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Quantum wire as a charge-qubit detector
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We present a proposal for a qubit charge meter (detector) based on a linear wire of quantum dots placed
between two electron reservoirs. A qubit formed by an excess electron in a double quantum dot is coupled
electrostatically with a single wire site and the dynamics of this system is studied using the equation of motion
for appropriate correlation functions and the evolution operator method. For the qubit-wire system, depending on
the qubit position on the wire the readout current oscillates over a long time or the current oscillations decrease
very rapidly. This effect cannot be explained in terms of different charges of the wire sites (the same occupancies
of all sites are considered). We have found that the qubit’s decoherence strongly depends on the structure of the
local density of states of the site which is coupled with the qubit. Additionally, the period of the readout current
oscillations changes with the wire-qubit electrostatic coupling.
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I. INTRODUCTION

The basic blocks of quantum computers are qubits (two-
state systems). One of the most popular realizations of qubits
represents two coupled quantum dots (QDs). Such a double-
quantum-dot (DQD) system with one excess electron forms
a charge qubit. Decoherence of the qubit quantum states is a
major problem in fabricating a working quantum computer.
In general the qubit state measurement is destructive. The
interaction of a qubit with its environment (e.g., with a
charge-sensitive detector) influences the qubit state and usually
causes total decoherence. Note, however, that, depending on
the mesoscopic system geometry, also partial decoherence
can be observed despite the coupling to the environment.
Moreover, the energy exchange between the two-state qubit
and the qubit meter can occur during the measurement process
[1]. Thus for qubit-detector systems the measurement of qubit
charge oscillations is usually strongly limited in time.

For a DQD qubit which is capacitively coupled to a quantum
point contact (QPC) the state of a charge qubit may be
determined [2,3]. The QPC current is sensitive to the two-state
qubit occupation and reflects the qubit dynamics. It is also
possible to use a single-electron transistor (SET) or a DQD
system as a qubit charge meter (detector of the qubit charge)
[4–7]. It is interesting that for an asymmetric SET the detector
current follows the qubit oscillations, which are distorted much
less than in the case of the symmetric SET [6,8]. The DQD
meter can also be used to distinguish between qubit states with
different electron phases [9]. Instead of DQD detectors one can
also use two serially coupled QPCs [10,11].

In this work we present a proposal for a QD wire (QW)
between two leads which represents an effective charge
qubit meter. We consider theoretically a DQD qubit coupled
electrostatically with a single site of a linear chain of QDs. The
wire consists of N QD sites and is connected with the left and
right electron reservoirs via the tunneling barriers (hopping
integrals). In this case the current flowing through the wire
is sensitive to the qubit charge oscillations and we treat it
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as a natural candidate for readout of the two-state system.
Additionally, in comparison with a single QD, DQD, or QPC
(which are often used in the literature as charge meters), here
we analyze a qubit coupled to different wire sites; i.e., we study
how a qubit coupled electrostatically with a particular site of
the wire influences the qubit decoherence time. We expect that
the qubit position on the wire can significantly change the
readout current such that long-time measurement of the qubit
dynamics is possible.

In order to study qubit dynamics we apply in our calcula-
tions the equation of motion (EM) for appropriate correlation
functions. This method allows us to obtain all currents
flowing in the system as well as the qubit and wire electron
occupations. The higher-order correlation functions which
appear in the calculations are decoupled beyond the mean-field
approximation such that the term which depends on the lead
electron annihilation and creation operators taken at the initial
time (t = 0; all parts of the system are decoupled) is decoupled
from the remaining part of the correlation function, which
depends on the QD operators taken at a given nonzero time,
t > 0. This procedure is better than the so-called Hubbard I
approximation used in the analysis of the time-independent
Hubbard model [12] and was successfully used to describe the
dynamics of a qubit coupled with a single QD detector and
others [5,13] (see also Ref. [14]). However, for a large number
of sites in the wire this method is very cumbersome, thus, for
longer wires we apply the evolution operator technique and the
mean-field approximation [15,16]. In general, a mean-field
treatment should give, for many purposes, a relatively good
description of the system. The qualitative comparison of
the transient currents in a T-shaped QD system (or in the
case of a single impurity coupled with two leads) obtained
within the Hartree-Fock (HF) approximation and using other
methods (beyond the HF) is satisfactory [17,18] (however,
see Ref. [19]). The HF approximation was also successfully
applied to describe, e.g., the Anderson impurity [20], the Fano
effect [21], the 0.7 anomaly [22], and photon-assisted electron
transport through an interacting QD system [23,24]. This
approach is very often used due to its simplicity, which allows
us to find analytical solutions for the stationary transport as
well as for time-dependent phenomena. Note that other time-
dependent methods (due to the many-body interactions) are
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FIG. 1. (Color online) Schematic view of the wire-qubit system:
N -site quantum wire coupled electrostatically (via U parameter)
with the qubit (two coupled quantum dots: x and y). Vxy and V

are hopping integrals between qubit quantum dots and between the
nearest-neighbour wire sites, respectively.

often limited to infinite correlations, a low or high source-drain
voltage, small coupling parameters, the zero-temperature case,
almost decoupled systems, and others [2,4,6,25–32]. In this
paper we compare the results for short wires calculated within
the HF approach and beyond the mean-field approximation:
on a qualitative level the conclusions for both methods are
similar.

The paper is organized as follows. In Sec. II the main
formulas for the current flowing through the system and
charges localized on qubit QDs and on the wire sites are derived
within the EM method for appropriate correlation functions
and within the evolution operator approach. Numerical results
for the considered systems are shown and discussed in Sec. III
and the last section, Sec. IV, is devoted to conclusions.

II. THEORETICAL DESCRIPTION

The system we consider here consists of a qubit (which
is represented by two coupled QDs) and an N -site regular
quantum wire (series of QDs), as sketched in Fig. 1. The
qubit is coupled electrostatically with the wire and influences
the current flowing between the left and the right electrodes.
To describe the qubit dynamics we use the tight-binding
Hamiltonian, which can be written as H = H0 + V , where

H0 =
∑

k,α=L,R

εαkc
†
αkcαk +

N∑
i=1

εic
†
i ci

+ εxc
†
xcx + εyc

†
ycy + Uc†xcxc

†
qcq, (1)

V =
∑

k

VLkc
†
Lkc1 +

∑
k

VRkc
†
RkcN +

N−1∑
i=1

V c
†
i ci+1

+ Vxyc
†
xcy + H.c. (2)

The operators cαk(c†αk), ci(c
†
i ), cx(c†x), and cy(c†y) are the

electron annihilation (creation) operators for the electrode
α (α = L,R), for the ith wire site or for the first (nearby)
and the second (far-removed) qubit QDs, respectively. The
electrostatic coupling between the first qubit QD and the
q-wire site is described by the parameter U . The first (last)
wire site is coupled to the left (right) lead through the tunneling
barriers with the transfer-matrix element VLk (VRk), and the
V and Vxy parameters describe the tunnel barriers between
the nearest-neighbor wire sites and between both qubit QDs,
respectively. Electron-electron on-site Coulomb interactions
are neglected in our system (one electron on the qubit and
nonmagnetic wire are considered).

In the following we calculate the qubit QD occupations and
the current flowing through the multi-QD detector. For a short
chain of detector QDs, N = 1,2,3, we apply the EM method
for some correlation functions and truncate the corresponding
higher-order functions one or two orders beyond the mean-field
level [5,13,14]. As the application of this method to the detector
of longer chains is a rather cumbersome task, for N � 4 (and
only for qualitative consideration) the qubit-detector Coulomb
interaction is considered within the mean-field treatment. The
comparison of these two approximations for N = 3 justifies
our approach to the subject in question.

A. Beyond the mean-field approximation

The electron current flowing from the αth electrode can
be obtained from the time evolution of the occupation
number operator of this electrode (expressed in the Heisenberg
representation) and takes the form (e.g., Ref. [33]):

jα(t) = 2 Im
∑

k

Vαk〈c†i ′ (t)cαk(t)〉, (3)

where 〈· · ·〉 denotes the quantum-mechanical average and e =
h̄ = 1 units were used. Here, the index i ′ identifies the QD
coupled with the αth lead, i.e., i ′ = 1 for α = L and i ′ = N for
α = R. Using the explicit time dependence of cαk(t) obtained
by solving the corresponding EM for this operator, Eq. (3)
can be rewritten (in the wide-band limit [33]) in the form
[5,13,14,33,34]

jα(t) = 2 Im

(∑
k

Vkαe−iεαk 〈c†i ′ (t)cαk(t0)〉 − i
�α

2
〈ni ′ (t)〉

)
,

(4)

where �α = 2π
∑

k |Vkα|2δ(E − εαk) and we further assume
the initial time t0 = 0.

To calculate the current jα(t) we should know the correla-
tion functions 〈c†i (t)cαk(0)〉 and the occupancy of the ith QD,
〈ni(t)〉 ≡ ni(t). We find these functions by solving the EM for
them. It is known that in the EM method one usually obtains
an infinite set of coupled equations for correlation functions of
higher and higher order (or Green’s functions). For example,
for n1(t) we have the following equation:

∂

∂t
n1(t) = 2 Im

{∑
k

VLke
−iεLk 〈c†1(t)cLk(0)〉

+V 〈c†1(t)c2(t)〉 − i
�L

2
n1(t)

}
. (5)

In the above equation two types of new functions appear,
〈c†1(t)c2(t)〉 and 〈c†1(t)cLk(0)〉, for which the corresponding
EM should be written. Functions of the first type are the
quantum-mechanical averages of different products of the
QD electron operators taken at the given time t . Functions
of the second type are related to the products of the QD
operators taken at time t and leads electron operators taken
at initial time t = 0. Writing down the EM for 〈c†1(t)c2(t)〉
and for new functions of the first type, 〈f1(a†

i (t),aj (t))〉,
which appear in subsequent equations, we obtain closed sets
of 8 (for N = 1), 15 (for N = 2) and 47 (for N = 3)
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differential equations for them. The functions
〈f1(a†

i (t),aj (t))〉, e.g., for N = 3 (x = 4, y = 5), are as
follows: ni , 〈ninj 〉, 〈ninjnl〉 (i,j,l = 1,2,3,4), 〈n1n2n3n4〉,
〈c†1c2〉, 〈c†1c2c

†
4c5〉, 〈c†2c3c

†
4c5n1〉, . . . (for brevity, here we

have omitted the time dependence of all operators). However,
this closed (in relation to 〈f1(a†

i (t)aj (t))〉) set of equations
contains 40 sums like

∑
k Vαke

−iεαk t 〈f2(a†
i (t),aj (t))cαk(0)〉,

where f2(a†,a) are the given products of the corresponding
QD electron annihilation and creation operators (not shown
here). Unfortunately, the corresponding set of equations
for 〈f2(a†

i (t),aj (t))cαk(0)〉 cannot be closed and some
approximations should be done. Here we have used the
following procedure: (i) the EMs for 〈f2(a†

i (t),aj (t))cαk(0)〉
are obtained; (ii) the exact solution for cαk(t) is inserted
into the equations obtained from (i); (iii) the wide-band
limit approximation is used; and (iv) the next higher-order
functions are approximated according to the formulas〈

f3(a†
i (t),aj (t))c†αk1

(0)cβk2 (0)
〉

� 〈f3(a†
i (t),aj (t))〉〈c†αk1

(0)cβk2 (0)
〉

= 〈f3(a†
i (t),aj (t))〉〈nαk1 (0)

〉
δαβδk1k2 (6)

and 〈
f3(a†

i (t),aj (t))cαk1 (0)cβk2 (0)
〉

= 〈
f3(a†

i (t),aj (t))c†αk1
(0)c†βk2

(0)
〉 � 0. (7)

Finally, for N = 3 we obtain a closed set of 47 differential
equations for 〈f1(a†,a)〉 coupled with 122 (for every k

vector) equations for 〈f4(a†
i (t),aj (t))cαk(0)〉. Here, f3(a†,a)

and f4(a†,a) functions are the given products of the QD
electron annihilation and creation operators, and, for example,
f4 includes the following terms: c

†
1, c

†
2, c

†
3, c

†
1n4, c

†
1c

†
4c5n2,

c
†
1c

†
2c3c

†
4c5, c

†
2c4c

†
5n1n3, . . . (here, again, for brevity the time

dependence of all operators has been omitted). Note that for
larger N ’s (N > 3) one has to resolve the EM for longer
products of c† and c operators, which is a very arduous
procedure and leads to a huge number of differential equations.
Thus, using this method we concentrate on rather short QD
wires, i.e., for N < 4.

Note that during calculations of the QD occupations or the
current flowing out of or into the left and right leads, we also
obtain information on the currents jij (t) flowing between given
neighboring ith and j th QDs:

jij (t) = −2 Im Vij 〈c†i (t)cj (t)〉. (8)

Although measurement of these currents is difficult (and be-
yond the possibilities of most experimental setups), knowledge
on the dynamics of the current flowing between different
wire sites may be very useful for understanding the electron
transport in such systems.

B. Mean-field treatment

In order to study the qubit dynamics for longer wires we
apply the HF approximation, which allows us to simplify the
many-body Hamiltonian to a single-particle one with the effec-
tive on-site electron energies εx → εx + Unq and εq → εq +
Unx . The HF approach can be a reliable approximation, as

the Coulomb interaction in many quantum structures is small
compared with other energies of the system, thus noninteract-
ing eigenstates of the quantum structure are related to those of
small U . For the case of large U (if we are not interested in, e.g.,
the Kondo effect or other many-body complex effects), one can
focus on a single Coulomb peak. The EM method does not
need decoupling procedures, however, it is difficult to find the
general form of the differential equations for the corresponding
correlation functions for arbitrary N and q. To resolve this
problem we use the evolution operator technique [15,16,35],
which allows us to find the current flowing through the sys-
tem, jL(t) = −ednL(t)/dt [nL(t) = ∑

Lk nLk(t)], as well as
the QD occupations, nβ(t) = ∑

β ′ nβ ′ (t0)|Uβ,β ′(t,t0)|2 (β,β ′ =
x,y,i,k), from our knowledge of the appropriate evolution
operator matrix elements Uβ,β ′ (t,t0). The evolution operator
satisfies the general relation (in the interaction representation)

i
∂

∂t
U (t,t0) = Ṽ (t) U (t,t0), (9)

where Ṽ (t) = U0(t,t0)V (t)U †
0 (t,t0), U0(t,t0) = T exp(i

∫ t

t0
dt ′

H0(t ′)), and nβ(t0) represents the initial filling of the
corresponding single-particle states. Using the above relations
for the evolution operator elements, the following differential
equations for ULk,β(t,t0), which are needed to obtain the
current, can be written:

i
∂

∂t
ULk,β(t,t0) = ṼLk,1(t)U1,β(t,t0), (10)

where nonzero elements of the function ṼLk,1 are

Ṽ1,Lk(t) = Ṽ ∗
Lk,1(t) = V ∗

Lke
i(ε1−εLk )t eiUδ1,q

∫ t

tx
nx (t ′)dt ′ . (11)

Here, as before, we assume that t0 = 0 (at time t0 all
hopping integrals in the wire are switched on) and tx
corresponds to a specific time when the tunneling between
the qubit QDs is switched on. To shorten the notation we
assume that Uα,β(t,t0) ≡ Uα,β (t). Using the wide-band-limit
approximation the time-dependent current takes the form

jL(t) = −�Ln1(t) − 2 Im

(∑
Lk

nLk(0)ṼLk,1(t)U1,Lk(t)

)
.

(12)

The knowledge of the matrix elements U1,β [needed to obtain
n1(t) occupation] and Ux,β [needed to obtain nx(t), which
also appears in Eq. (11)] allows us to derive the current,
Eq. (12). Using Eq. (9) one can write the following set of
differential equations for the appropriate elements of the
evolution operator:

∂

∂t
Ui,β(t) = −iṼi,i+1(t)Ui+1,β(t) − iṼi,i−1(t)Ui−1,β(t)

− i(δi,1δβ,Lk + δi,Nδβ,Rk)Ṽi,β(t)

− δi,1�LU1,β(t)/2 − δi,N�RUN,β(t)/2, (13)

∂

∂t
Ux(y),β (t) = −iṼx(y),y(x)(t)Uy(x),β (t), (14)

where we assume the same electron energies in all wire QDs,
i.e., εi = ε0 (i = 1, . . . ,N ). The elements Ṽ in the above
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relations read

Ṽi,j (t) = Ṽ ∗
j,i(t) = V (δi+1,j + δi−1,j )eiU (δi,q−δj,q )

∫ t

tx
nx (t ′)dt ′ ,

(15)

Ṽx,y(t) = Ṽ ∗
y,x(t) = Vxye

i(εx−εy )t eiU
∫ t

tx
nq (t ′)dt ′ . (16)

From the above set of differential equations one can obtain
all quantum wire and qubit QDs occupations, as well as the
current flowing through the system. Note that all equations
for Uβ,β ′ (t) elements and the occupations nβ(t) are coupled to
each other, i.e., to obtain the occupation of the nearby qubit
QD, nx(t), we have to know the Ux,β (t) elements [Eq. (14)]; in
Eq. (14) there is a Ṽx,y function which should be obtained for
a given q-site occupation, nq(t). This occupation is obtained
from the Ui,β(t) elements, Eq. (13) [the set of differential
equations, Eqs. (13) and (14), is coupled via nx(t) and nq(t),
which appear in Ṽx,y and Ṽi,β]. Moreover, to find the solution
for the evolution operator elements as a function of time, t ,
it is necessary to know the charge occupations of nq(t ′) and
nx(t ′) for all t ′ in the range of tx < t ′ < t .

As an example, we consider a DQD qubit coupled elec-
trostatically to the meter represented by a single QD placed
between two leads, N = 1. In this case the evolution operator
matrix elements which are required to describe the qubit
dynamics can be reduced to simpler forms, and under certain
conditions they can be obtained analytically. In particular, one
can find that the following elements tend to 0 for large t

(i.e., beyond the transient effects): U1,1(t), U1,x/y(t), Ux/y,1(t),
Ux/y,Lk(t), and Ux/y,Rk(t). These elements can be omitted in
calculations, as they play the role only for small t (t � t0),
and thus the expression, for example, for the occupation of the
nearby qubit QD, nx(t), can be expressed as

nx(t) = nx(0)|Ux,x(t)|2 + ny(0)|Ux,y(t)|2, (17)

where the evolution operator matrix elements satisfy Eq. (14).
One can write a similar equation for ny(t).

Note that the analytical expression for current flowing
through the system can be obtained for the case of vanishing
electrostatic coupling U (there is no wire-qubit connection)
and for the zero-temperature case. Also, for the case of small
U one can obtain the current analytically, as in this case the
solution for U1,Lk(t),

U1,Lk(t) = −iVLke
−�t

∫ t

0
dt ′ exp

(
i(ε0 − εLk − i�)t ′

+ iU

∫ t ′

tx

dt ′′nx(t ′′)
)

, (18)

can be approximated by (for tx = 0) [23]

U1,Lk(t) = −VLk

exp{it[ε0 − εLk + Unx(t)]}
ε0 − εLk + Unx(t) − i�

. (19)

Finally, one can find the relation for the current flowing from
the left electrode,

jL(t) = �

2π

(
arctan

ε0 − μR + Unx(t)

�

− arctan
ε0 − μL + Unx(t)

�

)
, (20)

and the charge accumulated at the detector site,

n1(t) = 1

2π

(
π − arctan

ε0 − μR + Unx(t)

�

− arctan
ε0 − μL + Unx(t)

�

)
. (21)

The above analytical solutions (derived for the qubit-QD
system) are similar to the results obtained for a single QD
between two leads in the stationary case [33]. It is easy
to show that for ε0 → −∞ (ε0 → +∞) the occupation
of the wire site is maximal (minimal). Note that although
the above relations seem not to be complicated, one has to
know the time dependence of the qubit occupation nx(t) (for
which we have no simple analytical solution). For a longer
QW detector coupled with a DQD qubit, analytical formulas
for the charge or the time-dependent current flowing through
the wire do not exist because in general the elements U1,Lk(t)
are not equal to UN,Rk(t) [36].

III. RESULTS AND DISCUSSION

In this section we show numerical results for the time-
dependent current flowing through the wire and occupations
of the qubit and wire sites. In our calculations we assume the
energy unit � = 1, �L = �R = �, and symmetrical chemical
potentials, μL = −μR . Thus the reference energy point (called
the Fermi energy of the wire) is EF = 0. Moreover, in order to
avoid multilevel quantum interference effects, we concentrate
on the transport through a single molecular state of the system;
i.e., a regime of small chemical potentials is assumed, μL =
−μR = 1. The current (time) is expressed in units of 2e�/h̄

(h̄/�) and the zero-temperature case is considered. Note that
one excess electron on the DQD qubit is assumed. In our
calculations the qubit is “switched on” at time t = tx = 10
when the detector is already in a stationary nonequilibrium
state (all parts of the detector were coupled together at t0 =
0). In other words, we assume that for t < tx the qubit-wire
system is decoupled (Vxy = 0), and in that case only the far-
removed qubit QD is occupied, ny(t < tx) = 1, nx(t < tx) =
0. For larger t (t > tx) the qubit occupations (nx and ny) change
and influence the readout current flowing through the wire.

A. Qubit dynamics for an N-site wire

The role of the wire length in the qubit dynamics is
examined in Fig. 2, where we show the nearby qubit QD
occupation as a function of time for the wire lengths N = 1, 2,
and 3. Note that different qubit-wire connections and couplings
are considered (see inset pictures). For N = 1 (q = 1; upper
solid line) one observes that the qubit QD occupation oscillates
in time but these oscillations vanish very rapidly (which is in
accordance with the previous literature results, e.g., Ref. [5]).
In this case the measurement of the qubit dynamics is limited
in time. For N = 2 and a qubit coupled with the first or the
second wire site, q = 1 or q = 2 (dotted curves), the situation
is similar but the charge oscillations hold somewhat longer
than for N = 1. The most interesting case is observed for the
wire consisting of three sites, N = 3 (bottom three curves).
Here for the qubit coupled with the first or with the third wire
sites, the oscillations of nx vanish very rapidly. However, for
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FIG. 2. (Color online) Nearby qubit QD occupations, nx(t), as
a function of time for different qubit-wire connections indicated
schematically in the inset pictures (curves, from top to bottom):
N = q = 1; N = 2, q = 1; N = 2, q = 2; N = 3, q = 1; N = 3,
q = 2; and N = 3, q = 3. The other parameters are V = 4, Vxy =
1, U = 4, ε0 = εx = εy = 0, μL = −μR = 1, t0 = 0, tx = 10, and
�L = �R = 1. The curves, from top to bottom, are shifted by 0, −0.5,
−1.0, −1.5, −2.0, and −2.5, respectively, for better visualization.
The unit of time (energy) is h̄/� (�).

q = 2 (qubit coupled with the second wire site), the nearby
qubit QD oscillations hold even for longer t and disappear
very slowly. To explain this interesting effect, in Sec. III B we
consider the local density of states (LDOS) on the wire sites
and the time evolution (phase behavior) of the current and the
qubit occupation.

B. Readout current oscillations

In Sec. III A we have shown that for a specific qubit-wire
connection the nearby qubit QD occupation oscillates for a
very long time. We expect that this behavior should also be
reflected in the readout current flowing through the wire. To
corroborate this effect we study the current flowing from the
left electrode to the three-site wire (Fig. 3, upper panel). The
qubit is coupled with the first wire site (q = 1, dotted curves)
or with the second one (q = 2, solid curves). As one can see,
in comparison with the case of q = 1, the current oscillations
for q = 2 hold for a longer t , which is in accordance with the
results depicted in Fig. 2. Thus, the qubit dynamics strongly
depends on the qubit position (connection) along the wire and,
more importantly, on the total number of wire sites. This effect
is related to the wire DOS. For U = 0 and for an odd (even)
number of sites in the wire the system is characterized by a
high (low) value of the total DOS; in other words, there is one
molecular state at the Fermi energy E = ε0 = EF . However,
the LDOS (at the Fermi level) changes along the wire, and,
e.g., for N = 3 there is a high value of the LDOS on the
first and third sites, while for the second (middle) site the
LDOS is very low. The structure of the LDOS determines
the wire conductance, and, e.g., for N = 2, electrons do not
flow through the wire (for a low source-drain voltage), but
for N = 3 the conductance is maximal [37]. We have found
that the readout current oscillations do not vanish very rapidly
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FIG. 3. Upper panel: Current flowing from the left electrode for
the wire length N = 3 and for a qubit coupled to the first wire site,
q = 1, or to the middle site, q = 2. Middle panel: The same results as
in the upper panel but obtained within the HF approximation. Bottom
panel: Current flowing through the five-site wire depicted for two
qubit-wire connections: q = 2 and q = 3 (HF approximation). Other
parameters are the same as in Fig. 2. The curves for q = 1 are shifted
by +0.1 for better visualization. The unit of current (time, energy) is
2e�/h̄ (h̄/�, �).

if two conditions are satisfied: (i) the conductance through
the wire is maximal, i.e., electrons can easily flow through
the wire sites (the current signal is high); and (ii) the qubit
is coupled with a wire site which is characterized by a very
low LDOS at the Fermi level. The latter is crucial to obtain
long-time oscillations: in that case the qubit and the wire states
do not overlap and thus the system needs a longer time to
obtain its stationary state. If the wire site is characterized by
a high value of the LDOS at the Fermi level, then the energy
exchange between the two subsystems is more effective and
the measurement of the readout current oscillations is strongly
limited in time. Note that for U 
= 0 the energy of the molecular
states of the wire-qubit system can differ somewhat from that
for the isolated wire. However, we expect that our explanation
will remain valid.

In order to generalize our conclusions we should perform
calculations of the readout current also for longer wires.
Unfortunately, in general, the EM method for the required
functions cannot be easily applied to large N ’s and we decided
to use the evolution operator method together with the HF
approximation (discussed in Sec. II B). First, we compare the
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results obtained within the HF method (Fig. 3, middle panel)
with those shown in the upper panel in Fig. 3 (calculations
done beyond the mean-field approximation). As one can see,
the HF method applied for the case of N = 3 gives the same
qualitative results (for larger t) as the mean-field treatment
does. Both approaches indicate vanishing current oscillations
for q = 1 and long-lived oscillations for q = 2. Of course,
the decay time of the current oscillations is longer for the HF
case but this behavior is not surprising because the mean-field
approximation often overestimates the obtained values.

As the qualitative results shown in the upper two panels
in Fig. 3 are satisfactory, for further qualitative discussion we
calculate within the evolution operator method and the HF
approximation the readout current flowing through an N = 5
site wire with the qubit coupled to the second site, q = 2, and
to the middle one, q = 3; the results are shown in the bottom
panel in Fig. 3. Note that for N = 5 (odd number of sites) the
wire conductance is maximal [37], thus the first condition on
the long-time oscillations is satisfied. Moreover, the first, the
third, and the fifth wire sites possess a peak in the LDOS at
the Fermi level, while the second and the fourth sites have no
LDOS peaks at EF . Thus if the qubit is coupled with the second
wire site (low LDOS value at EF ), we expect long oscillations
of the readout current. This prediction is confirmed in the
bottom panel in Fig. 3, for q = 2. On the other hand, for q = 3
(nonzero LDOS at the Fermi level) the current oscillations
vanish much more rapidly than for the case of q = 2 (Fig. 3,
bottom panel), which is in accordance with the results shown
in the upper panel for N = 3.

In order to investigate further the role of the qubit-wire
geometry (connection to different wire QDs) in the readout
current, we focus on the inside currents flowing between the
wire sites, Eq. (8). Thus for a wire consisting of N = 3 sites we
compare the left and the right currents flowing from and into
the electrodes and the currents j12 and j23 flowing between the
first and the second sites or between the second and the third
sites, respectively. All mentioned currents for the qubit coupled
with the first, q = 1 (second, q = 2), wire QD are depicted in
Fig. 4, upper panel (bottom panel). As one can see, there are no
common features of the two cases. For q = 1 the oscillations
of the left and right currents vanish very rapidly in time but
they are out of phase (not in-phase and not in antiphase) in
relation to each other. The situation for q = 2 is different. The
minima of the left current correlate with the maximal values
of the right current (both currents oscillate longer in time than
for the case of q = 1). More interesting behavior holds for
the inside wire currents. For q = 1 (Fig. 4, upper panel) the
currents j12 and j23 are almost the same and there is no phase
difference between them. This means that the middle wire site
does not change the current phase; i.e., the occupation of this
site is almost constant and does not oscillate in time (not shown
here). However, for q = 2 (Fig. 4, bottom panel) the qubit is
coupled to the middle wire site and the inside wire currents j12

and j23 oscillate “in antiphase” (the minima of j12 correspond
to the maxima of j23). In this case the current oscillations
do not vanish very rapidly, as the system stays in a kind of
resonance mode (antiphase oscillations of the inside currents).

It is also interesting to study the phase shift between the
readout current and the qubit occupation (if they are in-phase,
in antiphase, or out of phase). Thus in the upper panel in
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FIG. 4. Current flowing from the left and right electrodes, jL and
jR (thin and thick solid lines, respectively), and flowing between wire
sites j12 and j23 (thin and thick dotted curves, respectively), for the
wire length N = 3 and a qubit coupled to the first wire site, q = 1
(upper panel), or to the second one, q = 2 (bottom panel). Other
parameters are the same as in Fig. 2. Dotted curves are shifted by 0.2
or 0.1 for better visualization.

Fig. 5 we analyze the left current oscillations for N = 3
(solid curves) and compare them with the nearby qubit QD
occupation, nx (dashed curves; to compare the phase shift
they are not plotted in scale). As one can see, the current jL

and the occupation nx are exactly in antiphase for the case of
q = 1. This means that for a maximal value of the nearby qubit
QD occupation, the current flowing from the left electrode to
the wire is characterized by a local minimum (which seems
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FIG. 5. Upper panel: Current flowing from the left electrode as
a function of time for the wire length N = 3 and for q = 1 and
q = 2 (solid lines; the same as in Fig. 4) and the nearby qubit QD
occupations (dotted curves). For easier comparison of the nx(t) and
jL(t) phases, the occupation curve for q = 2 (q = 1) was divided by
25 (10) and shifted by +0.165 (+0.115). Bottom panel: Occupations
of the wire sites n1(t), n2(t), and n3(t) for q = 1 and q = 2,
respectively. The curves for q = 2 are shifted by +0.3 for better
visualization. Other parameters are the same as in Fig. 2.
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quite reasonable). However, for q = 2 the current oscillations
are not in-phase and not in antiphase with the nearby qubit
QD occupations, nx . Thus for a given value of t the left
current increases and at the same time the occupation of
the nearby qubit QD increases (in the first stage), but then
it starts to decrease. This leads to hardly vanishing current
oscillations. We have found that the phase shift between the
current and the qubit oscillations depends on the number of
QW sites between the lead and the site which is connected to
the qubit. These sites stand for a kind of a buffer for electrons
flowing through the system and can change the current phase
in comparison with the qubit charge oscillations. The results
shown in Fig. 5 indicate that the qubit lost its coherence
more rapidly for a perfect antiphase compatibility between
the current and the qubit occupation (the case of q = 1; Fig. 5,
upper panel). Next, it is desirable to analyze the occupancies
of the wire sites for both qubit-wire configurations, i.e., for
q = 1 and q = 2. As one can see in the bottom panel in
Fig. 5, all QW sites for the decoupled qubit-wire systems
(for t < 10) are almost half-occupied, n1 = n2 = n3 = 0.5, as
here we consider symmetrical couplings to the leads and low
source-drain voltages. Note, however, that for asymmetrically
coupled systems and high bias voltages the occupations of
all sites can be very different, as, e.g., in the DQD system
discussed in Ref. [6]. For such systems coupled with a qubit the
electron occupations at the QD sites determine the decoherence
time; decoherence is suppressed when the qubit is coupled with
low-occupied sites [6,38]. It is important that in our system
all wire sites have the same occupancies for U = 0. Thus the
detector occupancy cannot be responsible for the different time
decoherences and we explain this effect using the LDOS for the
wire sites together with the phase-shift arguments. For nonzero
U we observe quite different behavior of the qubit dynamics for
the considered configurations (q = 1, q = 2). In the presence
of the qubit-wire coupling (t > 10) the occupancies of the
wire sites oscillate in time much longer for q = 2 than for
q = 1 but their values do not differ drastically. The lowest
occupancies we observe are for the wire site which is coupled
to the qubit (due to the qubit-wire electrostatic repulsion), i.e.,
n1 for q = 1 and n2 for q = 2. It is also interesting that the
occupancy oscillations at that site (which is coupled with the
qubit) are exactly in antiphase with the oscillations at the rest
sites (not coupled with the qubit).

C. Role of the qubit-wire coupling

In order to study the influence of the electrostatic coupling,
U , on the qubit oscillations, in Fig. 6 we show the time-
dependent charge localized at the nearby qubit QD, nx(t),
for the wire length N = 3 and for different values of U (thin
lines). The qubit is coupled with the first wire site, q = 1
(upper panel), or with the second one, q = 2 (bottom panel).
For U = 0 the qubit is separated from the environment, which
leads to undamped electron oscillations between the two qubit
QDs. Careful inspection of the results for both qubit-wire
connections and nonzero U reveals that the amplitude of the
charge oscillations decreases with the qubit-wire coupling. It
is also important that the period of the charge oscillations
(and also the current oscillations) depends on U and the
qubit position on the wire. In general, the period of the

FIG. 6. (Color online) Nearby qubit QD occupations as a
function of time for the wire length N = 3 and two qubit-wire
connections, q = 1 (upper panel) and q = 2 (bottom panel), for
different electrostatic couplings: U = 0, 2, 4, and 6. Thick lines
indicate the period behavior of the qubit QD occupations. Other
parameters are the same as in Fig. 2.

charge oscillations decreases in comparison with the case of
a nondisturbed qubit, U = 0. This effect, however, depends
on the qubit-wire connection; e.g., for q = 1 the period of nx

decreases for small U but for larger electrostatic couplings it
does not change (see the thick lines in the upper panel in Fig. 6,
which tend to a vertical position for larger U ). For q = 2 the
period of the qubit oscillations changes linearly with U (see
the thick straight lines in the bottom panel in Fig. 6). Also, the
oscillation amplitudes decrease with U in this case, but not as
rapidly as for q = 1.

D. Nonzero gate voltage regime

The next interesting question is whether the values of the
meter on-site energies influence the qubit dynamics. Thus in
Fig. 7 we show the current flowing from the left lead as a
function of ε0 (=ε1 = ε2 = ε3) and the time for the case of
N = 3 and q = 2 (the qubit is coupled with the middle wire

q=2
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 22
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 0.15
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jL 

FIG. 7. Current flowing from the left electrode as a function of
time and ε0 for q = 2 and U = 8. Other parameters are the same as
in Fig. 2.
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site). For no qubit-wire connection, U = 0, the current as a
function of ε0 is characterized by three local maxima, as there
are three molecular states of the triple-QD system. For nonzero
U these three maxima of jL(t) as a function of ε0 are still
visible but they are somewhat shifted in comparison with the
nondisturbed wire. It is interesting that for q = 2 the current is
characterized by long-time oscillations for ε0 = 0 (no LDOS
at the Fermi level, which was discussed earlier), but it almost
does not oscillate for positive and negative values of ε0 which
correspond to the sideband molecular states (localized at ε0 �
±4). In these cases the qubit is coupled with the wire site
which is characterized by a high value of the LDOS at the
Fermi energy, and thus, according to our previous results, the
readout current oscillations vanish very rapidly in time. For
other values of ε0 the LDOS at the Fermi energy is much
lower and the qubit dynamics may be measured for an even
longer time (see, e.g., the current oscillations for ε0 � ±8).

IV. CONCLUSIONS

In summary, using the EM method for appropriate cor-
relation functions and the evolution operator technique, time-
dependent electron transport through an N -site linear quantum
wire coupled electrostatically with a DQD qubit has been
investigated. A system is proposed for monitoring the location
of an electron in qubit QDs, i.e., to measure the qubit dynamics.

As the main feature of the qubit-wire system we have
found that in the regime of low source-drain voltages (single-

molecular-state transport), the measurement of the qubit
dynamics strongly depends on the number of sites in the
wire, N , and the location of the qubit connection with a
wire site (qubit-wire geometry). In particular, the long-time
oscillations of the readout current hold for a QW detector
which is characterized by a high conductance and a low value
of the LDOS (on the site coupled with the qubit) at the Fermi
level. Thus, e.g., for N = 3 and for a qubit coupled with the
first or third wire site, the amplitude of the current oscillations
decreases very rapidly with time (strong decoherence), while
for a qubit coupled with the second wire site the current
oscillations hold longer (weak decoherence).

Additionally, we have shown that in the presence of long-
time oscillations the readout current and the nearby qubit QD
occupation are out of phase, i.e., not in-phase or in antiphase.
If these quantities oscillate in antiphase, the measurement of
the qubit dynamics is strongly limited in time.

We hope that the results of this paper can be confirmed
experimentally and that they will stimulate qubit experiments
with a linear QD geometry and such a QD wire turns out to be
a more effective qubit dynamics meter.
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[24] T. Kwapiński, R. Taranko, and E. Taranko, Acta Phys. Pol. A

99, 293 (2001).
[25] S.-H. Ouyang, C.-H. Lam, and J. Q. You, J. Phys.: Condens.

Matter 18, 11551 (2006).
[26] X. Q. Li, J. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Phys. Rev. B

71, 205304 (2005).
[27] J. Y. Luo, X. Q. Li, and Y. J. Yan, Phys. Rev. B 76, 085325

(2007).
[28] X. Q. Li, P. Cui, and Y. J. Yan, Phys. Rev. Lett. 94, 066803

(2005).
[29] T. M. Stace and S. D. Barrett, Phys. Rev. Lett. 92, 136802 (2004).
[30] N. P. Oxtoby, H. M. Wiseman, and H.-B. Sun, Phys. Rev. B 74,

045328 (2006).
[31] C. Gan, P. Huang, and H. Zheng, J. Phys.: Condens. Matter 22,

115301 (2010).

052338-8

http://dx.doi.org/10.1103/PhysRevB.69.085315
http://dx.doi.org/10.1103/PhysRevB.63.125326
http://dx.doi.org/10.1103/PhysRevB.63.125326
http://dx.doi.org/10.1103/PhysRevB.56.15215
http://dx.doi.org/10.1103/PhysRevB.69.115301
http://dx.doi.org/10.1016/j.physe.2007.12.016
http://dx.doi.org/10.1103/PhysRevLett.97.116806
http://dx.doi.org/10.1103/PhysRevB.63.235308
http://dx.doi.org/10.1103/PhysRevB.63.235308
http://dx.doi.org/10.1103/PhysRevB.72.073303
http://dx.doi.org/10.1103/PhysRevB.81.125404
http://dx.doi.org/10.1103/PhysRevB.81.125404
http://dx.doi.org/10.1088/0953-8984/17/43/009
http://dx.doi.org/10.1088/0953-8984/17/43/009
http://dx.doi.org/10.1143/JJAP.49.04DJ08
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1103/PhysRevB.85.035309
http://dx.doi.org/10.1016/0039-6028(83)90352-7
http://dx.doi.org/10.1016/0039-6028(83)90352-7
http://dx.doi.org/10.1143/PTPS.106.257
http://dx.doi.org/10.1016/j.physe.2011.06.033
http://dx.doi.org/10.1103/PhysRevB.84.115103
http://dx.doi.org/10.1103/PhysRevB.84.115103
http://dx.doi.org/10.1088/1742-6596/220/1/012018
http://dx.doi.org/10.1088/1742-6596/220/1/012018
http://dx.doi.org/10.1103/PhysRev.144.420
http://dx.doi.org/10.1016/j.physe.2007.09.113
http://dx.doi.org/10.1016/j.susc.2007.06.047
http://dx.doi.org/10.1088/0953-8984/9/23/011
http://dx.doi.org/10.1088/0953-8984/18/50/010
http://dx.doi.org/10.1088/0953-8984/18/50/010
http://dx.doi.org/10.1103/PhysRevB.71.205304
http://dx.doi.org/10.1103/PhysRevB.71.205304
http://dx.doi.org/10.1103/PhysRevB.76.085325
http://dx.doi.org/10.1103/PhysRevB.76.085325
http://dx.doi.org/10.1103/PhysRevLett.94.066803
http://dx.doi.org/10.1103/PhysRevLett.94.066803
http://dx.doi.org/10.1103/PhysRevLett.92.136802
http://dx.doi.org/10.1103/PhysRevB.74.045328
http://dx.doi.org/10.1103/PhysRevB.74.045328
http://dx.doi.org/10.1088/0953-8984/22/11/115301
http://dx.doi.org/10.1088/0953-8984/22/11/115301


QUANTUM WIRE AS A CHARGE-QUBIT DETECTOR PHYSICAL REVIEW A 86, 052338 (2012)

[32] L. E. F. Foa Torres, C. H. Lewenkopf, and
H. M. Pastawski, Phys. Rev. Lett. 91, 116801
(2003).

[33] A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528
(1994).

[34] E. Taranko, M. Wiertel, and R. Taranko, J. Appl. Phys. 111,
023711 (2012).
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