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We present nonadiabatic, fully ab initio, systematic calculations of the 3pπ D 1�u
+ level energies, � doublings,

and absorption line intensities and widths for H2 and D2 even for those levels that are strongly predissociated.
The multichannel quantum defect theory calculations are based on the latest quantum-chemical clamped-nuclei
data of Wolniewicz and collaborators [L. Wolniewicz and G. Staszewska, J. Mol. Spectrosc. 220, 45 (2003);
G. Staszewska and L. Wolniewicz, ibid. 212, 208 (2002)]. The theoretical values are compared with previously
published data [ G. D. Dickenson, T. I. Ivanov, M. Roudjane, N. de Oliveira, D. Joyeux, L. Nahon, W.-Ü. L.
Tchang-Brillet, M. Glass-Maujean, I. Haar, A. Ehresmann, and W. Ubachs, J. Chem. Phys. 133, 144317 (2010);
G. D. Dickenson, T. I. Ivanov, W. Ubachs, M. Roudjane, N. de Oliveira, D. Joyeux, L. Nahon, W.-Ü. L.
Tchang-Brillet, M. Glass-Maujean, H. Schmoranzer, A. Knie, S. Kübler, and A. Ehresmann, Mol. Phys. 109,
2693 (2011)] and with absolute line intensity measurements. The overall agreement is very good. The enhanced
precision of the calculations leads to additional assignments and to several corrections of previous literature data.
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I. INTRODUCTION

The 3pπ D 1�u state of H2, first observed in the absorption
spectrum in the 1930s [1], has been the subject of numerous
experimental [2–8] and theoretical studies [9–14]. The 1�+
component for the levels with v � 3 undergoes a very rapid
predissociation inducing typical Beutler-Fano profiles of the
absorption lines [15,16]. In contrast, the 1�− component is
long-lived, leading to vacuum-ultraviolet (VUV) emissions
at energies far higher than the ionization and dissociation
thresholds [13,14,17,18].

Recently, the 1�− level energies were calculated very
precisely using two different ab initio approaches—coupled
equations (CEs) and multichannel quantum defect theory
(MQDT) [19]—whereas the 1�+ level energies did not
receive the same attention. They have been calculated by
CEs only for the lower unpredissociated levels (v < 3); the
fast predissociation makes the CE calculations unstable and
unreliable [20]. The MQDT approach may overcome this
difficulty [11].

The spectacular predissociation is due to nonadiabatic
couplings, typically the Coriolis coupling with the 3pσ B ′
1�u

+ state. The predissociation widths were first calculated
in the 1970s [9,10]. In these calculations, the system was
considered to be a two-state problem involving the B ′ and D

states, and the potential curves used were Rydberg-Klein-Rees
(RKR) curves. The same simple approach was applied later
on in Refs. [21,22], using more precise ab initio potential
curves, to reproduce the global behavior of the dissocia-
tion widths of the vibrational progression. More elaborate
ab initio CE calculations have been performed considering
three coupled states, namely the B, B ′, and D states [23,24].
In 1984, Jungen [25] showed that the MQDT approach could
be extended to include predissociation, and the widths of

the D 1�+ levels were chosen to test the various theoretical
sophistications [11,12].

Recently, precise measurements of the energies of these
levels have been published for both isotopes H2 [21] and
D2 [22], including the intensities of the absorption lines of D2.
These experimental data will be compared with the theoretical
values presented herein. The H2 line intensities used for
comparison are additional experimental data.

The present work is part of an effort to provide a coherent
and systematic experimental and theoretical account of the
absorption spectrum of diatomic hydrogen and its isotopomers
up to the H(1s) + H(n = 4) dissociation limit [13,14,26–28].
In addition to reporting a fully ab initio nonadiabatic MQDT
calculation of the 3pπ D 1�+

u energy levels, � doublings,
and line intensities and widths, based on the latest quantum-
chemical clamped-nuclei calculations of Wolniewicz and
collaborators [29], the present paper contains measurements
of absolute line intensities with greater accuracy than those
reported previously in Ref. [8].

II. THEORETICAL APPROACH

Accurate ab initio calculations of level energies in ex-
cited electronic states of diatomic molecules are known to
be difficult. There are currently two theoretical approaches
available that are capable of taking into account nonadia-
batic interactions. Both approaches have been pioneered in
applications to excited states of H2 in the 1970s [30,31]. The
first one was based on frame transformation MQDT combined
with ab initio potential energy curves. The second one evalu-
ated nonadiabatic interactions by solving coupled differential
equations for the nuclear motion in mixed electronic states.
These calculations were also based on ab initio electronic
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potential energy curves, which were combined with nuclear
kinetic operator coupling functions, also evaluated from first
principles.

The 3pπ D 1�u
+ J = 2 levels (3 � v � 11) of H2 have

been investigated by one of the first MQDT approaches [30],
and then by a MQDT approach combined with a noniterative
eigenchannel R-matrix method [11]; these calculations were
not ab initio. Later on, a more sophisticated MQDT treatment
taking into account simultaneously dissociation and ionization
was demonstrated in a short energy range of the H2 absorption
spectrum including the R(1) 3pπ D v = 8 − X, v′′ = 0 line
[12]. Recently, accurate CE calculations have been performed
of the D 1�+

u levels of H2 [20] and D2 [32] concerning,
however, only the lower levels with v < 3.

To provide a coherent and systematic experimental and
theoretical account of the absorption spectrum, we carried out
systematic calculations of the level energies, the absorption
line intensities, and the dissociation widths using MQDT,
which is the only “easy” theoretical method for application
to the excited levels even if they are predissociated. The
theoretical approach used here has been discussed in numerous
previous publications [12,33,34] and in particular in our previ-
ous papers [13,14,19,26–28]. Briefly, we use quantum defect
theory in a simple form by disregarding channel interactions
between singly excited and doubly (core) excited Rydberg
channels. This means that we assume that the manifold of 1�u

+
and 1�u excited states of H2 represents a single unperturbed
np Rydberg series converging to the X 2�g

+ ground state of
the H2

+ ion.

A. Determination of quantum defects and channel transition
moments from quantum-chemical data

The quantum defects have been extracted from highly accu-
rate theoretical clamped-nuclei (Born-Oppenheimer) potential
energy curves [29,35] using the familiar one-channel Rydberg
equation,

Unpλ(R) = U+(R) − 1

2(n − μnpλ)2
, (1)

written here in atomic energy units, in order to extract the
quantum defects for 1�u

+ and 1�u symmetry. Unpλ (R) is
the clamped-nuclei curve for the npσ or π Rydberg state, and
U+(R) is the corresponding curve for the ion ground state,
X 2�g

+. The labels npλ denote the united-atom Rydberg
character of the excited orbitals. The quantum defects μnpσ

for the 1�u
+ symmetry were extracted from the curves

corresponding to n = 3, 4, and 5 (see Ref. [27] for details)
and the quantum defects μnpπ for the 1�u symmetry were
extracted from the curves corresponding to n = 2, 3, and
4 (see Ref. [26] for the details). Note that the quantum
defects determined in this way are functions of the internuclear
distance R as well as of the energy because of the dependence
on n appearing in Eq. (1). It is the R dependence that mediates
the coupling between the electronic and the nuclear degrees of
freedom (details can be found in Ref. [26]). As explained in
Refs. [26,27], the set of clamped-nuclei quantum defect curves
defined by Eq. (1) for the different values of n are converted

into energy-dependent polynomials of the form

μ(λ,q)(ε,R) = μλ,0(R) + [ε(R)]μλ,1(R) + 1

2
[ε(R)]2μλ,2(R)

+ m

M
μλ,specific(R). (2)

Here ε(R) = Unpλ(R) − U+(R) is the binding energy of the
Rydberg electron for a fixed value of the internuclear distance.
The last term (from Refs. [29,36]) has been added and
corresponds to the mass polarization correction.

B. Frame transformation

Standard frame-transformation MQDT accounts for nona-
diabatic coupling within the Rydberg manifold of states
through vibrational-electronic quantum defect matrix elements
of the form

μ
(λ,q,N)
v+N+,v+′N+′ =

∫ Rc

0
χv+N+(R)μ(λ,q)χv+′

N+′ (R)dR. (3)

The μ(λ,q) are the quantum defect functions of Eq. (2), and
χv+N+ (R) are the vibrational eigenfunctions of H2

+ in the
vibrational-rotational level v+, N+′

, where N+ is the rotational
angular momentum of the electronic ground state of the ion.
N refers to the rotational angular momentum of the molecule;
in this case, N = J , and as the outer electron is in an np

state, N+ and N+′ may take the values J − 1 or J + 1 for
the interacting 1�u

+ and 1�u
+ systems. (The value N+ = J

corresponds to the 1�u
− symmetry [30].) Contrary to the

case described previously in Refs. [26,27], where the only
nonadiabatic interaction was vibronic and coupled states of
the same symmetry, here we must also take into account the
rotational coupling mixing the 1�u

+ and 1�u
+ states and

consider the cases in which N+′ may differ from N+.
As detailed in Ref. [26], the integrals in Eq. (3) are

converted into a weakly dependent reaction matrix with
elements k

(N)
v+N+,v+′N+′ (E) (N , N+ = N ± 1,N+′ = N ± 1)

connecting various Rydberg channels v. At short internuclear
distance, the molecule is well described by Hund’s case b, and
at large distance the electron in the field of the ion corresponds
to Hund’s case d. The frame transformation has to be taken
into account to transform the k(E) written in the Hund’s case
b basis set into the K(E) matrix written in the Hund’s case d

basis set [28,30].
Standard MQDT procedures [33,34] match the short-range

electron wave functions implied by the reaction matrix K(E)
for a given total energy E to asymptotically correctly behaving
phase-shifted electron Coulomb waves. It is advantageous to
use a sine or cosine formulation rather than the more familiar
tangent formulation since in this way poles in the vibrational
reaction matrix may be avoided [33]. The boundary condition
then reads

det |cos β(E)S + sin β(E)C| = 0, (4)

where K = SC−1 and β(E) is an asymptotic phase vector
whose components βv+(E) take different values depending on
whether a given N+ Rydberg channel is closed (E < Ev+) or
open (E > Ev+). For closed channels, βv+(E) = πνv+, with
νv+ = (2−1/2)[(Ev+ − E)]−1/2 the effective principal quantum
number corresponding to that channel. Here we considered
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only the closed channel, thus we disregarded the ionization
process. For the D state, the autoionization is extremely weak
and could be neglected [12].

C. Bound levels and discrete line intensities

Once an energy E has been found such that Eq. (4) is
satisfied, the level energy, taken relative to the ionization
potential and in wave-number units, becomes

(E − Ev+N+ ) /hc = − RyH2

(νv+N+ )2
, (5)

where RyH2
is the mass-corrected Rydberg constant and

E is the level energy in joules. [The use of the mass-
corrected Rydberg constant instead of the Rydberg constant is
equivalent to including the term −(m/2M)∇2

1 of the molecular
Hamiltonian, which, in the standard approach, is a part of the
adiabatic correction.]

The required energy-normalized dipole transition moments
are extracted from the available ab initio dipole transition
moments from Refs. [29,35], in a fashion similar to what
has just been described for the quantum defects. These are
used to calculate energy-dependent channel transition moment
coefficients d (λ,q )(ε,R) analogous to the quantum defect
coefficients μ(λ,q)(ε,R) of Eq. (2). Vibronic channel dipole
transition matrix elements d

(λ,q,N)
v+N+ ,v′′N ′′ are evaluated from an

equation similar to Eq. (3), where d replaces μ and χv′′N ′′ (R)
replaces χv+′N+′ (R). The change from Hund’s case b to Hund’s
case d changes the d matrix into a D one mixing the v+, N+
and v+′, N+′ channels.

The effective transition moment to a bound Rydberg level n
is given by the following superposition of channel amplitudes:

Dλ
n = 1

N

∑
k

Dλ
k,k′′(En)Bk(En), (6)

where Bkare the channel mixing coefficients obtained by
solving Eq. (4) and k stands for the combination of ionization
channels v+,N+ and v+′, N+′ for a λ = σ or π state; k′′ stands
for v′′ = 0, N ′′; N is the overall normalization factor of the
bound state wave function.

The rotational couplings mix the λ = σ and λ = π

states modifying the intensities of the R and P lines to
the considered n level of total angular momentum quantum
number N according to

A(R) = 4

3

mc2

h̄
α5

[√
N

2N + 1

Dσ
n

a0
−

√
N + 1

2N + 1

Dπ
n

a0

]2

×
(

En − EvN

2hc Ry

)3

(7)

for an R(N − 1) line [28,37,38] and

A(P ) = 4

3

mc2

h̄
α5

[√
N + 1

2N + 1

Dσ
n

a0
+

√
N

2N + 1

Dπ
n

a0

]2

×
(

En − Ev′′N ′′

2hc Ry

)3

(8)

for a P (N + 1) line. Here α is the fine-structure constant.
The transition energy is in joules and the transition moment

in meters. The ratios in the large parentheses and in the
large square brackets correspond, respectively, to the transition
energy and to the dipole moment in atomic units (see Ref. [28]
for more details).

D. Dissociation continuum

The inclusion of dissociation channels into the MQDT
framework has been described previously [11,12,25]. The
approach described in those papers was simplified here since
we are able to neglect the interference between ionization and
dissociation processes. We proceed as follows. Our treatment
of dissociation is based on the realization that the dissociating
state in the present problem is the 3pσ B ′ state and, as such,
is simultaneously a low member of the pσ ionization channel
(which we are considering here) and therefore plays a double
role. This implies that the nonadiabatic coupling leading
to vibrational autoionization of the npσ manifold above
threshold is the same as that causing predissociation by the
3pσ B ′ state. Therefore, the vibronic quantum defect matrix
elements μ

(λ,q,N)
v+N+,v+′N+′ (E) of Eq. (3) contain all the information

required to evaluate the predissociation widths in addition
to the autoionization widths. We exploit this circumstance
by choosing specifically adapted vibrational basis sets for
solving Eq. (4). Considering a specific value of the total
energy E, we evaluate the vibrational wave functions χv+ and
energies Ev+by using a “large” vibrational basis, chosen such
that it corresponds to electronically bound Rydberg channels
only, whereas all the open channels (Ev+ < E) are omitted.
A common boundary condition b = −χ ′/χ is imposed on
all χv+at R = Rc. With a large basis, the bound ion target
vibrational levels [Ev+ < U+(Rc)] remain at their correct
energies, but the level spectrum Ev′ now extends beyond
the bound range into the H+

2 vibrational continuum where
the energies depend on the particular boundary condition b

used.
Similarly, solving Eq. (4) yields the Rydberg levels cor-

responding to n � 3 with v < v+
last bound near their correct

energies, but in addition, a set of fictitious Rydberg levels
with n = 2,v+ > v+

last bound is obtained, which represents the
discretized 2pπC or 2pσB state vibrational continuum, as well
as another one with an n = 3, v+ > v+

last bound which represents
the discretized 3pσB ′ state (see also Ref. [12]). When the
boundary condition b at R = Rc is varied, these levels may be
tuned through the position of a bound Rydberg level with n= 3,
v < v+

last bound. Nonadiabatic interaction leads to an avoided
crossing characterized by a closest approach 2V. From this,
the predissociation width 
 may be extracted using Fermi’s
“Golden Rule,”


d = 2π
V 2

�E
. (9)

Here �E −1 is the density of levels of the discretized
continuum. This procedure had been used previously [14]
to calculate the predissociation widths of the 3pπ D 1�u

−
levels which are very small. We extended its application to a
case in which the predissociation widths are large. The results
obtained here for the J = 2 3pπ D 1�u

+ levels are similar
to the values calculated previously in a more sophisticated
way [11].
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The coupling to the 3pσB ′ continuum is so strong for
the 3pπ D 1�u

+ levels that the position of the bound
Rydberg level with n = 3, v < v+

last bound varies by an
amount comparable to its width, which is far too large
to be acceptable. Under the same conditions as described
above, we fixed the b parameter and varied the Rc value;
the position of the resonance varies according to the bypass of
the quasicontinuum levels around a mean value, which is the
desired result. The intensity of the absorption line is calculated
from an average in the same way. The results are independent
of the fixed value of b (from 0 to 106); they correspond to the
D level positions lying at equal distances from both nearby
quasidiscrete B ′ levels. The variations of Rc are just a technical
way of varying the positions of the interacting quasidiscrete
levels.

E. D2 calculations

The same computational method was used for the D2

molecule, just changing the value of the reduced mass and the
value of the mass-corrected Rydberg constant in Eq. (5). The
mass dependence of the adiabatic corrections to the potential
curves was hereby implicitly taken into account.

F. Numerical details

The vibration-rotation wave functions χv+N+ were eval-
uated in the adiabatic approximation using the ion ground-
state potential energy curve of Wind [39] and the adiabatic
correction terms of Bishop and Wetmore [40]. The corre-
sponding ion levels Ev+N+ are those of Wolniewicz and
Orlikowski [41], calculated by including the nonadiabatic and
relativistic interactions in addition to the adiabatic corrections.
The ground-state vibrational wave function χv′′N ′′ (R) was
evaluated by using the potential energy curve of Wolniewicz
[37] (with adiabatic corrections).

The upper limit Rc of the integral over dR in Eq. (3) was
varied between Rc ≈ 7 and ≈ 15 a.u. and the vibrational basis
typically contained between 20 and 45 vibrational functions
(i.e., between 40 and 90 channels).

III. EXPERIMENT

The experimental data of Refs. [21,22] have been com-
pleted by additional data extracted from the BESSY spectra
concerning the line intensities and the dissociation widths of
H2. The experimental setup at BESSY has been described in
detail in previous publications [14,42–45]. The VUV radiation
from the undulator beamline U125/2-10m-NIM of BESSY II
was dispersed by a 10-m normal-incidence monochromator
equipped with a 4800 lines/mm grating giving a spectral
resolution of 0.0010 nm in first order [46] (this value represents
the convolution of the apparatus function with the Doppler
width at room temperature). The uncertainty of the energies of
the measured spectra is at present typically ±1.0 to ±1.5 cm1.
The intensity of the absorption spectrum, recorded at high
spectral resolution, has been calibrated directly, based on the
known gas pressure and the absorption path length. Photoion-
ization and photodissociation excitation spectra were recorded

simultaneously. The absolute calibration of these spectra has
been described in detail previously (see Refs. [14,42–45]).

The energy values of the D levels for H2 and D2, obtained
with the Fourier-transform spectrometer of SOLEIL and the
BESSY experiment have been presented and compared in
Refs. [21,22]. From the dissociation spectrum obtained at
BESSY, it was also possible to extract the widths and the
intensities of the lines. These lines were fitted by a convolution
of a Fano profile with a Gaussian corresponding to the
apparatus function, taking into account the Doppler width [14].
The absolute intensities and the widths of the 3pπ D 1�u

+ v,
J − Xv′′ = 0, J ′′ lines have been determined systematically
by means of the dissociation excitation spectrum through such
a fit, giving a set of data for H2. The linewidths of Ref. [21]
were from the SOLEIL experiment. For D2, the BESSY data
and the SOLEIL ones have been combined and gathered in
Ref. [22]. The present measurements add few complements.
The H2 R(2) line data were not reported before.

IV. RESULTS

A. Level energies and � doubling

1. H2 molecule

The energies of the 3pπ D 1�u
+ J = 1 and 2, v = 0–15,

levels of H2 have been determined with an uncertainty of
0.3 cm1 from the FT spectrum; for v = 16 and 17, the energy
values are from the BESSY experiment with an uncertainty of
1 cm−1 (all of them are in Ref. [21]). We compared these values
with the calculated ones. The discrepancy [E(obs) − E(calc)]
is lower than 1 cm−1, much smaller than the dissociation
widths, except for the last vibrational quantum number. The
present calculations are clearly more precise than those of
Gao et al. [11], who used only the quantum defects deduced
from one � (3pπ D) state and one � (4pσ ) state, consequently
without any energy dependence, leading to an insufficient
description of the nonadiabatic couplings with the other levels.
The present results are comparable to those of the full treatment
of Ref. [12], although our approach is a simplified one. The
MQDT values obtained for the v = 0–2 levels, which lie
below the dissociation threshold, can be compared with the
values obtained by the CE approach [20]. As has already been
observed [19] for the 2 and 3pπ 1�u

− levels, the MQDT
approach gives more precise results for levels with n � 3. The
results are gathered for comparison in Table I.

The calculations are precise enough to determine the �

doubling of the J = 1 and 2 D levels of H2. The experimental
data for the 3pπ D 1�u

− are from Ref. [21] and the MQDT
calculated values are from Ref. [14]. The results are gathered
in Fig. 1 with the calculated values from Ref. [20]. Obviously,
both calculations reproduce the erratic behavior of the levels
located below the dissociation threshold which are interacting
with the bound B ′ levels. The MQDT is also able to reproduce
the accidental situation of the v = 7 levels; the J = 1, v = 7,
3pπ D 1�u

+ level lies very near the J = 1, v = 5, 4pσ B ′′
level so that these levels interact through the 3pσ continuum
to which they are both coupled. This local perturbation leads
to an unexpected negative value of the � doubling. The J = 2
levels of D and B ′′ are not so close and the perturbative effect
is weaker. Globally, the � doubling decreases to zero at the
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FIG. 1. (Color online) The �-doubling values [divided by the
factor J (J + 1)] for the J = 1 and 2 H2 levels in the 3pπ D
1�ustate plotted against vibrational quantum number v. A plus sign
indicates that 1�u

+ or e levels are higher than 1�u
− or f levels.

Filled triangles (magenta): experimental data from Ref. [21]. Open
squares (blue): present MQDT calculations. Open triangles (green):
CE calculations [47].

dissociation limit: the coupling between the 3pπ state and the
3pσ continuum occurs at short internuclear distance and, as
the vibrational energy increases, the time spent by the system
at short distances decreases.

For the J = 3 levels of the 3pπ D 1�u
+state of H2, the

calculations reproduce the experimental energy values [3,4]
within the experimental uncertainty (<1 cm−1) for the levels
with v < 3. For the levels with v � 3, the predissociation width
is very large (>20 cm−1 for the levels with v = 3–10) and the
differences [E(obs) − E(calc)] are within the predissociation
widths. We were able to determine the energies of eight of
the R(2) lines with an uncertainty of the order of 2 cm−1

through a Fano fit. The agreement with the calculated values
is greatly improved (see Fig. 2, lower part) and remains
within the experimental error except for the v = 12 value,
for which the discrepancy is twice the experimental
uncertainty.

2. D2 molecule

The vibrational series of the D state of D2 extends from
v = 0 to 23. The experimental energies of the 3pπ D 1�u

+
levels J = 1 and 2, v = 0–16, and J = 3, v = 0–7, of D2

are known with an uncertainty of 0.06–0.4 cm−1 from the FT
spectrum; all the other values in Ref. [19], including the J = 4
ones, are from the BESSY experiment with an uncertainty of
1 cm−1. The difference between these experimental values and
the MQDT calculated values is below 1 cm−1, clearly smaller
than the dissociation widths (see Fig. 3); they are found to
increase with J . Since the dissociation widths increase with
J , the process used to determine the energies experimentally
becomes less and less precise as J increases. The energies of
the v = 0–4 3pπ D 1�u

+ unpredissociated levels have been
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FIG. 2. (Color online) Lower trace: residual obs.-calc. (in cm−1)

for the J = 3 D 1�u
+ levels of H2, plotted as functions of the

vibrational quantum number v. The calculated values are the present
MQDT data. Filled squares (black): present experimental data. Filled
diamonds (violet): experimental data from Ref. [3]. Filled circles
(brown): experimental data from Ref. [4]. Open triangles (green):
experimental data from Ref. [3] and CE calculations [24]. Dotted line:
+ /− the dissociation widths calculated in Ref. [21]. Middle trace:
the intensities of the R(2) D − X (v − 0) lines vs v. Filled squares
(black): present experimental data. Open squares (blue): present
MQDT calculations. Filled down triangles (green): experimental data
from Ref. [8]. Full line: adiabatic calculations. Inset: enlarged section
corresponding to large v. Upper trace: the dissociation widths of the
J = 3 D 1�u

+ levels. Filled squares (black): present experimental
data. Open triangles (green): calculated values from Ref. [24]. Full
line: the dissociation width calculated in Ref. [21].

calculated using coupled equations by Roudjane et al. [32].
The present calculations are clearly more precise than the CE
calculations, as was also the case for the calculations of the
3pπ D 1�u

− levels [19].
The calculated level energies (and the calculated line

intensities) allow a systematic study of the spectrum and the
assignment of new lines: R(2) of the D-X (23,0) band, R(3)
of the (20,0), (22,0), and (23,0) bands, and R(4) of the (19
to 21,0) bands. These new lines were drawn with error bars
in Fig. 3. One misprint in Ref. [22] could also be corrected,
namely R(2) of the (14-0) band as a wrong value for the R(2)
(22,0) band (see Table II).

Using the experimental data from Ref. [22] for the 3pπ

D 1�u
− levels and the MQDT calculated values from

Refs. [19,26], the � doubling was deduced and compared
with the experimental values of Ref. [22]. The results are
displayed in Fig. 4. They follow partly the J (J + 1) scale
rule, indicating that the simple model of a rotational coupling
between the 3pπ D 1�u

+ and the 3pσ B ′ 1�u
+ states is not
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FIG. 3. (Color online) Residual obs.-calc. (in cm−1) for the level
energies of the 3pπ D 1�u

+state of D2. Filled triangles (magenta):
experimental values from Ref. [22] and present MQDT data. Filled
squares (black): present experimental data and present calculated
values. Open triangles (green): experimental values from Ref. [22]
and CE calculations [32]. Filled stars (brown): experimental data
from Ref. [3] and present MQDT data. Filled left triangles (green):
experimental and CE calculated values from Ref. [32]. Full line
(black): experimental and adiabatic calculations from [22].

quite sufficient to reproduce the experimental results, even if it
is obvious that no strong local perturbations affect the levels.
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FIG. 4. (Color online) Same as 1 for D2. The experimental data
are from Ref. [22]. The CE calculations are from Ref. [32].

B. Line intensities

We have extracted Einstein A coefficients corresponding to
each observed line using the relation

∫
σdλ = λ4

8πc
Av′,v′′,N ′,N ′′

2N ′ + 1

2N ′′ + 1
nN ′′ (10)

with N ′ = N ′′ + 1 for an R(N ′′) line and N ′ = N ′′ − 1
for a P (N ′′) line. Here λ is the wavelength, nN ′′ is the

TABLE II. Calculated and measured values for the J D levels of D2. obs.-calc. is the deviation: observed-calculated values (in cm−1). The
observed R transition energies are from Ref. [22] for J = 1–5 except for the values J = 4 and 5 and v = 0–3, which are from Ref. [32], and J = 4
and 5 and v = 4−7, which are from Ref. [3] for J = 3 with v < 6. The bold values correspond to the experimental data of the present work.

J = 1 J = 2 J = 3 J = 4 J = 5

v Ecalc obs.-calc. Ecalc obs.-calc. Ecalc obs.-calc. Ecalc obs.-calc. Ecalc obs.-calc.

0 113 223.03 −0.06 113223.69 0.00 113 194.68 −0.04 113 135.83 0.80 113047.20 −0.90
1 114 825.17 −0.06 114825.54 −0.06 114 795.68 −0.13 114 735.08 1.03 114644.00 −0.31
2 116 359.59 −0.03 116356.17 0.01 116 321.21 −0.18 116 254.16 1.65 116155.32 −0.05
3 117 831.50 −0.03 117827.07 −0.01 117 790.16 −0.29 117 719.84 −0.34 117616.43 −0.23
4 119 238.70 0.15 119231.69 −0.24 119 190.15 −0.36 119 116.99 −1.04 119008.36 −1.30
5 120 585.10 0.28 120576.33 −0.56 120 531.96 −0.45 120 453.03 1.02 120337.18 2.88
6 121 871.31 −0.24 121859.05 0.08 121 811.69 0.39 121 728.24 −0.79 121609.48 −6.02
7 123 096.50 −0.01 123083.07 −0.55 123 032.20 0.03 122 948.41 −1.46 122821.80 1.16
8 124 262.81 −0.59 124246.64 −0.39 124 194.67 −2.17 124 103.35 −1.85 123972.16 0.44
9 125 369.01 −0.53 125350.49 −0.15 125 295.87 −1.87 125 199.67 −0.67 125063.13 0.17
10 126 415.01 0.50 126395.68 −0.55 126 336.01 −0.01 126 237.41 0.49 126097.86 0.74
11 127 402.26 0.89 127380.61 −0.03 127 316.76 1.64 127 215.20 −0.80 127073.41 1.29
12 128 330.68 0.02 128307.08 −0.61 128 241.26 −0.56 128 132.69 −0.09 127984.74 −1.94
13 129 197.83 −0.17 129170.94 0.20 129 102.41 0.19 128 991.56 0.54 128836.59 −1.29
14 130 003.02 −0.14 129972.37 0.63 129 901.79 −0.02 129 785.50 −0.10 129626.58 −0.88
15 130 744.70 0.48 130714.76 −0.48 130 637.63 1.17 130 518.34 0.16 130353.03 −0.43
16 131 423.60 −0.48 131388.47 −0.17 131 310.05 1.05 131 188.42 −2.72 131015.30 −1.09
17 132 034.29 −0.16 131999.18 −1.04 131 915.46 0.34 131 783.80 1.50 131609.31 −0.91
18 132 576.40 −0.10 132538.17 −0.64 132 450.72 0.88 132 316.25 0.65 132133.39 0.21
19 133 046.06 0.64 133005.70 0.06 132 916.02 0.18 132 774.53 0.47 132585.46 0.09
20 133 442.51 0.39 133399.07 0.55 133 304.78 0.73 1331 60.03 1.09 132964.12 −1.84
21 133 761.97 1.03 133715.59 0.85 133 616.69 1.11 133 465.71 −0.69 133262.66 1.37
22 134 001.66 0.94 133954.99 0.30 133 848.38 1.21 133 692.53 −1.52 133478.24 0.67
23 134 158.35 0.65 134105.22 1.48 133 995.90 −1.28 133 831.37 0.96
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FIG. 5. (Color online) H2 line intensities vs v. Upper trace: R(0)
and P (2) lines. Lower trace: R(1) lines. Filled squares (black): present
experimental data for R lines. Filled stars (red): present experimental
data for P lines. Open squares (blue): present calculated values for
R lines; open stars (red): present calculated values for P lines. Filled
down triangles (green): data from Ref. [8]. Open triangle (green)
and open triangles (brown): CE calculated values for R and P lines,
respectively, from Ref. [47]. Open circles connected by full lines
(gray): adiabatic values. Inset: enlarged sections corresponding to
large v.

fraction of molecules in the rotational state N ′′, and σ is the
measured absorption cross section which is integrated over the
Beutler-Fano profile of a given line. As the dissociation yield
for these lines is practically 100%, the integration was done in
the dissociation spectrum, which is less noisy.

1. H2 molecule

We were able to measure the absolute intensities of the
R(N ′′) (N ′′ = 0–2) and P (2) lines of H2 for the vibrational
progression from v = 6 to 16, except for a few cases in
which the lines were superposed to other lines. The MQDT
calculated intensity values are displayed in Fig. 5 with the
experimental data. The intensities calculated in the adiabatic
approximation are displayed for comparison. Globally, the
differences between the nonadiabatic and the adiabatic values
are quite small. This result is quite surprising because in
the case of the 3pπ D 1�u

− system, it was shown that
nonadiabatic couplings, while only weakly affecting the level
energies, have a major effect on the intensities of the Q(N )
absorption lines [26]. The 3pπ D 1�u

+ state is coupled mainly
to the 3pσ B ′ 1�u

+ state, which is a continuum at energies
higher than the D v = 2 levels. A coupling with a continuum
changes the shape of the line but not its energy-integrated
intensity value. For one level, namely v = 7, J = 1, the
local perturbation with the 4pσ B ′′ v = 5, J = 1 level is
strong enough to be visible on the � doubling (and so on the
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FIG. 6. (Color online) Same as Fig. 5 for D2 R(J ) lines; the
experimental data are from Ref. [22].

energy) and on the intensities of the lines; we can see clearly
the opposite variations of the intensities of the R(0) and P (2)
lines. The calculated values reproduce the observed intensities
within the error bars.

For the levels v = 0–2, the values calculated using
a CE approach [47] (in order to improve the agreement
with experimental energy values, these calculations were not
completely ab initio) are also displayed in Fig. 5, showing a
good agreement with the MQDT values. Earlier measurements
of the band transitions [8] scaled by the adiabatic Hönl-London
factors are also displayed in Fig. 5 for comparison. The
intensities of the R(2) lines are displayed in Fig. 2; as expected,
the nonadiabatic couplings are more efficient and could be
put into evidence experimentally. The MQDT calculations
reproduce the experimental data.

2. D2 molecule

The MQDT calculated intensity values of the R(J ) lines for
J = 3–5 are displayed with the experimental and the adiabatic
values in Fig. 6. For J = 1 and 2, the difference between the
adiabatic and nonadiabatic values is within the error bars. For
J = 3–5, the effects of the nonadiabatic couplings begin to be
visible at the experimental intensities and could be accounted
for by the MQDT calculations.

For the lower levels with v = 0–3, the MQDT values agree
with the ab initio CE calculated values of Ref. [32] within 5%
in all the cases except for v = 1, where the disagreement rises
to 10% with a particular case of 15%: the R(1) (1,0) line. For
this band, the nonadiabatic decrease of the intensity (which
increases with J , as expected) amounts to 32% for the CE
calculation and to 23% for the MQDT one. However, for the
R(1) (1,0) line, we have no experimental data to compare with.
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FIG. 7. (Color online) Dissociation widths (FWHM) in cm−1 vs v

for the J = 1 (upper trace) and J = 2 (lower trace) H2 D 1�u
+ levels.

Filled triangles (magenta): experimental data from Ref. [21]. Filled
squares (black): present experimental data. Filled triangles (green):
experimental data from Ref. [6]. Open squares (blue) connected by
full lines: present calculated values. Open circles connected by full
lines (black): MQDT calculated values from Ref. [13]. Open triangles
(green): CE calculations from Ref. [24]. Gray line: calculated value
from Ref. [21] (see text).

C. Dissociation widths

1. H2 molecule

Under the conditions of the recording of the spectrum, the
apparatus function (taking into account the Doppler widths of
the lines) is 1.2–1.5 cm−1 with a Gaussian shape; this apparatus
function was studied on the D Q lines for which the natural
width is known to be around 2 × 10−3 cm−1 and is therefore
completely negligible [18]. Through a fit of the line profiles
with a convolution of this Gaussian with a Fano profile, we
have been able to determine the experimental widths of the
excited levels with J = 1–3. This new set of values is compared
with previously measured values (see Fig. 7). The scatter of
the data is an indication of the uncertainty which is probably
systematically underestimated.

In Ref. [21], the dissociation widths were calculated with
a perturbative approach as initiated by Julienne [9] and using
the up-to-date coupling functions and adiabatic potentials of
Ref. [20]. These values agree globally with the experimental
data.

We calculated the dissociation widths using MQDT as
described in Ref. [14]. The J = 1 level widths, calculated
in this way, agree very well with the experimental data. They
show variations due to the nonadiabatic couplings with the
other bound states even if this effect is small (there are only
little differences between the two calculations). The present
MQDT results for the J = 2 level widths reproduce the
experimental data and are very near the previously calculated
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FIG. 8. (Color online) Same as Fig. 7 for the J = 2 D 1�u
+ levels

of D2.

ones [11,12] (see Fig. 7); however, this simple approach of the
dissociation calculations by MQDT is not really adequate for
these very broad lines, as they were found to be very sensitive to
the calculation conditions, and so these results are less reliable
than those for J = 1, especially for v > 9.

2. D2 molecule

The predissociation widths of the J = 1–5, v, 3pπ D 1�u
+

levels of D2 have been reported in Ref. [22]. The widths of the
J = 1 levels are quite small, i.e., of the order of 1 cm−1 or less.
Their relative uncertainty is too high to show any nonadiabatic
effect different from the 3pπ -3pσ coupling. For the J = 3–5
levels with v � 8, the perturbative calculations reproduce very
well the observed data.

For the J = 2 levels, the quality of the data is high
enough to put into evidence the effect of the nonadiabatic
couplings different from the 3pπ -3pσ one. The deviations
of the experimental values from the values calculated by
the perturbative approach are well reproduced by the MQDT
calculations (see Fig. 8).

Globally, the dissociation widths are proportional to the
squared coupling matrix element between the 3pπ D 1�u

+
levels and the 3pσ B ′ 1�u

+ continuum. This Coriolis matrix
element is proportional to 1/μ, μ being the reduced mass, so
that the dissociation widths of H2 and D2 are expected to scale
in the isotopic ratio of 4:1, as is roughly observed.

V. CONCLUSION

We presented nonadiabatic, ab initio, systematic calcu-
lations of the 3pπ D 1�u

+ level energies and absorption
line intensities for H2 and D2 even for those levels that are
strongly predissociated. The energies of the resonances are
well reproduced, with the difference E(obs) − E(calc) being
smaller than 1 cm−1 in most cases, generally much smaller than
the dissociation widths of the levels. These calculations were
performed using a simple version of MQDT, i.e., under the
assumption that up to moderate R values, the excited electronic
states are correctly described as np electrons interacting with
the vibrating and rotating ground-state H2

+ ion. The nf

configuration of the outer electron and the excited states of the
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ion have been neglected. Even in this simple form, the MQDT
approach is able to reproduce very well the experimental level
energies (�1 cm−1) for the discrete levels (v < 3 for H2 or v <

4 for D2). For the dissociated levels, where no CE energies (nor
intensities) had been calculated so far, the MQDT calculations
reproduce very well the experimental level energies within
1 cm−1 in most cases, i.e., the deviations are much smaller
than the dissociation widths.

The precision of our calculations allows us to determine
the � doublings. The calculations reproduce correctly the
experimental data, even when they are negative due to a local
strong perturbation.

The intensities of the absorption lines have been calculated
and compared with measured absolute values (new data set
or previously published data) and were found to agree within
the experimental error bars. In this paper, seven additional
lines could be assigned, and several experimental data, such as
level energies, line intensities, and dissociation widths, were
revisited and corrected. For the dissociation widths, the impor-
tance of local nonadiabatic perturbations is small (affecting
the widths by percents only) compared to the main 3pπ -3pσ

coupling, as could be concluded from the comparison between
the MQDT and the perturbative calculated values.

In the framework of an effort to provide a coherent
and systematic experimental and theoretical account of the
absorption spectrum of diatomic hydrogen and its isotopomers
up to the H (1s) + H (n = 4) dissociation limit, we have so
far described the 1�u

− levels subject to only weak vibronic
couplings [26], the J = 0 1�u

+ levels affected by strong
vibronic couplings [27], and the J = 1 [28] and 2 [48] singlet
ungerade Rydberg levels mixed also by rotational coupling.
The study was extended here to higher J levels and also to
predissociated levels, for which an average or a more detailed
study was necessary, and it produced very good results.
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