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Blackbody radiation shift of the B+ clock transition
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A calculation of the blackbody radiation shift of the B+ clock transition is performed. The polarizabilities
of the B+2s2 1Se, 2s2p 1P o, and 2s2p 3P o states are computed using the configuration interaction method with
an underlying semiempirical core potential. The recommended dipole polarizabilities are 9.64(3)a3

0 , 7.78(3)a3
0

and 16.55(5)a3
0 , respectively. The derived frequency shift for the 2s2 1Se → 2s2p 3P o

0 transition at 300 K is
0.0160(5) Hz. The dipole polarizabilities agree with an earlier relativistic calculation [Safronova et al., Phys.
Rev. Lett. 107, 143006 (2011)] to better than 0.2%. Quadrupole and octupole polarizabilities and nonadiabatic
multipole polarizabilities are also reported.
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I. INTRODUCTION

Recent advances in laser control of atoms and ions have lead
to major improvements in the precision of optical frequency
standards [1,2]. These improvements are expected to result in
a new definition of the second [3]. Indeed, an optical clock
using the Al+ ion using quantum logic technology has been
developed with a fractional frequency uncertainty of 8.6 ×
10−18 [4]. This uncertainty is equivalent to a drift of 1 s in
3.7 × 109 years.

The ultrahigh precision achieved by these optical frequency
standards means they are sensitive to very small environmental
influences. One of these influences is the blackbody radiation
(BBR) emitted by the apparatus in which the atomic or ionic
clock is enclosed. This BBR radiation, by means of the ac
Stark effect, changes the energies of the two states of the
clock transition, and this can alter the frequency of the atomic
clock [5,6].

This BBR shift is, in principle, one of the largest sources
of systematic error in these clocks [5–11]. The BBR shift (in
Hz) can be written as

�νBBR = 6.579684 × 1015(�Eupper − �Elower), (1)

where the electric dipole (E1) induced BBR energy shift of an
atomic state can be approximately calculated as [12]

�E ≈ − 2
15 (απ )3α1(0)T 4 . (2)

The dipole polarizability of the relevant quantum state is α1,
and T is the temperature. Knowledge of the dipole polariz-
abilities permits a temperature-dependent BBR correction to
be made to the clock. The uncertainty in the E1 BBR shift can
be written as

δ(�νBBR) = �νBBR

(
δ(�α1)

�α1
+ 4δT

T

)
. (3)

Calculations of the B+ (2s2 1Se
0–2s2p 3P o

0 ) clock transition
have previously been made [13] using a relativistic config-
uration interaction (CI) calculation to account for valence
correlations while an all-order many-body perturbation theory
approach is used to account for core and core-valence
correlations. The paper reported the dipole polarizabilities
and demonstrated that the clock transition for this ion had

a relatively small 300 K BBR shift of 0.0159 Hz [13]. This
paper confirms this result and extends the data set for B+
to encompass higher-order polarizabilities. Calculations are
performed using the CI method with a semiempirical core-
polarization potential to encompass core-valence correlations.

II. METHODOLOGY

The CI calculations used to generate the physical and L2

pseudostates were similar in style to those used previously to
determine the dispersion parameters and polarizabilities of a
number of two-electron systems [14–17]. The Hamiltonian for
the two active electrons is written as

H =
2∑

i=1

(
−1

2
∇2

i + Vdir(ri) + Vexc(ri) + Vp1(ri)

)

+Vp2(r1,r2) + 1

r12
. (4)

The direct, Vdir, and exchange, Vexc, interactions of the valence
electrons with the Hartree-Fock (HF) core were calculated
exactly. The 1s2 core wave function was taken from a HF
calculation of the B2+ ground state using a Slater-type orbital
(STO) basis. The �-dependent polarization potential Vp1 was
semiempirical in nature, with the functional form

Vp1(r) = −
∑
�m

αcoreg
2
� (r)

2r4
|�m〉〈�m|. (5)

The coefficient αcore is the static dipole polarizability of
the core, and g2

� (r) = 1 − exp
(−r6/ρ6

�

)
is a cutoff function

designed to make the polarization potential finite at the origin.
The cutoff parameters ρ� were tuned to reproduce the binding
energies of the B2+ ns ground state and the np, nd, and nf

excited states. The core polarizability was chosen to be αcore =
0.019644a3

0 [18,19]. The cutoff parameters for � = 0 → 3
were 0.6835, 0.6899, 0.8874, and 2.945 a0 respectively.

To get more accurate energy levels and polarizabilities, it
is essential to include a two-body polarization term Vp2 in
the Hamiltonian. The polarization of the core by one electron
is influenced by the presence of the second valence electron.
Omission of the two-body term would typically result in a
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2s2 state that would be too tightly bound. A discussion of the
importance of the two-body polarization potential can be found
in Ref. [20]. The two-body polarization potential is adopted in
the present calculation with the form

Vp2(ri ,rj ) = − αd

r3
i r3

j

(ri · rj )gp2(ri)gp2(rj ), (6)

where gp2 has the same functional form as g�(r). The cutoff
parameter for gp2(r) was chosen as 0.6867a0, the average of
ρ0 and ρ1 (the ρ2 and ρ3 cutoff parameters are influenced by
finite nuclear mass effects, and thus they were not used in
determining the cutoff parameter for Vp2). Use of 0.6867a0 for
the two-body cutoff parameter resulted in energies that were
close to the experimental binding energies for most of the
lowest-lying states of B+. Some small adjustments to the ρ�,
described later, were made later to further improve agreement
with the experimental B+ spectrum. The approach to solve
the Schrödinger equation is termed a configuration interaction
plus core polarization (CICP).

There were a total of 163 valence orbitals with a maximum
orbital angular momentum of � = 5. The radial dependence of
the orbitals were described by a mixture of STOs and Laguerre-
type orbitals (LTOs) [14]. The number of active orbitals for
� = 0 → 5 were 32, 32, 30, 25, 25, and 19, respectively. Some
� = 0 valence orbitals were generated from the STOs used
for the core. All the other orbitals were written as LTOs due
to their superior linear dependence properties when compared
with STO basis sets. The use of the large orbital basis resulted
in wave functions and energies for the low-lying states that
were close to convergence.

The length of the CI expansions for the different states of
B+ ranged from 2000 to 5000. Some small changes were
made to the ρ� values that were originally tuned to the
B2+ spectrum to improve the agreement of the B+ energies
with experiment. The oscillator strengths were computed with
operators that included polarization corrections [14,21,22].
The cutoff parameter in the polarization correction to dipole
operator was 0.6867a0.

III. RESULTS AND DISCUSSION

A. Energy levels

The energy levels of the present calculations are given in
Table I and compared with experiment. The biggest discrep-
ancy for the B2+ ion was 10−4 a.u. The cutoff parameters
of the polarization potential were tuned to reproduce the
experimental binding energies of the lowest states of each
symmetry.

Small adjustments to the cutoff parameters were made for
the calculations of the B+ states. For example, the value of
ρ0 was reset to 0.7064a0 for the calculation of the states of
the 1Se symmetry. The value of ρ0 was fixed by requiring
that the theoretical and experimental energies for the 2s2

state be the same. Other fine-tunings of the cutoff parameters
were made for all symmetries. The biggest discrepancy
between theoretical and experimental energies occurs for
the 1Se symmetry and is only 2 × 10−4 a.u. The agreement
between the theoretical and experimental energy levels is
sufficiently close to discount the possibility that energy-level

TABLE I. Theoretical and experimental energy levels (in hartrees)
for some of the low-lying states of the B+ and B2+ ions. The energies
are given relative to the energy of the B3+ core. The experimental
energies for the multiplet states are averages with the usual (2J +
1) weighting factors. The experimental data were taken from the
National Institute of Standards and Technology [23].

State Present Experiment

B2+

2s 2Se −1.393924 −1.393924
2p 2P o −1.173483 −1.173483
3s 2Se −0.572792 −0.572863
3p 2P o −0.514642 −0.514743
3d 2De −0.500561 −0.500561
4s 2Se −0.310856 −0.310891
4p 2P o −0.287444 −0.287498
4d 2De −0.281527 −0.281529
4f 2F o −0.281269 −0.281269

B+

2s2 1Se −2.318347 −2.318347
2s2p 3P o −2.148168 −2.148168
2s2p 1P o −1.983927 −1.983927
2p2 3P e −1.867605 −1.867605
2p2 1De −1.851947 −1.851947
2p2 1Se −1.736606 −1.736679
2s3s 3Se −1.727053 −1.727053
2s3s 1Se −1.691092 −1.691293
2s3p 3P o −1.662237 −1.662269
2s3p 1P o −1.661828 −1.661765
2s3d 3De −1.631961 −1.631961
2s3d 1De −1.613484 −1.613545

considerations might make a significant contribution to the
uncertainty in the radial matrix elements.

B. Oscillator strengths of low-lying transitions

The oscillator strengths for the transitions between the low
manifold states are listed in Table II. The absorption oscillator
strength from state ψi to state ψj is calculated according to
the identity [14,44]

f
(k)
ij = 2|〈ψi ; Li ‖ rkCk(r̂) ‖ ψj ; Lj 〉|2εji

(2k + 1)(2Li + 1)
. (7)

In this expression, εji = (Ej − Ei) is the energy difference
between the initial state and final state, k is the multipolarity
of the transition, and Ck(r̂) is a spherical tensor. Experimental
energy differences were used for the calculation of oscillator
strengths.

There have been many calculations performed for the
energy levels and oscillator strengths for B2+ [24–26,28,45,46]
and B+ [29–33,35–38,40,43,47–51]. Not all of the theoretical
calculations were tabulated. Table II gives the reported results
of the calculations that are deemed to be the most accurate or
of particular relevance to present calculations.

For the B2+ ion f values are given the multiconfiguration
Hartree-Fock calculation with Briet-Pauli corrections (MCHF-
BP) [24]. The present calculations agree with the MCHF-
BP values to an accuracy of 0.0001. While the present
calculations are ostensibly nonrelativistic, they implicitly
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TABLE II. Absorption oscillator strengths for various dipole transition lines of the B+ and B2+ ions. The experimental energy differences
were used in the calculation of the CICP oscillator strengths.

Transition CICP BCICP MCHF-BP MCHF CI Other theory Experiment

B2+

2s→2p 0.36360 0.36370 [24] 0.36389 [25] 0.363243a [26] 0.35(2) [27]
2s→3p 0.15333 0.15346 [24] 0.15376 [28] 0.15(1) [27]
2s→4p 0.04969 0.04981 [28]
2p→3s 0.04640 0.04636 [24] 0.05(1) [27]
2p→3d 0.63801 0.63803 [24] 0.62(6) [27]

B+

2s2 1Se→2s2p 1P o 0.99907 1.002 [29] 1.001 [30] 0.9976(22) [31] 0.9997 [32] 1.0012b [33] 0.98(8) [34]
0.999(5) [35] 1.005 [36] 1.0012c [37] 0.71(5) [27]

0.9998d [38] 0.98(6) [39]
1.0028e [13]

2s2 1Se→2s3p 1P o 0.10959 0.108 [29] 0.1087 [30] 0.1093(3) [40]
2s2p 1P o→2p2 1De 0.16195 0.162 [29] 0.1621 [30] 0.1608(44) [31] 0.1625 [32] 0.192(9) [41]

0.114(6) [42]
2s2p 1P o→2s3d 1De 0.51545 0.514 [29] 0.5161 [30] 0.5199 [32] 0.49(2) [27]
2s2p 1P o→2p2 1Se 0.22591 0.227 [29] 0.2259 [30] 0.2257(38) [31] 0.2264 [32] 0.24(2) [34]

0.20(1) [27]
0.163(11) [41]

2s2p 1P o→2s3s 1Se 0.00008 0.00019 [30] 0.00007 [32] 0.039(2) [27]
2s2p 3P o→2p2 3P e 0.34298 0.365 [43] 0.34292 [30] 0.3427(2) [31] 0.3427 [32] 0.34(3) [34]

0.32(2) [27]
2s2p 3P o→2s3s 3Se 0.06377 0.06401 [30]
2s2p 3P o→2s3d 3De 0.47627 0.473 [29] 0.47597 [30] 0.49(2) [27]
2p2p 3P e→2p3d 3Do 0.62300 0.310 [43]

aHylleraas-type variational method.
bMulticonfiguration Dirac-Fock (MCDF) method.
cRelativistic MBPT calculation.
dRelativistic CI calculation with MBPT theory.
eRelativistic CI calculation with all order MBPT theory. Calculated with theoretical energy differences.

include relativistic corrections since the energies are tuned
to experimental values. The 2s → 2p oscillator strength
computed with the Hylleraas method [26] is close to the
nonrelativistic limit, but the Hylleraas calculation omits any
relativistic effects, and the Hylleraas energy difference for
the 2s → 2p transitions is 0.22016 a.u., which is about 0.1%
smaller than the experimental energy difference. The full core
plus correlation calculation [25,28,45] listed in the CI column
is a variant of the configuration interaction approach.

There is one previous calculation for B+ that is very
similar in concept to the present methodology. That was a CI
calculation with a semiempirical core potential [29,43]. The
major distinction was the adoption of a B-spline basis, so this
calculation is abbreviated as BCICP in Table II. With a few
exceptions, the CICP and BCICP oscillator strengths agree to
about 1%. When the BCICP oscillator strengths are different
from the present values, one also finds the BCICP oscillator
strengths also disagreeing with the MCHF-BP B2+ oscillator
strengths [30].

There is also better than 0.3% agreement of the CICP cal-
culation with MCHF oscillator strengths with two exceptions.
The MCHF oscillator strength [31] for the 2s2p 1P o →2p2

1De transition is about 1% smaller than the CICP oscillator
strength. The MCHF oscillator strength, however, is about 1%
smaller than the BCICP and MCHF-BP oscillator strengths.

There is also agreement at better than 1% level with a CI
calculation [32] except for the case of the 2s2p 1P o→ 2s3s
1Se transition, which has a very small oscillator strength.

There have been two calculations which combine rela-
tivistic CI calculations with many-body perturbation theory
(CI + MBPT) to represent the core-valence interaction [13,38].
These only gave the oscillator strength for the 2s2 1Se to 2s2p
1P o transition. The total range between the CICP oscillator
strengths and two CI + MBPT oscillator strengths is less than
0.4%. The agreement of the CICP oscillator strengths with
another two relativistic calculations, which are the MCDF
calculation of [33] and the MBPT calculation of [37], is also
at 0.2% level.

Some experimental oscillator strength measurements
[27,34,39,41,42] are also listed in Table II for completeness.
The precision of the experimental data is not as high as many
of the theoretical oscillator strengths.

C. Scalar and tensor polarizabilities

This analysis is done under the premise that spin-orbit
effects are small and the radial parts of the wave functions are
the same for the states with different J . All the polarization
parameters reported here are calculated using their respective
oscillator strength sum rules. The multipole oscillator strengths
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f
(k)
ij are defined in Eq. (7). Then the adiabatic multipole

polarizabilities αk from state i are written as [52]

αk =
∑

j

f
(k)
ij

ε2
ji

. (8)

Related sum rules, such as the nonadiabatic multipole polariz-
ability βk and Sk(−4), are given as [14]

βk = 1

2

∑
j

f
(k)
ij

ε3
ji

(9)

and [5]

Sk(−4) =
∑

j

f
(k)
ij

ε4
ji

. (10)

The Sk(−4) sum rule gives the lowest-order frequency-
dependent component to the dynamic polarizability through
the relation

αk(ω) = αk(0) + ω2Sk(−4) + · · · . (11)

States with a nonzero angular momentum will also have a
tensor polarizability [5,53]. For a state with angular momen-
tum L0 (J0), this is defined as the polarizability of the magnetic
sublevel with M = L0 (M = J0). The total polarizability is
written in terms of both a scalar and a tensor polarizability.
The scalar polarizability represents the average shift of the
different M levels while the tensor polarizability gives the
differential shift.

This tensor polarizability can be expressed in terms of f -
value sum rules. For an L0 = 1 initial state, one can write the
tensor polarizability for a dipole field as [5]

α2,L0L0 = −
( ∑

n,Ln=0

f0n

ε2
n0

− 1

2

∑
n,Ln=1

f0n

ε2
n0

+ 1

10

∑
n,Ln=2

f0n

ε2
n0

)
.

(12)

If the initial state is a L0 = 2 state, one can use the expressions
in Eq. [53] and get the f -value sum

α2,L0L0 = −
( ∑

n,Ln=1

f0n

ε2
n0

−
∑

n,Ln=2

f0n

ε2
n0

+ 2

7

∑
n,Ln=3

f0n

ε2
n0

)
.

(13)

The core does not make a contribution to the tensor polar-
izability since it has an equal impact on all the different M

levels.
The development above is for LS coupled states, but it is

common to give the tensor polarizability for LSJ states. These
can be related to the LS states by geometric factors arising from
the application of Racah algebra. The scalar polarizabilities
for the different J levels are the same (if spin-orbit splitting
is neglected) and equal to the scalar polarizability in the L

representation. The tensor polarizabilities between the L and
J representations can be related using the expressions of [53].
When L0 = 1 and J0 = 0, one finds α2,J0J0 = 0 while the J0 =
1 case gives α2,J0J0 = − 1

2α2,L0L0 .

TABLE III. The pseudo-oscillator strength distribution for the
core B3+. The energy shift parameter εi and the adiabatic (αcore) and
nonadiabatic (βcore) core polarizabilities from Hylleraas calculations
[18] are also displayed. The numbers in the square brackets denote
powers of 10.

εi f
(k)
i αcore βcore

Dipole −16.67592 1.0 1.9644[−2] 1.1243[−3]
−7.89382 1.0

Quadrupole −21.91592 0.28537 3.4266[−3] 1.5237[−4]
−10.14212 0.28537

Octupole −22.51592 0.15844 1.5216[−3] 5.9751[−5]
−11.44722 0.15844

1. Core polarizabilities

The energy distribution of the oscillator strengths originat-
ing from core excitations was estimated using a semiempirical
technique [14]. This approach utilizes f -value sum rules to
construct the pseudo-oscillator strength distributions,

αk,core =
∑

i∈core

kNi

〈
r2k−2
i

〉
(εi)2

, (14)

where Ni is the number of electrons in a core orbital and εi

is an energy shift parameter. The energy shift parameter was
chosen so that Eq. (14) reproduces accurate estimates of the
adiabatic and nonadiabatic core polarizabilities determined by
close to exact calculations for dipole, quadrupole, and octupole
transitions [18].

The present calculated pseudo-oscillator strength distri-
butions are given in Table III. They can be used in the
determination of the dynamic polarizabilities and the long-
range van der Waals coefficients of the B2+ and B+ ions with
other atoms.

2. The B+ and B2+ polarizabilities

Tables IV and V give the scalar adiabatic multipole
polarizabilities of the lowest five states of the B2+ ion and the
lowest three states of the B+ ion. The tensor polarizabilities
and nonadiabatic polarizabilities as well as the related sum
rules Sk(−4) of some states are also listed. The energies of

TABLE IV. The polarizabilities of some low-lying states of the
B2+ ion. The scalar adiabatic polarizabilities αk are listed along
with some nonadiabatic (βk) and tensor (α(1)

2,L0L0
) polarizabilities. All

the polarizabilities are calculated using the experimental energies.
The dipole polarizabilities from accurate CI calculations [25,54] are
displayed for comparison. The polarizabilities are in atomic units.

State α1 β1 α
(1)
2,L0L0

α2 β2 α3

2s 2Se 7.8460 17.137 7.0963 3.8719 30.181
7.847 [25]
7.85 [54]

2p 2P o −0.56938 6.9896 2.1659 5.6105 3.1396 48.761
3s 2Se 182.94 1558.1 1539.0 9096.2 14598
3p 2P o 312.04 13153 20.605 643.82 1374.8 65846
3d 2De −191.26 7616.0 208.16 10.437 2170.3 −24466
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TABLE V. The polarizabilities of the lowest three states of the B+ ion. The scalar adiabatic polarizabilities αk are listed along with some
nonadiabatic (βk) and tensor (α(1)

2,L0L0
) polarizabilities. Values for sum rules S1(−4) are also presented. All these values are calculated using the

experimental energies. The dipole polarizabilities from the relativistic calculation of [13] are displayed for comparison. All polarizabilities are
in atomic units.

State α1 S1(−4) β1 α
(1)
2,L0L0

α2 β2 α3

2s2 1Se 9.6442 80.891 13.757 27.138 20.631 147.01
9.624 CI + all [13]

2s2p 3P o 7.7798 66.320 10.737 1.4613 25.011 17.940 220.98
7.772 CI + all [13]

2s2p 1P o 16.554 603.57 54.587 −2.1960 44.757 44.266 541.44

the lowest-lying states (i.e., those in Table I) were adjusted to
be the same as the experimental energies for the polarizability
calculations.

The present CICP dipole polarizability for the B2+ ground
state is slightly smaller than the polarizability of two very
accurate CI-type calculations [25,54]. The differences do not
exceed 0.004a3

0 . The CI calculations are nonrelativistic and are
expected to be slightly larger than the actual polarizability [55].
A comparison for the isoelectronic ion Be+ can be used to es-
timate an uncertainty in the B2+ 2s states dipole polarizability.
A previous CICP calculation gave a dipole polarizability of
24.493a3

0 , which is very close to the recommended value of
24.489(4)a3

0 [55]. Assigning an uncertainty of 0.1% to the
B2+ ground-state polarizability would seem to be justified.
The uncertainties in the polarizabilities for the excited states
are expected to be of the same order as that of the ground
state except for the case of the 2p state, where considerable
cancellations occur in the oscillator strength sum rule.

Table V gives the polarizabilities of the B+ states. The
only other calculation of the polarizabilities for these states
is a recent CI + MBPT calculation [13]. The CI + MBPT
calculation gave a polarizability for the 2s2 1Se ground state
that is 0.2% smaller than the present CICP calculation. The
difference for the 2s2p 3P o state is 0.1%.

A rough estimate of the uncertainties in the B+ polarizabili-
ties is possible by reference to similar calculations for the Si2+
ground state [16]. A CICP calculation gave 11.688a3

0 , a revised
analysis of a resonant excitation Stark ionization spectroscopy
(RESIS) experiment gave 11.669a3

0 [16,56], and a CI + MBPT
calculation gave 11.670(13)a3

0 [57]. The comparison between
the RESIS and the CICP polarizabilities suggested that a
conservative estimate of the ground-state 3s2 1Se polarizability
was 0.25%, while that for the excited states was 0.5%.

Comparisons for Al+ between CICP polarizabilities [17]
and CI + MBPT calculations [13] reveal differences between
the two calculations that do not exceed 0.4%. The CI + MBPT
calculation uses theoretical differences in the calculation of
the Al+ polarizabilities and overestimates the 3s2 1Se–3s3p
3P o

0 energy difference by 0.14%. The replacement of the
theoretical energy differences by the experimental energy
differences would reduce the difference between the CICP
and CI + MBPT calculation to less than 0.3%. The analysis for
the Al+ system suggests that an uncertainty of 0.3% should
be assigned to the polarizability of the 2s2 1Se state. So the
final recommended 2s2 1Se dipole polarizability is 9.64(3)a3

0 .
Assuming the 2s2p 3po

0 state has the same uncertainty, the

final CICP dipole polarizability is 7.78(3)a3
0 . The scalar dipole

polarizability for the 2s2p 1P o state was 16.55(5)a3
0 , assuming

the same relative uncertainty.
Table VI gives a breakdown of the different contributions

to the 2s2 1Se, 2s2p 3P o
0 , and 2s2p 1P o dipole polariz-

abilities. About 90% of the 2s2 1Se polarizability comes
from the resonant transition, and much of the difference
with the CI + MBPT calculation comes from this transition,
with the CI + MBPT calculation giving 8.918a3

0 [13]. The
CI + MBPT calculation overestimated the 2s2 1Se–2s2p 1P o

transition energy difference by 0.27%, so it is possible that part
of the discrepancy with the CI + MBPT calculation could be
removed by using the experimental energy difference when
calculating the polarizability of the resonant transition. It

TABLE VI. Breakdown of the contributions to the dipole polar-
izabilities of the B+ clock transition states. The δα1 column gives the
contribution from the indicated transition class. The

∑
α1 column

gives the accumulated sum. The final polarizabilities are given in
boldface.

Transition(s) δα1
∑

α1

2s2 1Se state
2s2 1Se → 2s2p 1P o 8.9333 8.9333
2s2 1Se → 2s3p 1P o 0.2542 9.1875
2s2 1Se → nP 1P o 0.4370 9.6245
Core 0.01964 9.6441

2s2p 3P o
0 state

2s2p 3P o → 2s3s 3Se 0.3596 0.3596
2s2p 3P o → nS 3Se 0.1093 0.4689
2s2p 3P o → 2p2 3P e 4.3573 4.8262
2s2p 3P o → nP 3P e 0.0750 4.9012
2s2p 3P o → 2s3d 3De 1.7873 6.6885
2s2p 3P o → nD 3De 1.0717 7.7602
Core 0.01964 7.7798

2s2p 1P o state
2s2p 1P o → 2s2 1Se −2.9778 −2.9778
2s2p 1P o → 2p2 1Se 3.6955 0.7177
2s2p 1P o → nS 1Se 0.0707 0.7884
2s2p 1P o → 2p2 1De 9.2975 10.0859
2s2p 1P o → 2s3d 1De 3.7574 13.8433
2s2p 1P o → nD 1De 2.4125 16.2558
2s2p 1P o → 2p3p 1P e 0.1613 16.4171
2s2p 1P o → nP 1P e 0.1169 16.5340
Core 0.01964 16.5536

052505-5



YONGJUN CHENG AND J. MITROY PHYSICAL REVIEW A 86, 052505 (2012)

should be noted that experimental energy differences were
used in a recent CI + MBPT calculation of the polarizability
of the 3s2 state of Si2+ [57].

The present CICP calculation of the ground-state polar-
izability does not take into consideration the contribution
from the 2s2 1Se →2s2p 3P o

1 transition. The oscillator
strength for this transition is only 3.361 × 10−8 [30], so this
transition can be safely omitted from the determination of the
polarizability. This also justifies the omission of the spin-orbit
interaction from the effective Hamiltonian for the valence
electrons.

D. The BBR shift

The blackbody radiation shift of an atomic clock transition
can be approximately calculated using Eqs. (1) and (2).
In this expression the temperature (in K) is multiplied by
3.1668153 × 10−6. Using the present polarizabilities and
converting to frequency shifts at 300 K gives �ν2s2 1Se =
−0.08305 Hz and �ν2s2p 3P o

0
= −0.06699 Hz. In the present

CICP calculation the dipole polarizability difference for the
2s2 1Se → 2s2p 3P o

0 clock transition is �α1 = −1.8643a3
0 .

The relativistic CI + MBPT calculation [13] gave �α1 =
−1.851a3

0 .
Using a value of �α1 = −1.8643a3

0 leads to a net frequency
shift at 300 K of �ν = 0.01605 Hz. This is consistent with
the CI + MBPT result �ν = 0.0159(16) Hz [13]. A small
correction to the polarizabilities needs to be made to allow
for the slight variation of the polarizabilities due to the finite
temperature of the BBR radiation field,

α1(T ) = α1(1 + η), (15)

where α1(T ) is the polarizability after correction. η is the
dynamic correction factor. The leading-order term of η is given
by [12]

η ≈ −40π2T 2

21α1(0)
S1(−4) . (16)

The value of η was found to be quite small. In the present
CICP calculation, it was −1.42 × 10−4 for the 2s2 1Se

state and −1.45 × 10−4 for the 2s2p 3P o
0 state. Taking this

correction into account, the 300 K dipole polarizabilities
of the 2s2 1Se state and the 2s2p 3P o state are 9.6428a3

0
and 7.7787a3

0 , respectively. The polarizability difference is
�α1 = −1.8642a3

0 . This is only 0.0001a3
0 smaller than the

T = 0 K value of −1.8643a3
0 . It is evident that the effect of

the dynamic correction in the B+ 2s2 1Se →2s2p 3P o
0 clock

transition is minuscule.
When the uncertainties in the polarizabilities are taken into

consideration, the final recommended CICP polarizability
difference at 300 K is −1.86(6)a3

0 . The derived frequency
shift is 0.0160(5) Hz. The CI + MBPT calculation gave a
polarizability difference of −1.85(18)a3

0 and a frequency

shift of 0.0159(16) Hz. The difference between the CICP and
CI + MBPT calculations of the frequency shift is less than
1.0%.

The uncertainty associated with the CI + MBPT calculation
is more than three times larger than that quoted for the
present CICP calculation. Although uncertainties are not
assigned to the CI + MBPT polarizabilities, their final BBR
shift uncertainty indicates uncertainties in their polarizabilities
of 1.0%. The CI + MBPT uncertainty estimates seem very
conservative given the 0.02a3

0 level of agreement between
the CICP and CI + MBPT polarizabilities. A more recent
CI + MBPT calculation of the polarizability of the Si2+ ground
state quoted an uncertainty of 0.12% [57].

IV. CONCLUSIONS

The polarizabilities of some low-lying states of the B2+ and
B+ ions are computed with large-basis CI calculations with
an underlying semiempirical Hamiltonian. The motivation for
these calculations was an independent calculation of the BBR
shift of the B+ 2s2 1Se → 2s2p 3P o

0 clock transition [13].
The final estimate of the frequency shift, namely, 0.0160(5)

Hz, is within 1% of the earlier CI + MBPT calculations [13].
The almost-perfect agreement between these two completely
independent calculations gives increased confidence in the
respective reliabilities of both calculations. One reason for the
good agreement between both calculations is that both calcula-
tions give very accurate solutions of the Schrödinger equation
with respect to their underlying Hamiltonian. Both the CICP
and CI + MBPT approximate the aspects of the physics and, in
particular, the core-valence interaction. The CICP calculation
uses a HF plus semiempirical polarization potential to simulate
core-valence correlation effects. The CI + MBPT calculation
uses MBPT to incorporate the dynamical effects going beyond
the HF interaction. Making these approximations simplifies
the calculation sufficiently to allow a close to numerically
exact solution of the Schrödinger equation for the two valence
electrons.

In addition to the dipole polarizabilities, the present model
computes the quadrupole, octupole, and nonadiabatic dipole
polarizabilities. One way to measure the B+ polarizability
would be the RESIS technique [58,59]. The analysis of the
raw experimental RESIS data can be improved if estimates
of the quadrupole and nonadiabatic dipole polarizability are
available.
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