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The Lifshitz formula is derived by making use of the spectral summation method, which is a mathematically
rigorous simultaneous application of both the mode-by-mode summation technique and scattering formalism. The
contributions to the Casimir energy of electromagnetic excitations of different types (surface modes, waveguide
modes, and photonic modes) are clearly retraced. A correct transition to imaginary frequencies is accomplished
with allowance for all the peculiarities of the frequency equations and pertinent scattering data in the complex ω

plane, including, in particular, the cuts connecting the branch points and complex roots of the frequency equations
(quasinormal modes). The important feature of our approach is a special choice of appropriate passes in the contour
integrals which are used for transition to imaginary frequencies. As a result, the longstanding problem of cuts
in the complex ω plane is solved completely. Some subtleties and vague points in previous derivations of the
Lifshitz formula are elucidated. For completeness of the presentation, the necessary mathematical facts are also
stated, namely, solution of the Maxwell equations for configurations under consideration, scattering formalism
for parallel-plane interfaces, determination of the frequency equation roots, and others.
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I. INTRODUCTION

It is not overstatement to say that the Lifshitz formula is
the basis for practically all the Casimir calculations dealing
with plane boundaries [1]. However, it was recognized in the
literature [2–5] that the derivation of this formula in the original
paper [6,7] is very complicated. It proved that especially
involved is the transition to the imaginary frequencies when
obtaining the Lifshitz formula by deforming the contours of
integration in the complex frequency plane. As far as we
know, nobody has succeeded in repeating this part of Lifshitz’
calculations. Furthermore, the Lifshitz paper [7] did not trace
in detail the contributions to the vacuum energy generated by
different branches of the electromagnetic excitation spectrum
(propagating waves and evanescent waves) and, in particular,
different presentations of these contributions in terms of real
and imaginary frequencies. Now these points have become
important in searching for the materials with the properties
necessary for obtaining the desired characteristics of the
Casimir forces.

Later on, the Lifshitz formula was obtained by making use
of different methods, namely: the quantum field theory tech-
nique in condensed matter physics [8,9], mode-by-mode sum-
mation [1,3,4,10–15], methods of quantized surface modes
and quantized Fresnel modes [16–18], scattering formalism
[19–21], local Green’s functions [22–24], and so on. These
approaches are quite different, and at first glance it is difficult
to reveal their interrelation, although these methods lead to the
same Lifshitz formula, which has never been in doubt.

For the sake of understanding this situation, we propose in
the present paper another derivation of the Lifshitz formula,
namely, this formula will be obtained by making use of the
spectral summation method. This approach is a mathematically
rigorous simultaneous application of both the mode-by-mode
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summation technique and the scattering formalism. At the
same time, some subtleties and vague points in previous
derivations of the Lifshitz formula will be elucidated.

Our derivation of the Lifshitz formula includes two
steps: First, we determine the spectrum of electromagnetic
excitations for given boundaries, taking into account the
material properties of the media under consideration [25],
and afterward we accomplish the summation of the relevant
zero-point energies [23,26,27] connected with all branches
of this spectrum. For a description of the electromagnetic
fields in matter, we shall use the dielectric formalism with
allowance for the usual temporal dispersion. In the framework
of this approach, one can concentrate on the electromagnetic
field dynamics, while the dynamics of induced charges and
currents is taken into account by introducing the permittivity
and permeability ε(ω), μ(ω).1 Some nontrivial points in
calculating the electromagnetic energy with allowance for the
media dispersion in the Casimir studies are recently clarified
in Ref. [29].

When determining the spectrum of the electromagnetic
field, all physically relevant solutions to the Maxwell equations
should be taken into account. Obviously, such solutions are all
squared integrable solutions which belong to the L2 functional
space. In addition, this set of solutions should be complete. In
the rigorous spectral theory of differential operators [30,31],
the following assertion is proved: the functional space in-
cluding the solutions that describe the bound states (discrete
spectrum branch) and scattering states (continuous branch of
the spectrum) is complete with respect to the L2 norm. It
is these solutions that we shall find in the problem under
study, and on this basis we shall determine the relevant

1The electromagnetic field is coupled, through the Maxwell equa-
tions, with charges and currents; therefore one can take, as a dynamic
variable, the local displacement of a continuous charged liquid that
describes the free electrons inside the medium [28].
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spectrum, i.e., the admissible values of the electromagnetic
oscillation frequencies ω.2 Upon determining the complete
set of solutions to the Maxwell equations, quantization of
the electromagnetic field is trivial because we deal here
with the sum of two infinite sets (discrete and continuous)
of noninteracting oscillators. The discrete set of oscillators
describes the evanescent waves including the surface and
waveguide modes,3 and a continuous set of oscillators is
responsible for the scattering states. All these modes will be
rigorously defined in the course of constructing the complete
set of solutions to the Maxwell equations (see below).

The summation of zero-point energies of the discrete modes
can be accomplished, obviously, in a straightforward way,
while for the summation of such energies appertaining to
scattering states, one has to take advantage of the scattering
formalism [34]. Preceding derivations of the Lifshitz formula
in the framework of the mode-by-mode summation alone
or by making use of the scattering formalism only seem
somewhat contradictory at first glance. Indeed, each of these
methods can be rigorously applied to one branch of the
spectrum separately, namely, the mode-by-mode summation
is applicable to the discrete part of the spectrum solely and
the scattering formalism enables one to take into account the
scattering states, i.e., it is applicable to the continuous part of
the electromagnetic spectrum only.

However, it turns out that the “naive” presentation, by
the contour integral in the complex frequency plane, of the
contribution to the vacuum energy generated by one spectrum
branch automatically incorporates the contribution of the
other branch. In order to show this, we perform rigorous
summation of the zero-point energies appertaining to both
the spectrum branches (discrete and continuous ones). It is
this approach that enables one to overcome known drawbacks
in this field, for example, to take into account the cuts in the
complex frequency plane [3,4,11–14], to define correctly the
contributions to the vacuum energy due to different branches
of the electromagnetic spectrum [12,13], and so on.

The important step in the Casimir calculations is the transi-
tion to the imaginary frequencies. In our opinion this transition
was not rigourously justified at least in the framework of
the mode-by-mode summation technique. It is this issue that
resulted in some confusion when deriving the Lifshitz formula
by the mode summation [3,4,10–14,16–18] (see Conclusion
in the present paper). In order to accomplish this transition in
a consistent way, the analysis of the analytical properties of
the frequency equations and the scattering data in the complex
ω plane should be conducted as a preliminary, and the needed
cuts connecting the branch points in this plane should be done.
In the pertinent literature [1–4,10–22] these issues were not
examined. We are going to fill in this gap.

It is worth noting here that the analytic properties of
the scattering matrix (or the Jost function) in the Casimir

2In the general case, the spectrum of the differential operator may
be more complicated [32]. However, in the Casimir calculations such
problems do not occur.

3In physical problems dealing with the plane boundaries, the surface
modes and waveguide modes are called sometimes the guided modes
[33].

studies are different in comparison with the standard theory
of potential scattering. In fact, they are close to those for
the Klein-Gordon equation, the role of mass squared being
played by k2, where k is the wave vector along the unbounded
dimensions. This implies, in particular, that the analytic
properties of the scattering matrix with respect to the complex
frequency ω in the Casimir calculations should be revealed
by direct analysis of its explicit form without referring to the
nonrelativistic potential scattering in the framework of the
Schrödinger equation.

The layout of the paper is the following. Section II is
devoted to the spectrum of electromagnetic excitations in
the problem under consideration. For the Casimir studies
the materials permitting the surface waves are of current
interest. The permittivity of these media can acquire, in
certain frequency bands, negative values. Typical examples of
these materials (metals and isotropic dielectrics) are discussed
briefly. In Sec. II A, the general solutions to the Maxwell
equations for plane parallel interfaces are constructed. Both
branches of the spectrum are considered in detail. In Sec. III
the Lifshitz formula for the Casimir energy is derived by
summing up the zero-point energies of discrete modes and
scattering states. In Sec. IV (Conclusion), the obtained results
are summed and unsolved problems in this field are briefly
outlined.

II. THE SPECTRUM OF ELECTROMAGNETIC
EXCITATIONS

The electromagnetic excitations in the media are diverse,
and they essentially depend on the dielectric and magnetic
properties of the background. For simplicity, only isotropic
media are considered in this paper.

In the Casimir studies we are interested in the long-wave
excitations with λ � d, where d is the characteristic scale in
this field (d ∼ 10–100 nm) and λ is the considered wavelength.
The description of the condensed matter in terms of the
dielectric permittivity assumes the long-wave approximation
as well.

In applications the dielectric properties of the materials play
the leading role; therefore in what follows we put the magnetic
permeability equal to one.

Of particular interest for theoretical and experimental
Casimir studies are the media with dielectric permittivity
taking on negative values over a certain frequency range.
Only interfaces of such media support surface electromagnetic
waves which can be treated as collective excitations of electron
density. The surface waves together with waveguide solutions
belong to the discrete branch of the spectrum (see Sec. II B).

Metals are typical media of this sort. The overall picture of
the electromagnetic waves (excitations) in metal resembles that
in plasma but is not identical with it. In the bulk of the metal the
local electron density oscillates with the characteristic plasma
frequency

ω2
p = 4πne2

m
, (1)

where n is the mean electron density in the metal and m is
the electron mass, the role of the restoring force being played
by the electrostatic field. The volume plasma excitations give
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rise to surface excitations of the electron density (surface
plasmons) which propagate along the metal-dielectric or
metal-vacuum interface. Obviously, the oscillations of the free
charge density cause, according to the Maxwell equations, the
oscillations of the electromagnetic field.

For metals the following dielectric function is commonly
used (plasma model),

ε(ω) = 1 − ω2
p

ω2
, (2)

where ωp is the plasma frequency [Eq. (1)]. The dielectric
permittivity ε(ω) takes negative values in the region ω < ωp.
The field oscillations brought about by the surface excitations
of the electron density are also localized near the surface and
are referred to as the surface plasmons (see the corresponding
analysis of the solutions to the Maxwell equations in Sec. II A).
Inside the metal, the bulk waves propagate with the frequencies
ω > ωp. The transversal and longitudinal bulk waves form the
continuous branch of the spectrum.

It is worth noting here the following. In order to describe
the dielectric properties of a metal more precisely, instead of
the simple plasma model [Eq. (2)], one has to use the Drude
model [1], which takes into account dissipation,

εD(ω) = 1 − ω2
p

ω(ω + iγ )
, (3)

where γ is the relaxation parameter. However, all this imme-
diately results in the necessity to consider the complex-valued
eigenfrequencies. So far, the spectral summation method has
not been extended to this case (see also Sec. IV Conclusion).
Therefore, we shall further describe the dielectric function for
metal by the simple plasma model4 [Eq. (2)].

In the isotropic dielectric the permittivity is described with
a good accuracy by an oscillator model [35]. To gain better
understanding, one can consider the atoms in a dielectric as
weakly damped harmonic oscillators with eigenfrequencies
ωi excited by an external electric field E = E0e

−iωt . The N -
oscillator model gives the following dielectric function:

ε(ω) = ε(∞) +
N∑
j

Sj ω2
j

ω2
j − ω2 − i�jω

, (4)

where Sj is the j th oscillator strength and �j is its relaxation
parameter. In what follows, we neglect again the absorption
(undamped oscillators, �j = 0) and consider real dielectric
permittivity. It is negative for ω approaching ωj from the right.
Thus, the condition for the existence of the surface plasmon at
the flat dielectric-vacuum interface is fulfilled near the narrow
absorption lines of the dielectric media. The number of the
plasmons in this case is equal to the number of oscillators in
the model. The bulk waves in dielectrics (continuous spectrum)
lie in the ranges of frequencies where ε(ω) is positive.

4At separations below 1 μm, the Drude and plasma models in
the Lifshitz formula lead to the values of the Casimir energy and
Casimir force differing by less than 2%. One might expect that at
such separations thermal corrections are not important [1].

A. General solutions to the Maxwell equations

First, we recall briefly the formulation of the Maxwell
theory for compound media with constant permittivity ε and
permeability μ in each region. In this case, the harmonic in
time electric (E) and magnetic (H) fields are described by the
Maxwell equations [36],

∇ × E = i
ω

c
B , ∇ · D = 0 , (5)

∇ × H = −i
ω

c
D, ∇ · B = 0 , (6)

D = εE , B = μH , x /∈ � , (7)

which hold outside the interface � separating the regions with
different ε and μ, and by matching conditions on �. These
conditions require the continuity of tangential components of
the fields E and H when crossing � :

discont (E‖) = 0, discont (H‖) = 0 . (8)

The Gauss units are used and it is assumed that external charges
and currents are absent (both volume and surface ones). The
common time factor e−iωt will be dropped.

When allowing for the time dispersion, the permittivity ε

and permeability μ in material equations (7) and further should
be treated as functions of the frequency ω. General solution to
Eqs. (5)–(7) can be represented in terms of two independent
Hertz vectors in the following way [36–38]:

E = ∇ × ∇ × �′, H = −iε
ω

c
∇ × �′ (TM modes);

(9)

E = iμ
ω

c
∇ × �′′, H = ∇ × ∇ × �′′ (TE modes) .

(10)

Here �′ is the electric Hertz vector, �′′ is the magnetic Hertz
vector, and c is the velocity of light in vacuum.

In each region with given ε(ω) and μ(ω) the Hertz vectors
obey the Helmholtz vector equation

(∇2 + k2)� = 0 , (11)

where the wave number k is given by

k2 = ε(ω)μ(ω)
ω2

c2
. (12)

The boundary conditions [Eq. (8)] involve the complete
fields E and H, i.e., the sums of the TE and TM modes.
Fortunately, for some interface geometries these conditions
do not couple the TE and TM polarizations. It is true for
plane interfaces (see below), for spheres, and in some other
cases [1,23,26,27,36].

It is known that in the source-free case the general solution
of Maxwell’s equations can be derived from two real scalar
functions [39–41] which may be chosen in different ways.
Thus, the Hertz potentials have in fact only one nonvanishing
component. The precise choice of these components is deter-
mined by the interface geometry and for reasons of simplicity
and convenience.

We consider the flat interface parallel to the (x,y) coordinate
plane and cutting the z axis at the point z = z0. Let ex, ey, ez

be the unit base vectors in the chosen coordinate system.
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The z components of the Hertz potentials are treated as two
independent functions in the general solution to the Maxwell
equations:

�′ = eze
ik·s	(z), �′′ = eze

ik·s
(z) . (13)

Here k is a two-component wave vector parallel to the
interface, k = (kx, ky), and s = (x,y). The common time-
dependent factor e−iωt is dropped as usual.

By substituting the Hertz potentials [Eq. (13)] in Eqs. (9)
and (10) we get the fields for the TE modes,

E = μ
ω

c
kx ey eik·s
(z), (14)

H = ikxex eik·s
 ′(z) + ezk
2eik·s
(z), (15)

and for the TM modes,

E = ikxexe
ik·s	′(z) + ezk

2eik·s	(z), (16)

H = −ε
ω

c
kxeye

ik·s	(z) . (17)

Without loss of generality, we directed the x axis along the
vector k: k = (kx = ±k,0).

For the fields [Eqs. (14)–(17)] to obey the Maxwell equa-
tions (5)–(7), the Hertz potentials should meet the Helmholtz
equation (11), which now assumes the form

−	′′(z) =
(

εμ
ω2

c2
− k2

)
	(z) (TM modes) , (18)

−
 ′′(z) =
(

εμ
ω2

c2
− k2

)

(z) (TE modes) ,

(19)
−∞ < z < ∞, z �= z0, k2 = k2

x + k2
y .

Substitution of the fields [Eqs. (14)–(17)] into the continuity
equations (8) results in the matching conditions at z = z0

separately for the functions 	 and 
,

[ε(z0)	(z0)] = 0, [	′(z0)] = 0 (TM modes) , (20)

[μ(z0)
(z0)] = 0, [
 ′(z0)] = 0 (TE modes) , (21)

where the notation

[F (z)] ≡ F (z + 0) − F (z − 0) (22)

is introduced.
For a given value of k2 > 0 the differential equations (18)

and (19), with matching conditions (20) and (21), and physical
conditions at infinity z → ±∞ result in two spectral problems
for the TE and TM polarizations. The frequency ω plays part
of the spectral parameter. For complicated functions ε(ω)
and μ(ω) the spectral parameter may enter into the initial
differential equations nonlinearly.

B. The branches of the electromagnetic spectrum relevant
for calculation of vacuum energy

In order to calculate the vacuum energy of the electromag-
netic field, one has preliminarily to quantize this field with
allowance for given boundary conditions. To this end, the
full set of solutions to the Maxwell equations including all
physically relevant ones is needed. In the directions parallel
to the interfaces the electromagnetic field dynamics is free.

Therefore, we are concerned with the behavior of the solutions
normal to the boundaries, along the z axis.

As was mentioned in the Introduction, the full set of phys-
ically relevant solutions in the problem under consideration
comprises discrete natural modes and scattering states. Normal
modes are the solutions to the Maxwell equations which
are localized near and between the interfaces, their energy
being localized too. They are analogous to the bound states
in quantum mechanics. These solutions are square-integrable
on the whole z axis. The corresponding frequencies (the
eigenvalues of the spectral problem) take on discrete real
values.

The scattering states (propagating modes) are described
by incident waves and outgoing scattered (or reflected and
transmitted) waves. Their frequencies are real and positive,
forming a continuous spectrum.

1. Discrete part of the spectrum

We start with considering a single flat interface in order to
elucidate the properties of dielectric and magnetic functions
required for the existence of normal modes in the problem
under study.

a. Normal modes for a single-plane interface. Let the
plane z = 0 separate two uniform half spaces characterized
by ε1, μ1 and ε2, μ2, or symbolically (ε1,μ1|ε2,μ2). The
general solutions to the Maxwell equations are defined by
two functions 	(z) and 
(z), obeying (18) and (19) and
the matching conditions (20) and (21). The eigenfunctions in
the problem should decrease exponentially in both directions
from the interface, i.e., they behave like outgoing waves with
imaginary wave vectors,

	(z) =
{

A1e
−ik1z, z < 0,

A2e
ik2z, z > 0 ,

(23)

where A1 and A2 are the constant amplitudes,

k2
α = εαμα

ω2

c2
− k2 = ω2

c2
α

− k2 < 0,

c2
α = c2

εαμα

, α = 1,2 , (24)

provided that

kα = +i|kα|, α = 1,2. (25)

On substituting (23) and the analogous representation for
the function 
(z) into the matching conditions (20) and
(21) we arrive at the following equations determining the
eigenfrequencies:

ε1k2 + ε2k1 = 0 (TM modes), (26)

μ1k2 + μ2k1 = 0 (TE modes). (27)

In view of condition (25) the frequency equations (26) and
(27) may have real roots (real eigenfrequencies) only if the
permittivities ε1,ε2 and permeabilities μ1,μ2 have different
signs.

This condition is fulfilled, for instance, at the metal-vacuum
interface, provided the dielectric function of the metal ε1(ω)
is described by the plasma model [Eq. (2)]. In this case we
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put ε2 = μ1 = μ2 = 1. By substituting all this into Eqs. (24)
and (26), one obtains the dispersion equation for the surface
plasmon in the TM polarization,

�4 − (1 + 2q2) �2 + q2 = 0 , (28)

where the dimensionless variables

� = ω

ωp

, q = k

kp

, kp = ωp

c
(29)

are introduced. The solution to Eq. (28) is given by

�(q) =
√

1

2
+ q2 −

√
1

4
+ q4 . (30)

The dispersion curve �(q) is presented in Fig. 1(a). Another
solution to Eq. (28) leads to positive k2

1 that corresponds to
propagating waves in medium 1 [dotted curve in the upper-left
corner in Fig. 1(a)]. In view of the asymptotic behavior

�(q) → q

(
1 − q2

2
+ · · ·

)
, q → 0,

(31)

�(q) → 1√
2

(
1 − 1

8q2
+ · · ·

)
, q → ∞ ,

the dispersion curve �(q) tends in these limits to two straight
lines � = q and � = 1/

√
2 from below. Here � = 1/

√
2 is

the dimensionless frequency of the surface plasma oscillations

[see Fig. 1(a)]. With μ1 = μ2 = 1, obviously, there is no
surface modes in the TE polarization.

The surface waves can be sustained by the dielectric-
vacuum interface too, as the dielectric permittivity, with
account for the dispersion (4), may take on negative values.
The corresponding dispersion law can be found, for example,
in Ref. [42].

b. Normal modes for two parallel-plane interfaces. Now let
us consider two interfaces parallel to the xy plane and cutting
the axis z at the points z = −a and z = a. For simplicity, we
consider from the beginning the symmetric configuration that
can be symbolically represented as

(ε1,μ1 | ε2,μ2 | ε1,μ1) .

For a given polarization, the normal modes can be subdivided
into symmetric or asymmetric solutions. Thus we have for the
TM modes

	(z) =

⎧⎪⎨
⎪⎩

Ae−ik1(z+a), z < a;

B
(cos k2z

sin k2z

)
, −a < z < a;

±Aeik1(z−a), z > a ,

(32)

and the analogous ansatz for the function 
(z) in the case of
the TE modes. The wave vectors k1 and k2 in [Eq. (32)] are
defined, as before, by Eq. (24). For |z| > a we again consider
the “outgoing waves” with the imaginary wave vector k2

1 <

0, while in the region |z| < a the wave vector k2 may be
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FIG. 1. (Color online) Dispersion curves for the discrete modes in the TM polarization for different configurations: (a) single metal-vacuum
interface; (b) metal plate of thickness L = 2akp = 0.63 in vacuum; (c) vacuum gap of the same width L = 0.63 in the metal bulk; and
(d) vacuum gap of the width L = 6.3 in the metal bulk. Frequencies �, ω, and the wave number q are presented in the dimensionless units
defined in Eq. (29). The gray filled regions correspond to the continuous spectrum.
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both imaginary, k2
2 < 0, or real, k2

2 > 0. In the first case, the
waves are just surface ones localized near the interfaces and in
the second case, they are the waveguide solutions5 describing
the standing waves between the interfaces and the evanescent
waves outside this region. Indeed, both solutions are normal
modes because they are squire integrable on the whole axis z.

The matching conditions at points z = −a and z = a result
in the respective frequency equations. For the TM modes these
equations read

La ≡ ik1ε2 + ε1k2 tan(ak2) = 0 (asymmetric modes),

(33)

Ls ≡ ik1ε2 − ε1k2 cot(ak2) = 0 (symmetric modes).

(34)

When defining the spatial symmetry of the electromagnetic
modes we follow the papers [44–46], namely, the symmetric
TM modes are constructed by making use of the symmetric
function 	′(z) and, consequently, antisymmetric function
	(z) in Eqs. (16) and (17). It implies that the longitudinal
component of the electric field Ex(z) is symmetric with respect
to the plane z = 0 and the transverse components of the fields
Ez(z) and Hy(z) are antisymmetric. The antisymmetric TM
modes have the contrary symmetry properties, i.e., Ex(z) is
antisymmetric with respect to the z = 0 plane, and Ez(z) and
Hy(z) are symmetric. In the literature [47,48] reverse notation
is used too. The eigenfrequencies of the symmetric modes are
denoted by ωs(k) and those for the antisymmetric modes by
ωa(k). In the literature different notation for these frequencies
is used, for example, sometimes ω+(k) is referred to the higher
frequency modes and ω−(k) applies to the lower frequency
collective oscillations [44,45].

By making use of the trigonometric relations

tan 2x = 2 tan x

tan2 x − 1
= 2 cot x

cot2 x − 1
,

the frequency equations (33) and (34) can be combined into
one equation,

tan(2ak2) = − 2iη

1 + η2
, η = ε2k1

ε1k2
. (35)

The frequency equations (33) and (34) can also be rewritten in
the exponential form

1 + r12e
2iak2 = 0 (La = 0), (36)

1 − r12e
2iak2 = 0 (Ls = 0). (37)

Multiplying together these two equations we arrive at the
exponential form for the total frequency equation (35)

D(ω) ≡ 1 − r2
12e

4iak2 = 0 (LaLs = 0), (38)

where the notation

r12 ≡ ε2k1 − ε1k2

ε2k1 + ε1k2
= η − 1

η + 1
(39)

is introduced. It will be shown later [see Eq. (51)] that r12 is
the reflection amplitude for a single interface. The frequency

5In Ref. [43], such solutions are referred to as the cavity modes.

equations for the TE polarization are obtained from the above
equations by replacement εα → μα, α = 1,2.

To comprehend the structure of the discrete spectrum in
the presence of two interfaces, we address typical examples.
The solutions to the frequency equations (33) and (34) are
studied in detail in the theory of dielectric waveguides [47] and
optical waveguides [49,50], in the theory of surface plasmons
[42,44,45,51–53] and so on. However, in these applications
the roots of the frequency equations are often sought in the
form k = k(ω) (wave vector as function of frequency). We are
interested in the inverse function ω = ω(k).

While studying the frequency equations (33) and (34), their
plots in terms of the variables k1 and k2 instead of the initial
variables k and ω are helpful and transparent. To this end, the
considered frequency equation is appended with the relation
between k2

1 and k2
2 following from their definition [Eq. (24)].

At fixed ω one obtains two equations connecting k1 and k2. The
intersection points of the curves defined by the left-hand sides
of these equations give the solutions of the initial frequency
equation (see, for example, [47,54]).

Let us briefly describe the structure of the discrete spectrum
of electromagnetic excitations for some configurations. Not all
these examples can have a direct relation to the experimental
studies of the Casimir forces. Nevertheless, all of them turn
out to be instructive in revealing the general properties of the
electromagnetic spectrum for two plane parallel interfaces.

We specify the configuration I in the following way:

ε1 = μ1 = 1, ε2 and μ2 are some constants (40)

(a material plate in vacuum without dispersion). This configu-
ration is studied in detail in radio engineering as the simplest
example of a waveguide [37,47]. When the conditions

ε2 > 0, μ2 > 0, ε2μ2 > 1 (41)

or

ε2 < 0, μ2 < 0, ε2μ2 > 1 (42)

are satisfied, there exist waveguide solutions in the form (32)
with k2

1 < 0 and k2
2 > 0 for both the TE and TM polarizations.

For a given value of k2, the number of such solutions is finite
and is increasing with ω. The respective real eigenfrequencies
lie in the interval (c2k, c1k) with c1 = c.

As expected, the surface modes (k2
1 < 0, k2

2 < 0) in the
present configuration exist only under the conditions (42), in
other words, if the plate is made of the left-handed material
(both ε2 and μ2 are negative [55,56]). In the general case,
the number of modes of this kind is equal to 4: there are two
surface modes with the TE polarization (symmetric oscillation
and antisymmetric oscillation) and two analogous modes with
the TM polarization.

For symmetric surface modes it is enough to fulfill the
condition (42). For antisymmetric surface modes, one has to
impose, in addition to (42), the following conditions:

0 <
aω

c
(ε2μ2 − 1) <

{ |ε2|−1 TM polarization;

|μ2|−1 TE polarization.
(43)

The real frequencies of the surface modes lie in the interval
(0, c2k).

As the next example we consider configuration II, which
is complimentary to the previous one, namely, ε1 and μ1 are
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some positive or negative constants such that ε1μ1 > 1 and
ε2 = μ2 = 1 (two semispaces of the same material without
dispersion separated by the vacuum gap).

This configuration is not investigated in radio engineering
and waveguide optics, but it is closely related to the Casimir
calculations. In the case of left-handed material obeying the
conditions

ε1 < 0, μ1 < 0, ε1μ1 > 1, (44)

there exist surface symmetric and antisymmetric waves in
both polarizations [56,57]. Indeed, one of the branches of the
hyperbola defined by the equation

a2κ2
2 − a2κ2

1 = a2ω2

c2
(ε1μ1 − 1) > 0 , kα = iκα, α = 1,2

(45)

at negative ε1 and μ1 always crosses in the first quadrant the
curves defined by the equations

aκ1 = −ε1

ε2
(aκ2) tanh(aκ2) , aκ1 = −ε1

ε2
(aκ2) coth(aκ2),

and two more obtained by replacing εα by μα, α = 1,2.
Therefore, the discrete spectrum for the present configuration
exists only in the case of left-handed materials and consists of
four surface modes. The frequencies of these modes belong to
the interval 0 < ω < c1k.

Keeping in mind the possibility of total reflection at the
interface of the media 1 and 2, one can try to find the solutions
for this configuration with k2

1 > 0 and k2
2 < 0. However, it is

easy to see that there are no such solutions with real frequencies
as the equations are complex. Even if such solutions existed,
they are not eigenfunctions of the discrete spectrum because
they are not squared integrable on the infinite axis z.

For the configuration under consideration there are no
waveguide solutions to the Maxwell equations. Indeed, for
the existence of such solutions, it is required that k2

1 < 0, and
k2

2 > 0. From these conditions we arrive at the conflicting
inequalities 0 < ω < c1k and ω > ck, with c1 = c/

√
ε1μ1 <

c.
Now let us consider the examples of the discrete elec-

tromagnetic spectrum explicitly allowing for the temporal
dispersion in the media. As configuration III we take a
material (metal) slab in vacuum, the dielectric properties of
the slab being described by the simple plasma model [Eq. (2)]
[see Fig. 1(b)]:

ε1 = μ1 = 1, ε2(ω) = 1 − ω2
p

ω2
, μ2 = 1 . (46)

This configuration supports two surface waves in the
TM polarization. These modes are well studied theoretically
[46,56] and experimentally, for instance, in measurements of
the energy losses by the electrons passing through the metal
films [44,45]. There is vast literature on this subject [42,51,53].
Our citing is minimal.

The physical picture of these collective excitations is the
following. At both boundaries of the metal plate (z = ±a) with
a → ∞ there exist plasma oscillations of the electron density
with the same frequency ωp/

√
2 and dispersion law [Eq. (30)].

If the thickness of the plate or film is finite, these oscillations

interact reciprocally and the energy level [Eq. (30)] splits, as
usual, in two levels (asymmetric and symmetric ones) with
frequencies ωa(k) and ωs(k) defined by Eqs. (33) and (34),
respectively [see Fig. 1(b)].

It is important that both curves ωs(k) and ωa(k) are placed
to the right of the line ω = ck and below the horizontal line
ω = ωp. Thus the eigenfrequencies of the surface modes lie
in the interval 0 � ωs(k), ωa(k) < ck for 0 < k < ∞.

The curve ωa(k) at all k lies above the curve ωs(k). Near
the origin both the curves touch the line ω = ck from the
right. With k → ∞ the curves ωs(k) and ωa(k) tend to the
horizontal line ω = ωp/

√
2, respectively, from below and from

above. For 2a → ∞ the frequencies ωs(k) and ωa(k) tend to
the universal curve [Eq. (30)] from below and from above.

The characteristic value of the longitudinal wave vector k

in the problem under consideration is kp = ωp/c. It is within
the vicinity of k ∼ kp where the “bend” of the curves ωs(k)
and ωa(k) is observed.

It is evident that there are no waveguide solutions (k2
1 <

0, k2
2 > 0) in the present case. Indeed, from the definition of

the wave vectors k1 and k2 [see Eqs. (2) and (24)] we obtain

−k2
1 + k2

2 = −ω2
p

c2
.

For the waveguide solutions the left-hand side of this equation
should be positive. Hence, this equality cannot be satisfied.

Now we consider configuration IV, complementary to the
previous one, namely, a vacuum slot, 2a in width, in the bulk
metal described by the plasma model [see Figs. 1(c) and 1(d)]:

ε1(ω) = 1 − ω2
p

ω2
, μ1 = 1, ε2 = μ2 = 1 . (47)

First, we address the surface waves in the present setup, k2
1 <

0, k2
2 < 0, which exist in the TM polarization [46]. Again, we

have two such collective modes, symmetric and antisymmetric
ones, their frequencies being placed in the interval (0,ck). The
layout of the dispersion curves is interchanged in comparison
with the previous case, ωs(q) > ωa(q). The curve ωa(q) lies
below the horizontal line ω = 1/

√
2 and to the right from the

line ω = q. At the point q = qcr = 1/
√

1 + L/2 the dispersion
curve ωs(k) crosses the light line ω = q and becomes the
lowest waveguide mode (see Figs. 1(c) and 1(d) and [46]).6

Thus, the symmetric surface mode ωs(q) becomes in this
configuration a “hybrid” one. It is this fact that leads to the
known result, namely, the contribution of the surface modes
to the Casimir energy for a given configuration proves to be
considerable only at small distances. Indeed, because of the
hybrid nature of the symmetric mode, the dispersion curves
ωs(q) and ωa(q) move apart in the region q < qcr [Figs. 1(c)
and 1(d)], this divergence being maximum at small L [compare
Figs. 1(c) and 1(d)]. Obviously, this implies in turn that the
mutual interaction of these collective excitations is maximum
at small L.

6Probably, this implies that the symmetric surface TM mode in this
configuration may directly be excited by the light beam contrary to
the plate configuration [Fig. 1(b)] [42,44,45,51].
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With increasing the gap width L, in this configuration there
appear waveguide solutions (k2

1 < 0, k2
2 > 0) satisfying the

conditions

c2k2 < ω2
wg(k) < ω2

p + c2k2 . (48)

Thus, they lie to the left from the line ω = ck and below

the curve ω =
√

ω2
p + c2k2. Approximately, the frequency of

these modes and their total numbers, for each polarization, are
given by Ref. [58]

ω2(k) ≈ k2c2 + n2π2c2/4a2,
(49)

n = 0,1,2, . . . ,n < 2aωp/πc .

These modes exist only at large gaps [compare Figs. 1(c) and
1(d)]. Indeed, for gold ωp = 1.38 × 1016 s−1. Therefore, the
dimensionless width of the gap L = 0.63 implies 2a = 14 nm
and L = 6.3 corresponds to 2a = 140 nm. In the first case,
there are no pure waveguide modes [Fig. 1(c)] and, at the
same time, the surface modes interact strongly because their
dispersion curves are distinguished considerably. In the second
case [Fig. 1(d)], only two pure waveguide modes appear while
the surface modes at q > 1 practically coincide with each other
and with the single interface dispersion curve �(q). The latter
means that in this region the surface modes do not couple. For
copper, we have close figures: ωp = 1.46 × 1016 s−1, 2a =
12.6 nm (L = 0.63), and 2a = 126 nm (L = 6.3).

The fact that waveguide modes exist only for large gaps
suggests that they contribute appreciably to the dispersion
force at large distances [58], where contributions of the surface
modes practically vanish.

The examples studied above reveal general properties of
the discrete spectrum in the problem at hand and permit us to
establish the lower boundary of the continuous spectrum. Let
us summarize these properties:

(i) The discrete spectrum may comprise the solutions of
two types: the surface modes and the waveguide modes;

(ii) At fixed k the frequencies of the surface modes (if they
exist) lie in the interval [0,ω−(k)], while the frequencies of
the waveguide solutions (if they exist) belong to the interval
[ω−(k),ω+(k)], where the boundary values ω−(k) and ω+(k)
[ω−(k) < ω+(k)] are defined by the explicit form of the
dielectric function ε(ω);

(iii) The lower boundary of the continuous spectrum is
defined by the condition k2

1(ω) > 0.
Here we list the values of ω+(k) and ω−(k) for the

configurations I–IV.

I: ω−(k) = c2k ≡ ck√
ε2μ2

, ω+(k) = ck, c2 < c .

In this case, the discrete spectrum may include the surface
modes and the waveguide modes with the frequencies from
the above-specified intervals; the continuous spectrum ω is
defined by ω > ω+(k).

II: ω−(k) = c1k ≡ ck√
ε1μ1

, ω+(k) = ck, c1 < c .

The discrete spectrum may consist of the surface modes only
with the frequencies from the above specified interval; the

continuous spectrum ω exists for ω > ω−(k) = c1k.

III: ω−(k) = ck , ω+(k) =
√

c2k2 + ω2
p .

The discrete spectrum is formed by the surface modes with
frequencies from the interval specified above; the continuous
spectrum is defined by ω > ω−(k) = ck.

IV: ω−(k) = ck , ω+(k) =
√

c2k2 + ω2
p .

The discrete spectrum comprises the surface modes and
the waveguide modes with frequencies in the corresponding
intervals; the continuous spectrum exists for ω > ω+(k) =√

c2k2 + ω2
p.

In what follows it is significant that the points ω−(k) and
ω+(k) are the branch points for the root functions k1(ω) and
k2(ω) (see Sec. III A). The configurations considered above
are unbounded, i.e., open. As a result, in addition to the
real roots the frequency equations have also the discrete
complex roots ω(k) = ω′(k) + iω′′(k) which correspond to
the quasinormal modes [34]. These modes are not squared
integrable and therefore they are not normalizable. That is why
the quasinormal modes are not included in the completeness
relation. However, their existence should be taken into account
when choosing the contours for integration in the complex ω

plane (see Sec. III A).
It is worth noting here that the quasinormal modes are

explored in fact in the experiments dealing with the radiating
plasmons [45]. Usually, in this field the complex wave numbers
are considered k(ω) = k′(ω) + ik′′(ω) instead of the complex
eigenfrequencies.

2. Treatment of the continuous part of the spectrum

To study the contribution of the continuous spectrum to
the vacuum energy, the scattering matrix is required, i.e.,
the S matrix for the wave equations (18) and (19) with the
matching conditions (20) and (21), respectively. Here we deal
with the one-dimensional scattering on the infinite z axis,
−∞ < z < ∞. This problem has some peculiarities [59–62].
Specifically, one has to consider the incidence of the initial
waves from the left and from the right separately. Thus, we
must add such initial waves to the outgoing and standing waves
in Eqs. (23) and (32) considered in the pertinent eigenvalue
problems. The respective reflection amplitudes, rl, rr , and
transition amplitudes, tl , tr , make up a (2 × 2) matrix that
plays the role of the scattering matrix in the problem under
consideration:

S(ω) =
(

tl rl

rr tr

)
. (50)

a. Single-plane interface. In the case of the one-plane
interface (ε1,μ1|ε2,μ2) we have for the TM polarization,

rl ≡ r12 = ε2k1 − ε1k2

ε1k2 + ε2k1
, rr ≡ r21 = −r12 = −rl , (51)

tl ≡ t12 = 2ε1k1

ε1k2 + ε2k1
, tr ≡ t21 = 2ε2k2

ε1k2 + ε2k1
, t12 �= t21.

(52)
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The analogous amplitudes for the TE polarization are obtained
from Eqs. (51) and (52) by the substitution εα → μα, α = 1,2.

The amplitudes t and r for the TM and TE polarizations
have the poles at the points where the variable ω coincides
with the eigenfrequencies defined by Eqs. (26) and (27). This
property is preserved for several interfaces too (see below).
The single-plane interface is a nonsymmetric configuration;
therefore, the S matrix [Eq. (50)] in this case does not possess
appealing physical properties.

b. Electromagnetic scattering by two parallel-plane inter-
faces. Now we address the scattering matrix for two plane
interfaces which are parallel to the xy plane and cut the z axis
at the points z = −a and z = a, in other words, we envisage
the configuration (ε1,μ1|ε2,μ2|ε3,μ3). The explicit form of
t and r is again derived from the matching conditions (20)
and (21) [35,36] or by making use of the multiple reflection
technique [24,35]. By taking careful account of the phase
factors at the points z = −a and z = a one obtains

rl ≡ r123 = r12 + r23e
4ik2a

1 + r12r23e4ik2a
, tl ≡ t123 = t12t23e

2ik2a

1 + r12r23e4ik2a
,

(53)

rr ≡ r321 = r32 + r21e
4ik2a

1 + r32r21e4ik2a
, tr ≡ t321 = t32t21e

2ik2a

1 + r32r21e4ik2a
,

(54)

where rij and tik are defined in Eqs. (51) and (52).
Furthermore, we consider the special case of Eqs. (53)

and (54), the symmetric one, (ε1,μ1|ε2,μ2|ε1,μ1). In the
symmetric setup one has

r = rl = rr ≡ r121 = r12 − r12e
4ik2a

1 − r2
12e

4ik2a
,

(55)

t = tl = tr ≡ t121 = t12t21e
2ik2a

1 − r2
12e

4ik2a
.

The amplitudes r and t in Eq. (55) have the poles at the
points of the discrete spectrum [see Eq. (38)], and they obey
the relations

|t |2 + |r|2 = 1, (56)

r t̄ + r̄ t = 0 , (57)

where the bar means complex conjugation. Now the scattering
matrix [Eq. (50)] is given by

S(ω) =
(

t r

r t

)
. (58)

Due to Eqs. (56) and (57) the S matrix [Eq. (58)] is a symmetric
unitary matrix

SS† = S†S = 1 . (59)

In the case of potential scattering on an infinite line with
symmetric potential the amplitudes t and r are parametrized
as follows [61]:

t = cos θ eiδ, r = i sin θ eiδ , (60)

where θ and δ are the real functions of ω. Further, we have

det S(ω) = t2(ω) − r2(ω) = e2iδ(ω) (61a)

= t(ω)

t̄(ω)
. (61b)

For the real ω the function det S(ω) is defined by formula
(61a), while (61b) gives its continuation to the whole complex
plane ω.

In order to consider in this approach the initial asymmetric
configuration (1|2|3), one has to proceed from the symmetric
multilayered configuration (1|2|3|2|1), calculate the respective
total reflection and transition amplitudes, and find det S(ω).
Transition to the initial asymmetric configuration should be
done only at the final stage of the vacuum energy calculation
(see Sec. III A) by moving the interface 3|2 to infinity.

III. CASIMIR ENERGY

We define the Casimir energy as the renormalized zero-
point energy of the electromagnetic oscillations for the
configuration at hand

E = h̄

2

∑
{q}

ωq. (62)

Here the sum sign implies the summation over the discrete part
of the spectrum and the integration over its continuous branch.

The summing up of the discrete eigenfrequencies will be
performed by making use of the frequency equations. The
integration over the continuous part of the spectrum cannot be
carried out by applying the “naive” formula∫

ω dω, (63)

because it does not “feel” the physical nature of the problem
under consideration, namely, this integral does not depend
on the specific form of the differential operator and the
corresponding boundary conditions [34]. Therefore, the sum-
mation over the continuous branch of the spectrum should be
accomplished, as usual, by making use of the spectral density
shift. The rigorous mathematical theory of the scattering
problem gives the following expression for this function [63]:

�ρ(ω) ≡ ρ(ω) − ρ0(ω) = 1

π

d

dω
δ(ω) (64a)

= 1

2πi

d

dω
ln det S(ω) = 1

2πi

d

dω
ln

t(ω)

t̄(ω)
, (64b)

where S(ω) is the S matrix in the spectral problem at hand. In
Eq. (64) ρ(ω) is the density of states for a given potential (or for
given matching conditions in the case of the compound media)
and ρ0(ω) is the spectral density in the respective free spectral
problem (for the vanishing potential or for the homogeneous
unbounded space). In the case of one-dimensional scattering
the calculation of the spectral density was considered in
Refs. [61,64]. It is worth noting here that already at the level
of the spectral density [Eq. (64)] the removing of infinity is
carried out, namely, the contribution to the vacuum energy
generated by the unbounded Minkowski space is subtracted
here.
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FIG. 2. (Color online) The contours C+ and C− in the complex
ω plane which are used when going on to the integration over the
imaginary frequencies. For simplicity, the spectrum possessing one
surface mode ωsm, two waveguide modes ωwg , and the continuous
part ω > ω+ is considered. The cuts starting at the points ω− and ω+
are shown by heavy lines.

Taking into account all this, we can work out Eq. (62) in
detail as follows:

E(2a) = h̄

2

∑
σ

∫ ∞

−∞

d2k
(2π )2

[∑
n

ωn(σ,k,a)

+
∫ ∞

ω0

ω �ρ(σ,ω,k,a) dω

]
− (a → ∞) . (65)

Here k is the wave vector along unbounded dimensions
k = (kx,ky); ωn(σ,k,a) are the frequencies appertaining to
the discrete spectrum; the function of the spectral density
shift �ρ(ω) is given by Eq. (64); and ω0 is the lower bound
of the continuous spectrum. Summation over σ = TE, TM
in Eq. (65) takes into account two polarizations of the
electromagnetic field.

The further treatment of Eq. (65) is aimed at deriving a
unique integral representation for the contributions of both
the discrete part and the continuous part of the spectrum, the
integration being carried out over the imaginary frequencies
ω = iζ .

To be definite, we shall consider the “richest” electro-
magnetic spectrum possessing the surface modes, waveguide
modes, and the continuous part (see, for example, config-
urations I and IV in Sec. II B1). As was shown there, the
frequencies of the surface modes lie in the interval 0 < ωsm <

ω−(k), the frequencies of the waveguide modes belong to
the band ω−(k) < ωsm < ω+(k), and for the frequencies ω

of the continuous part of the spectrum we have ω+(k) < ω

(see Fig. 2).

A. Transition to imaginary frequencies

In what follows, we have to go out in the complex frequency
plane ω. For this the one-valued branches of the integrand in
Eq. (65) should be chosen. The square root dependence

kα(ω) =
√

εα(ω)
ω2

c2
− k2, α = 1,2 (66)

results in branch points. For the usually accepted functions
ε(ω) there appear four such points on the real axes: ±ω−(k)
and ±ω+(k) [0 � ω−(k) < ω+(k)] (see Sec. II B1). These are
the same points that separate the different parts of the spectrum.

We draw two cuts on the real axes ω: the first cut connects
the points −ω− and ω−, and the second one starts at the point
ω+ and goes to infinity (see Fig. 2). The first cut passes round
the eigenfrequency of the surface mode ωsm from below. It is
not crucial and this cut can go round ωsm from above as well.
Further, we assume that k1(ω) and k2(ω) in Eq. (66) acquires
real positive values at the upper edges of the cuts.

The eigenfrequencies ωn(σ,k,a) are unknown in an explicit
form; we have only the respective frequency equations (33)
and (34) or in another form Eqs. (36)–(38). This dictates,
without choice, making use of the argument principle theorem
from the complex analysis when summing over n in Eq. (65).
When choosing the contour for integration in the complex ω

plane, one should bear in mind that the left-hand sides of the
frequency equations D(σ,ω), considered as the functions of
the complex variable ω, have a “good” behavior in the upper
half plane ω only:

D(σ,ω) = 1 − r2
σ e4iak2 , ck2 =

√
ω2 − ω2+ . (67)

This forbids from the very beginning the deformation of the
contour in such a way that it includes the whole imaginary
axes Im ω. An admissible contour is obviously the following
one: the integration should be performed along the circles Cε

of the radius ε with ε → 0, with each circle surrounding a
single root of the frequency equation (see Fig. 2).

When treating the contribution of the continuous part of
the spectrum to the vacuum energy one should keep in mind
the following. Upon substituting (64b) in �ρ(ω) the transition
amplitude from Eq. (55),

t(ω) = t12t21e
2ik2a

D(ω)
, (68)

in vacuum energy [Eq. (65)] there appear terms which are
proportional to the distance between the slabs 2a. These
contributions are generated by the factor e2ik2a and they belong
to the internal energy of medium 2 in the configuration under
consideration. These terms are removed from the Casimir
energy by the subtraction indicated in Eq. (65). Hence,
in calculation of the vacuum electromagnetic energy the
denominator D(ω) in Eq. (68) “works” alone. Now the vacuum
energy [Eq. (65)] acquires the form

E(2a) = h̄

2

∑
σ

∫ ∞

0

kdk

2π

1

2πi

[∫
Cε

dω ω
d

dω
ln D(σ,ω)

+
∫ ∞

ω+
dω ω

d

dω
ln

D̄(σ,ω)

D(σ,ω)

]
. (69)

Furthermore, we represent the contribution of the continu-
ous spectrum to the vacuum energy [the second term between
the square brackets in Eq. (69)] in the form of the contour
integrals as well. According to the Cauchy integral theorem,
we can write ∫

C+
dω ω

d

dω
ln D(σ,ω) = 0, (70a)

∫
C−

dω ω
d

dω
ln D̄(σ,ω) = 0, (70b)

where the contours C+ and C− are shown in Fig. 2. Here we
have taken into account that the complex roots of the equation
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D(σ,ω) = 0 lie only in the lower half plane ω and, respectively,
the complex roots of the equation D̄(σ,ω) = 0 are placed only
in the upper half plane ω.7 Such a layout of the complex
eigenfrequencies is in a direct relation with the choice of the
time dependence in the solutions to the Maxwell equations
in the form e−iωt (see Sec. II A). In view of relations (70),
we can express the contribution of the continuous part of the
spectrum in Eq. (69) as the integrals along the contours C+
and C− which have no section (ω+,∞). One can easily see
from Fig. 2 that along the contours Cε the contributions of
the discrete spectrum and continuous spectrum are mutually
canceled.8 Besides, at the length (0, ω+) the contributions of
the continuous part of the spectrum generated by D(σ,ω) and
D̄(σ,ω) are mutually canceled too.

As a result, we arrive at a very compact and clear formula
for the Casimir energy,

E(2a) = h̄

2π

∑
σ

∫ ∞

0

kdk

2π

∫ ∞

0
dζ ln D(σ,iζ,k),

σ = TE, TM, (71)

where

D(σ,iζ,k) = 1 − r2
σ (iζ,k) e4aκ2(ζ,k), σ = TE, TM,

rTE(iζ,k) = κ1(ζ,k) − κ2(ζ,k)

κ1(ζ,k) + κ2(ζ,k)
,

(72)

rTM(iζ,k) = ε2(iζ )κ1(ζ,k) − ε1(iζ )κ2(ζ,k)

ε2(iζ )κ1(ζ,k) + ε1(iζ )κ2(ζ,k)
,

κα(ζ,k) ≡ ikα(iζ,k) =
√

εα(iζ )
ζ 2

c2
+ k2, α = 1,2 .

In obtaining formula (71) the integration by parts was carried
out with respect to the variable ζ : ω = iζ . Obviously, this
formula holds for an arbitrary spectrum of electromagnetic
excitations sustained by the configuration under consideration.
Let us remember that the symmetric configuration is consid-
ered with nonmagnetic materials [ε1(ω),μ1 = 1|ε2(ω),μ2 =
1|ε1(ω),μ1 = 1].

Differentiation of the vacuum energy [Eq. (71)] with respect
to the gap width 2a immediately gives the Lifshitz formula for
the Casimir force at zero temperature [1]:

F (2a) = −∂E(2a)

∂(2a)
= − h̄

2π2

∫ ∞

0
k dk

∫ ∞

0
dζ κ2(ζ,k)

×
∑

σ

[
r−2
σ (iζ,k)e4aκ2(ζ,k) − 1

]−1
. (73)

Here σ = TE, TM as before and the same notation [Eq. (72)]
is used.

In order to reproduce exactly the Lifshitz formula (9) in
Ref. [7] for a vacuum gap (ε2 = μ2 = 1) between the identical

7A simple example of the complex frequencies in solutions to the
Maxwell equations for an open system (a perfectly conducting sphere
in the vacuum) was discussed in Ref. [34].

8In earlier papers dealing with other configurations the analogous
cancellation was brought out by making use of the complex k2 plane
(see, for example, [65,66]). However, the Lifshitz formula is presented
in terms of the variable iζ = ω.

slabs, a new variable p = p(k) should be introduced:

pζ

c
≡ κ2 =

(
ζ 2

c2
+ k2

)1/2

. (74)

Taking into account that p(k = 0) = 1 and

κ2k dk = p2ζ 3

c3
dp,

we easily convert Eq. (73) to the form

F (2a) = − h̄2

2π2c3

∫ ∞

0
ζ 3dζ

∫ ∞

1
p2 dp

×
∑

σ

[
r−2
σ (iζ,p)e4apζ/c − 1

]−1
, (75)

where

r−2
TE (iζ,p) =

(√
ε1(iζ ) − 1 + p2 + p√
ε1(iζ ) − 1 + p2 − p

)2

,

r−2
TM(iζ,p) =

(√
ε1(iζ ) − 1 + p2 + ε1(iζ )p√
ε1(iζ ) − 1 + p2 − ε1(iζ )p

)2

.

IV. CONCLUSION

Our derivation of the Lifshitz formula (75) is accomplished
within the framework of the rigorous spectral summation
method. We believe that in this approach the answers are given
to many questions in this field which have needed solutions
for a long time. First of all, it is a simultaneous incorporation,
on the same footing, of the discrete and continuous parts of
the electromagnetic spectrum, with consistent treatment of
the branch cuts in the ω plane, with consideration of the
complex eigenfrequency location and so on. Our approach
is based on a special choice of appropriate passes in the
contour integrals which are used for transition to imaginary
frequencies. Contours of this type were employed in our
preceding paper [67] dealing with a related problem.9 The
main idea of our approach is easy to grasp. With close
consideration of Fig. 2, the mechanism of mutual cancellations
between contributions of the discrete and continuous parts
of the spectrum becomes evident as well as the final result,
the Lifshitz formula (71). Without doubt, it is an important
advantage of our consideration.

By making use of the contours C+ and C− shown in Fig.
2 one can easily “explain” in what way the correct Lifshitz
formulas (71) and (72) may be “derived” by summing up
only the discrete eigenfrequencies [1,3,4,10–18]. Let us ignore
the branch cuts in the ω plane, the complex eigenfrequencies
(quasinormal modes), and the bad behavior of the left-hand
side of the frequency equation D(σ,ω) in the lower half plane
ω. After that one may “glue” the sections of the contours C+
and C− which are along the positive Re ω axis and drop them.
As a result, we obtain a unique contour involving the whole
Im ω axis and a semicircle of large radius in the right half plane.

9By the way, it is these contours that had to be used in our preceding
paper [68] considering dielectric cylinder without dispersion.
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By using this contour in the first integral between the square
brackets in Eq. (69) we arrive immediately at the final equation
(71). Proceeding in an analogous way one may “derive” the
Lifshitz formula in the scattering formalism alone [19–21,
69]. It should be noted here that the comparative analysis of
the contributions to the vacuum energy generated by surface,
waveguide, and photonic modes has recently been carried out
by Bordag [70].

In the Lifshitz formula (71), written in terms of the
integral over imaginary frequencies, there are no traces of
the electromagnetic spectrum details in the problem at hand;
in other words, this formula has the same universal form for all
physically admissible material media. Presumably, it implies
that the problem of finding the vacuum energy with allowance
for the material characteristics of media is, on its nature, a
statistical problem. Therefore, an appropriate mathematical
method here would be the dissipation-fluctuation theorem
formulated, from the very beginning, in terms of imaginary
time. One can anticipate that this may simplify the transition
to imaginary frequencies in the Lifshitz approach.

Many important topics are left beyond our consideration.
One of them is the allowance for the dissipation when
calculating the vacuum energy. There are many approaches
to this problem (see, for example, [71] and more recent papers
[72]), but until now it has been unclear as to how to come to an
agreement regarding the rigorous spectral summation method
which is based on the real eigenfrequencies in the pertinent
spectral problem.
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