeness relation for the associated
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Legendre polynomials,
∞∑

=0

∑
k=−

λ

2π
(−1)keik(φ−φ′)P k

 (cos ξ )P −k
 (cos ξ ′) = δ(φ − φ′)δ(cos ξ − cos ξ ′), (B2)

and perform the � integral. We also notice that the first term in the parentheses can be written as coth λ� = 2
∑∞

n=0
′
e−2λ�n,

where the prime in the summation symbol indicates that the n = 0 term has to be taken with half weight. By using the completeness
relation, Eq. (B2), the addition theorem for Legendre polynomials, and the identity equation, Eq. (C2), we can express Es,s

sp as

Es,s
sp = εo

4
R

∫
d�

sinh2 � V 2
s (�)

(cosh � − cos ξ )2
+ εo

2π

∞∑
n=0

′
e−�n

∫
d�

∫
d�′ a Vs(�)Vs(�′) G(e−2�n, cos γ )√

cosh � − cos ξ
√

cosh � − cos ξ ′ , (B3)

where we have introduced the function G(t,u), defined in Eq. (C2). Using the identities in Appendix A, which relate bispherical
and spherical coordinates, we obtain

Es,s
sp = εo

4
R

∫
d�sV

2
s (�s) + εo

2π

∞∑
n=0

′
e−�n

∫
d�s

∫
d�s′

R sinh3 � Vs(�s)Vs(�′
s) G(e−2�n, cos γ s,s)

(cosh � + cos θ )3/2(cosh � + cos θ ′)3/2
, (B4)

where cos γ s,s is given by Eq. (A12) for the two bispherical coordinates (ξ,φ) and (ξ ′,φ′) written in terms of spherical coordinates,
namely,

cos γ s,s = (1 + cosh � cos θ )(1 + cosh � cos θ ′) + sinh2 � sin θ sin θ ′ cos(φ − φ′)
(cosh � + cos θ )(cosh � + cos θ ′)

. (B5)

The same kind of calculations can be performed for the other terms, E
s,p
sp , E

p,s
sp , and E

p,p
sp , in the energy equation, Eq. (11). In

this way we derive the energy kernels that appear in (13):

Es,s(�s; �
′
s; D) = εoR

4
δ(φ − φ′)δ(cos θ − cos θ ′) + εo

4π
R lim

�→∞
G(1, cos γ s,s)︸ ︷︷ ︸

self-energy

+ εo

2π

∞∑
n=1

R sinh3 � e−�n G(e−2�n, cos γ s,s)

(cosh �+ cos θ )3/2(cosh �+ cos θ ′)3/2
,

(B6)

Es,p(�s; �p; D) = Es,p(�s; �p; D) = −
√

2εo

π

∞∑
n=0

R2 sinh2 � e−λn� G(e−2λn�, cos γ s,p)

(cosh � + cos θ )3/2(R2 sinh2 � + ρ2)3/2
, (B7)

Ep,p(�p; �′
p; D) = − ε0

4π

1

|x − x′|3︸ ︷︷ ︸
self-energy

+ 4ε0

π

∞∑
n=1

R3 sinh3 � e−�n G(e−2�n, cos γ p,p)

(R2 sinh2 � + ρ2)3/2(R2 sinh2 � + ρ ′2)3/2
. (B8)

The dependency of these kernels on the sphere-plane separation D is encoded in �, which we recall depends on D as cosh � =
1 + D/R. The functions cos γ s,p and cos γ p,p are obtained by expressing Eq. (A12) in terms of the corresponding spherical or
polar coordinates:

cos γ s,p = ρ2 − R2 sinh2 �

ρ2 + R2 sinh2 �

1 + cosh � cos θ

cosh � + cos θ
+ 2Rρ sinh �

ρ2 + R2 sinh2 �

sinh � sin θ

cosh � + cos θ
cos(φ − φ′), (B9)

cos γ p,p = (ρ2 − R2 sinh2 �)(ρ ′2 − R2 sinh2 �) + 4R2ρρ ′ sinh2 � cos(φ − φ′)
(ρ2 + R2 sinh2 �)(ρ ′2 + R2 sinh2 �)

. (B10)

The first two terms in Eq. (B6) and the first term in Eq. (B8) correspond to the self-energies of the sphere and the plane,
respectively, already derived in Appendix A. These should be removed from the energy kernels when computing the interaction
energy or force.

APPENDIX C: EQUIPOTENTIAL CASE

In this Appendix we show how to obtain from our general formula (11) the electrostatic energy when both the sphere and the
plane are equipotentials. First we consider the component of the energy depending quadratically on the sphere’s potential:

Es,s
eq-p = εo

2
V 2

s

∞∑
=0

∑
k=−

λ

2π
(−1)k

∫
d�

∫
d�′e−ik(φ−φ′)P k

 (cos ξ )P −k
 (cos ξ ′)

×
{

a√
cosh � − cos ξ

[
1√

cosh � − cos ξ ′

(
λ coth λ� + sinh �

2(cosh � − cos ξ )

)]}
. (C1)
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The φ integrals can be done directly giving
Kronecker δ’s which collapse the sum on k, and
the integrals over ξ can be done after using the
identity 1√

cosh �−x
= √

2e−�/2 ∑∞
n=0 Pn(x)e−�n and the

orthonormality properties of the Legendre polynomials,
giving the following identities:

∫ π

0
dξ sin ξP(cos ξ )

1√
cosh � − cos ξ

=
√

2

λ

e−λ�,

∫ π

0
dξ sin ξP(cos ξ )

1

(cosh � − cos ξ )3/2
= 2

√
2

sinh �
e−λ�.

After performing these integrations Eq. (C1) reduces to

Es,s
eq-p = 2πεoaV 2

s

∞∑
=0

e−2λ�(coth λ� + 1)

= 2πεoaV 2
s

∞∑
=0

e−λ�

sinh λ�
. (C2)

Note that the previous equation can be written as

Es,s
eq-p = 2πεoaV 2

s

∞∑
=1

[
e− �

2

sinh �
2

− e−�

sinh �

]
, (C3)

which after some rearrangement reduces to the well-known
form for the energy for the prescribed case of equipotentials
[24]:

Es,s
eq-p = 2πεoV

2
s a

∞∑
n=1

1

sinh �n
. (C4)

With the same identities one can derive the other terms
contributing to the electrostatic energy. The cross terms are

given by

Es,p
eq-p = Ep,s

eq-p = −2πεoaVsVp

∞∑
=0

e−λ�

sinh λ�
, (C5)

and the component depending on the square of the plane’s
potential can be written as

Ep,p
eq-p = 2πεoaV 2

p

∑∞
=0 coth λ�. (C6)

The contribution to the electrostatic energy from the pre-
ceding equation contains a divergence which results from
the infinite self-energy of the plane. Note from Eq. (A11)
and using Eq. (C2) that for the case of an equipotential on
the plane the plane self-energy reduces to E

p,p
eq-p,self-energy =

2πεoaV 2
p

∑∞
=0 1. By subtracting this divergence the plane-

plane contribution to the electrostatic energy becomes

Ep,p
eq-p − E

p,p
eq-p,self-energy = 2πεoaV 2

p

∞∑
=0

2

e2λ� − 1

= 2πεoaV 2
p

∞∑
=0

e−λ�

sinh λ�
. (C7)

By combining all of the terms which contribute to the energy
after all divergences have been removed we find the final form
for the equipotential energy:

Eeq-p = 2πεo(Vs − Vp)2a

∞∑
n=1

1

sinh �n
. (C8)

For completeness we should point out that the energy above
still contains the finite and distance independent self-energy
of the sphere. The expression for the force in the equipotential
case can be derived by taking a derivative with respect to
sphere-plane separation, giving

Feq-p = −2πεo(Vs − Vp)2
∞∑

n=1

coth � − n coth �n

sinh �n
, (C9)

which, as expected, agrees with the known results [24].
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