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Alexei Zhedanov
Institute for Physics and Technology, R. Luxemburg Strasse 72, 83114 Donetsk, Ukraine

(Received 21 May 2012; revised manuscript received 22 October 2012; published 19 November 2012)

The natural notion of almost perfect state transfer (APST) is examined. It is applied to the modeling of
efficient quantum wires with the help of XX spin chains. It is shown that APST occurs in mirror-symmetric
systems, when the 1-excitation energies of the chains are linearly independent over rational numbers. This result
is obtained as a corollary of the Kronecker theorem in Diophantine approximation. APST happens under much
less restrictive conditions than perfect state transfer and moreover accommodates the unavoidable imperfections.
Some examples are discussed.

DOI: 10.1103/PhysRevA.86.052319 PACS number(s): 03.67.Hk

I. INTRODUCTION

The design of models to transfer quantum states between
distant locations is of relevance to many quantum information
protocols. In recent years, spin chains have been proposed [1,2]
as possible basic systems in the construction of such quantum
channels. In these devices, the state of the qubit at one end
of the chain is transferred to the qubit at the other end after
some time. A key advantage of this method is that it minimizes
the need for external interventions as the transfer is realized
through the intrinsic dynamics of the chain.

The efficiency and reliability of quantum wires must be
high. Ideally, it is wished that the probability of finding the
initial state as the output be 1; when this is so, one speaks of
perfect state transfer (PST). It has been shown, in particular,
that PST can be achieved in spin chains by properly engineer-
ing and modulating the couplings between the sites [2,3].

In this context, a question of practical importance is that of
the robustness of these ideal transfer properties in view of the
unavoidable manufacturing and experimental deviations from
the theoretical specifications.

There are many sources of errors: nonsynchronous or
imperfect input and readout operations, fabrication defects,
additional interactions, systematic biases, etc. What their
influences on the fidelity of state transfer are [4,5] and how
to correct or circumvent them [6,7] has been the object
of various studies. We here relate particularly to the errors
imputable to the quantum wires and measurements. In [8] (see
also [9,10]) the imperfections in the production of the device
are modeled by adding random perturbations to the couplings
and magnetic fields of a chain with PST. In [11] (which uses
methods similar to those in [12] and [13]), modulated chains
are coupled to boundary states to make transfer more robust
against imperfections which are also randomly simulated. We
adopt in the following a complementary approach.

We take for given that the manufacturing of the chains will
not be perfect and that the precise PST requirements will not be
met. Notionally, we assume that the imperfections are static.
We then consider under which conditions will state transfer
be almost perfect. In other words, instead of examining the
effect of perturbations on PST chains, we readily attempt to

characterize the chains that somehow incorporate defects and
come “very” close to achieving PST.

The simplest spin chains exhibiting PST are governed by
XX Hamiltonians with nearest-neighbor interactions. We con-
fine ourselves to these systems in the following. Given that the
total spin projection commutes with the Hamiltonians, many
of the state transfer properties can be obtained by focusing on
the 1-excitation sector of the state space. The corresponding
restrictions of the Hamiltonians are tridiagonal Jacobi matrices
J whose entries are the couplings and magnetic fields of the
chains. Naturally, these J are diagonalized by orthogonal poly-
nomials (OPs). The perfect transfer of a single spin up from
one end of the chain to the other is possible only if J is mirror
symmetric; moreover, it puts strong requirements on its spec-
trum. The theory of OPs is very useful to obtain these results.

The same framework is adopted to determine the conditions
for almost perfect state transfer (APST). The question now is
this: Under what circumstances are there times for which the
transition probabilities from one site to another can be made
to approach 1? Mirror symmetry will again be necessary, as
we shall see. It is sufficient, however, for the spectrum of a
mirror-symmetric J to obey conditions much milder than in
the PST case. Interestingly, these results will follow from the
Kronecker theorem in Diophantine approximation.

The remainder of the paper proceeds as follows. We first
review in Sec. II how 1-excitation state transfer is realized in
XX spin chains and how the eigenstates are obtained with the
help of OPs. Almost perfect state transfer is defined in Sec. III
and necessary and sufficient conditions for its occurrence are
determined. In Sec. IV, it is shown how various chains with
APST can be obtained from a parent chain with APST through
a procedure referred to as spectral surgery [13]. Section V
offers a number of illustrative examples: situations where
APST occurs and cases where neither PST nor APST are
possible. In a significant model, the times for which APST is
attained can be estimated showing in this instance that a good
approximation to PST is obtained in finite time independently
of the size of the chain.

Let us finally draw attention to recent related and com-
plementary publications that have made use of the same
tools from number theory in the case of spin chains with
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uniform couplings. In his thesis [14], using the Kronecker
theorem, Burgarth has shown that the Heisenberg XX spin
chains with prime lengths have arbitrary good fidelity. In [15],
Godsil introduced the notion of pretty good state transfer on
graphs, which is equivalent to our definition of APST. Our
terminology is dictated by the fact that in these instances the
transition amplitudes are almost periodic functions. Recently,
the characterization of the uniform XX Heisenberg chains
which admit this pretty good state transfer was analyzed using
again number theoretic methods [16].

In dealing with the Heisenberg XX spin chain with uniform
coupling and zero magnetic fields, the mirror-symmetry of
the one-excitation Hamiltonian is de facto ensured as this
operator coincides with the adjacency matrix of the (N + 1)
path. As will be seen, this symmetry requirement comes into
play in relation with APST, when more general couplings and
magnetic fields are considered. It is remarked in [15] that
in order to get a good approximation to PST, the waiting time
must be very large. Numerical results presented in [16] indicate
that for a given level of fidelity, or approximation, the required
times grow linearly with N , the number of sites in the chain
minus one. (We comment on these observations in Sec. V,
using exact results on almost perfect return [17] as applied to
the uniform XX chain.) Thus, Godsil [15] expressed the view
that pretty good state transfer or APST is not a satisfactory
substitute for PST in practice. We here wish to stress in this
connection that when considering nonuniform couplings, there
are situations, as shown by an aforementioned example in
Sec. V, where high fidelity can be achieved in finite time
irrespectively of the chain length. This suggests that the class
of spin chains with APST, a much larger one than the PST
family, should not be so radically deemed of impractical use
at this point.

II. 1-EXCITATION STATE TRANSFER IN X X SPIN CHAINS

We consider XX spin chains with nearest-neighbor inter-
actions. Their Hamiltonians H are of the form

H = 1

2

N−1∑
l=0

Jl+1
(
σx

l σ x
l+1 + σ

y

l σ
y

l+1

) + 1

2

N∑
l=0

Bl

(
σ z

l + 1
)
,

(2.1)

where Jl are the constants coupling the sites l − 1 and l

and Bl are the strengths of the magnetic field at the sites l

(l = 0,1, . . . ,N ). The symbols σx
l , σ

y

l , σ z
l stand for the Pauli

matrices which act on the lth spin.
It is immediate to see that[

H,
1

2

N∑
l=0

(
σ z

l + 1
)] = 0,

which implies that the eigenstates of H split in subspaces
labeled by the number of spins over the chain that are up.
In order to characterize the chains with APST, it suffices to
restrict H to the subspace spanned by the states which contain
only one excitation. A natural basis for that subspace is given
by the vectors

|en〉 = (0,0, . . . ,1, . . . ,0), n = 0,1,2, . . . ,N,

where the only “1” occupies the nth position. The restriction
J of H to the 1-excitation subspace acts as follows:

J |en〉 = Jn+1|en+1〉 + Bn|en〉 + Jn|en−1〉. (2.2)

Note that

J0 = JN+1 = 0 (2.3)

is assumed.
Consider the polynomials χn(x) obeying the recurrence

relation

Jn+1χn+1(x) + Bnχn(x) + Jnχn−1(x) = xχn(x), (2.4)

with

χ−1 = 0, χ0 = 1. (2.5)

They satisfy the orthogonality relations

N∑
s=0

wsχn(xs)χm(xs) = δnm, (2.6)

where ws are the discrete weights taken to satisfy

N∑
s=0

ws = 1. (2.7)

In what follows we take the eigenvalues xs in increasing order:

x0 < x1 < x2 < · · · < xN. (2.8)

Let

|xs〉 =
N∑

n=0

√
wsχn(xs)|en〉. (2.9)

It is easily seen that these vectors |s〉 are eigenstates of J with
eigenvalues xs

J |xs〉 = xs |xs〉. (2.10)

Since both bases {|s〉} and {|en〉} are orthonormal,

〈en|em〉 = δnm, 〈xs ′ |xs〉 = δss ′ ,

we also have

|en〉 =
N∑

s=0

√
wsχn(xs)|xs〉. (2.11)

Let PN+1(x) be the characteristic polynomial of J :

PN+1(x) = (x − x0)(x − x1) · · · (x − xN ). (2.12)

The discrete weights are expressed as [18]

ws = hN

PN (xs)P ′
N+1(xs)

, s = 0,1, . . . ,N, (2.13)

with hN = J 2
1 J 2

2 · · · J 2
N and PN (x) = h

1/2
N χN (x).

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
ALMOST PERFECT QUANTUM STATE TRANSFER

By APST we mean the following.
Assume that the spin chain is prepared at time t = 0 in the

pure state |e0〉. This means that that at site n = 0 the spin is up
while all other spins are down.
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For arbitrary times t , this state will evolve into the state

|e0(t)〉 = e−itJ |e0〉. (3.1)

We demand that for any small ε > 0, there exists a value of
time t such that

||e0(t)〉 − eiφ(t)|eN 〉|2 < ε, (3.2)

where φ(t) is a real parameter which can depend on t . This
means that the state |e0(t)〉 can be as close to the state |eN 〉 as
desired and that |e0〉 has thus undergone at time t an almost
perfect transfer.

The notation |η − ξ |2 for two vectors ξ and η stands, as
usual, for

|ξ − η|2 =
N∑

k=0

|ξk − ηk|2, (3.3)

where ξk are the expansion coefficients of the vector ξ over a
basis, say |ek〉:

ξ =
N∑

k=0

ξk|ek〉. (3.4)

Recall that the condition for 1-excitation PST reads

|e0(t)〉 = e−iφ(t)|eN 〉; (3.5)

this means that there then exists a time t for which the state
|e0(t)〉 coincides (up to a phase factor eiφ(t)) with the state |eN 〉.

In the case of APST, there is no time t for which condition
(3.5) is verified. Nevertheless, it is possible to approach the
state |eN 〉 with any prescribed degree of accuracy. From
a practical point of view, there is no essential difference
between perfect and APST, owing to inevitable technological
and measurement errors. However, the APST conditions are
much weaker than the PST ones. APST therefore widens the
possibilities for constructing efficient quantum wires.

Let us first derive the necessary condition for APST.
Taking into account expansion Eq. (2.11), we have

|e0(t)〉 =
N∑

s=0

√
wse

−ixs t |xs〉, |eN 〉 =
N∑

s=0

√
wsχN (xs)|xs〉

(3.6)

and hence

|e−iφ(t)|e0(t)〉 − |eN 〉|2 =
N∑

s=0

ws |e−iφ(t)−itxs − χN (xs)|2.

(3.7)

It is easily seen that in order to fulfill condition (3.2) we need

|χN (xs)| = 1. (3.8)

To convince oneself of this fact, suppose that (3.8) does
not hold and assume that for some s = 0,1, . . . ,N , we have
χN (xs) = a with |a| �= 1. In this case, using the reverse triangle
inequality we have

|e−iφ(t)−itxs − χN (xs)|2 � (|a| − 1)2 > 0

and as a consequence the right-hand side of (3.2) cannot be
made arbitrarily small.

Since χN (x) has only real coefficients (3.8) implies that
χN (xs) = ±1. From general properties of OPs [13,18] it
follows, using (2.12), that (3.8) amounts to

χN (xs) = (−1)N+s . (3.9)

As shown in [13], Eq. (3.9) implies that the matrix J is
persymmetric, or mirror-symmetric, that is,

RJR = J, (3.10)

where R is the reflection matrix

R =

⎛
⎜⎜⎜⎝

0 0 . . . 0 1

0 0 . . . 1 0

. . . . . . . . . . . . . . .

1 0 . . . 0 0

⎞
⎟⎟⎟⎠.

We have thus obtained a necessary condition for APST,
namely, that the Jacobi matrix J corresponding to the spin
XX Hamiltonian should be mirror symmetric. This coincides
with one of the necessary conditions for PST [12]. The other
condition for PST requires that

xs+1 − xs = π

t
Ms, (3.11)

where Ms are arbitrary positive odd numbers.
We now obtain the conditions on the spectrum of J for

APST.
The matrix J is Hermitian and mirror symmetric with Ji >

0 and hence all its eigenvalues xs are real and distinct.
Let f0n(t) be the amplitude for finding the system in the

state |n〉 at time t if it was in the state |e0〉 at time t = 0,

f0n(t) = 〈en|e−iJ t |e0〉. (3.12)

It is easily seen that [13]

f0N (t) =
N∑

s=0

wse
−ixs tχN (xs). (3.13)

Taking into account (3.9) we have

f0N (t) =
N∑

s=0

wse
−ixs t (−1)N+s . (3.14)

Mindful of the normalization (2.7), it is seen that condition
|f0N (t)| ≈ 1 is equivalent to the condition that

e−ixs t (−1)N+s ≈ eiφ (3.15)

for a fixed value t , where ≈ means “approximately equal with
any prescribed accuracy.” To paraphrase (3.15), there thus
should be a value t of time for which the left-hand side is
as close as desired to a phase independent of s.

This means that |f0N (t)| is an almost periodic function.
Recall that any almost periodic function f (t) is a formal

trigonometric series [19]

f (t) =
∞∑

n=−∞
ane

iωnt , (3.16)

where ωn are real parameters. For periodic functions f (t +
T ) = f (t), one has ωn = 2πn

T
and (3.16) is the ordinary Fourier

series. For almost periodic functions there exist the so-called
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almost periods. This means that for every ε > 0 there exists a
real parameter T = T (ε) such that the inequality

|f (t + T ) − f (t)| < ε (3.17)

holds for all t .
In turn, condition (3.15) is tantamount to an inequality

involving the exponents that can be stated as follows.
For every δ > 0 there exist a real parameter φ and a value

of time t such that

|xst − πs + φ| < δ (mod 2π ). (3.18)

In more detail, Eq. (3.18) can be rewritten in the form

−δ < xst − πs + φ + 2πMs < δ, (3.19)

where Ms are integers which may depend on s.
This obviously amounts to a condition on the spectrum of

J for APST to occur. The question is as follows. What are
the properties that the eigenvalues xs must possess to ensure
that it is possible to find a time t and integers Ms so that
(3.19) is satisfied and hence APST is realized. In other words,
given the set of real numbers as = φ − πs, this is asking the
following: When is it possible to find values of t for which xst

is approximated in terms of integers by as − 2πMs with any
prescribed accuracy?

The solution of this Diophantine approximation problem
(3.19) is given remarkably by the Kronecker theorem [20,21].

In order to state it, let us introduce the following definition
[20,21]: A set αi,i = 1,2, . . . , of real numbers is called
linearly independent if for any n the only rational values of
r1, . . . ,rn satisfying

r1α1 + r2α2 + · · · + rnαn = 0

are r1 = r2 = · · · = rn = 0.
The Kronecker theorem can be formulated in two versions,

one a special case of the other. The first version is attributed
to Kronecker himself.

Version 1. Assume that the real numbers xs, s = 0,1, . . . ,N

are linearly independent over the field of rational numbers. Let
a0,a1, . . . ,aN be fixed arbitrary real numbers. The Kronecker
theorem states that for every δ > 0 there exist a real t and
integers M0,M1, . . . ,MN such that the inequalities

|xst − as − 2πMs | < δ, s = 0,1,2, . . . ,N (3.20)

hold.
We see how this theorem directly applies to the APST

problem. Indeed, provided that the eigenvalues are linearly
independent over the rational numbers, we may conclude from
the Kronecker theorem that for every parameter φ it is possible
to find a time t so that |f0N (t)| is as close to 1 as desired.

In many cases, however, the eigenvalues xs are not linearly
independent. This means that there can exist L independent
relations of the type

r
(i)
0 x0 + r

(i)
1 x1 + · · · + r

(i)
N xN = 0, i = 1,2, . . . ,L � N,

(3.21)

where r (i)
s are integers such that for every i = 1,2, . . . ,L at

least one of them is nonzero. (The use of integers is equivalent
to that of rationals and more practical.)

When additional relations such as (3.21) are present, the
Kronecker theorem can be formulated as follows [21].

Version 2. Assume that the real parameters xs, s =
0,1, . . . ,N are all distinct and moreover that there are L

relations of the type (3.21) with nontrivial sets {r (i)
0 , . . . r

(i)
N } of

integers.
Then, the approximation condition (3.20) holds for every

δ > 0 if and only if the real quantities ai satisfy the conditions

r
(i)
0 a0 + r

(i)
1 a1 + · · · + r

(i)
N aN ≡ 0 (mod 2π ),

(3.22)
i = 1,2, . . . ,L

with the same integers r
(i)
i as in (3.21).

For the proof of this statement, see [21].
Using this (generalized) version of the Kronecker theorem,

we can formulate the necessary and sufficient conditions for
APST.

General result. Let x0,x1, . . . ,xN be N + 1 distinct eigen-
values of the Jacobi matrix J corresponding to the XX spin
chain (2.1). Assume that there are L � N relations of the type
(3.21) with nonzero integer parameters r (i)

s .
Then, the following conditions are necessary and sufficient

for APST:
(i) the Jacobi matrix J is mirror-symmetric, that is,

Bs = BN−s , Js = JN+1−s , s = 0,1, . . . ,N ; (3.23)

(ii) the L linear relations

N∑
s=0

r (i)
s (πs − φ) = 0 (mod 2π ), i = 1,2, . . . L (3.24)

are compatible.
An obvious special case of this statement occurs when

all eigenvalues xs are linearly independent over the field of
rational numbers. This means that L = 0, that is, that there are
no additional relations such as (3.24) and that version 1 of the
Kronecker theorem suffices to conclude to the occurrence of
APST. In such instances, we see that the mirror symmetry of
J and the linear independence of the eigenvalues represent the
necessary and sufficient conditions for APST.

Let us now compare the conditions for APST with the
conditions for PST. It is known that the PST conditions are [12]

(i) the Jacobi matrix J is mirror symmetric;
(ii) assuming that the eigenvalues xs are ordered so that

x0 < x1 < · · · < xN , the differences s = xs+1 − xs are pro-
portional to odd numbers:

s = κ(2js + 1), (3.25)

where js are integers and κ is a constant not depending on s.
We see that mirror-symmetry is necessary for both PST and

APST. This implies that the matrix J and hence the Hamil-
tonian can be uniquely reconstructed from the eigenvalues
x0,x1, . . . ,xN when either process occurs. Indeed, since (3.9)
(which implies mirror-symmetry) specifies χN (x) at N + 1
distinct points, this polynomial can be obtained by Lagrange
interpolation. Two OPs associated to the three-diagonal matrix
J are therefore known: χN (x) and the characteristic polyno-
mial

∏N
s=0(x − xs) of degree N + 1. As shown in [13], all the

OPs can then be found by the Euclidean algorithm, thereby
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providing their three-term recurrence relation explicitly, that
is, giving all the couplings Ji and magnetic fields Bi .

The difference in the conditions for PST and APST arises
only in the restrictions on the spectrum or the eigenvalues of
J . As is observed, these conditions are much more stringent
for PST than for APST.

IV. SPECTRAL SURGERY AND APST

A spectral surgery procedure was proposed in [13] as a
way to construct XX spin chains with PST from such systems
already known to possess the PST property.

Given the initial spectrum XN = {x0,x1, . . . ,xN }, under
spectral surgery, one or several levels xi1 ,xi2 , . . . ,xij are
removed from the set XN .

The reduced set is X̃N−j = XN \ Rj , where Rj =
{xi1 ,xi2 , . . . ,xij } is the set of levels that have been removed.
The spectral levels determine the (mirror-symmetric) Jacobi
matrix J (and hence the Hamiltonian of the XX spin chain)
uniquely. Thus, the new spectral set X̃N−j generates a new
Jacobi matrix J̃ of dimension (N + 1 − j ) × (N + 1 − j ).
Certain restrictions need to be imposed on the possible choices
of sets Rj . Namely, Rj can contain any number of levels
starting from the first one, say R

(0)
M1

= {x0,x1, . . . ,xM1−1}
or similarly, any number of levels from the last level, say
R

(N)
M2

= {xN,xN−1, . . . ,xn−M2+1}. The only restriction is that
there should be no gaps in the above sequences. Apart from
these two elementary surgeries, levels can also be extracted
from the middle of the spectral set XN ; in this case the
requirement is the following: All such level sets should consist
in the union of subsets R

(i)
L = {xi,xi+1, . . . ,xi+L−1} of even

length L and without gaps within R
(i)
L . Equivalently, one can

say that only pairs xi,xi+1 of neighbor levels can be removed
from the middle of the set XN .

Remarkably, the Jacobi matrix J̃ corresponding to a
surgered set X̃N−j , is obtained from the initial Jacobi matrix
by j Christoffel transforms (see [13] for details).

That is, after j Christoffel transforms, we obtain a new
Jacobi matrix J̃ which is mirror-symmetric and satisfy the PST
property. This observation makes it possible to generate new
explicit examples with PST without the need to perform the
inverse spectral problem algorithm. This is advantageous since
the formulas of the Christoffel transform are rather simple.

One such example was already given in [13]. Let N be
odd. We start with the uniform grid XN = {−N/2,−N/2 +
1, . . . ,N/2} and then remove 2L levels symmetrically from
the middle of the set XN

XN−2L = {−N/2,−N/2 + 1, . . . − L − 3/2,−L − 1/2,

L + 1/2,L + 3/2, . . . ,N/2 − 1,N/2}. (4.1)

Such a spectral set corresponds to the model of the XX spin
chain with PST proposed in [22].

Consider what the effect of spectral surgery is with respect
to APST.

It is almost obvious that under an arbitrary admissible
surgery procedure the APST property survives. Indeed, if
all eigenvalues xi were linearly independent over the field of
rational numbers, then any reduced set X̃N−j will obviously
satisfy the same property.

Assume that there exists a set of linear relations (3.21) on
the spectral levels xs . APST is possible if and only if the set of
linear relation (3.24) is compatible (it is assumed a priori that
the matrix J is mirror symmetric).

Under spectral surgery some levels of the set XN are
removed. This means that some of relations (3.21) will
disappear (or remain the same). This implies that the new
Jacobi matrix J̃ will also possess APST.

Interestingly, this method can sometimes generate a chain
with APST, even if the initial chain lacks this property. Indeed,
the absence of APST for a given mirror-symmetric XX chain
means that relations (3.24) are incompatible. When we remove
some of the levels xi the number of relations (3.21) can be
reduced, which, in principle, can lead to the compatibility of
the reduced set of relations (3.24). Of course, one should seek
to realize this in concrete examples. We plan to investigate this
problem in the future.

V. EXAMPLES AND SPECIAL CASES

We present a number of examples and special cases in this
section.

(i) We indicate how the central result specializes in the
absence of magnetic fields.

(ii) We record the circumstances for APST in the uniform
XX chain and discuss the relation between the waiting time
and the length of the chain for this particular system, using
results on almost perfect return (to the point of origin).

(iii) We show, not too surprisingly, that the conditions for
PST are a special case of the conditions for APST.

(iv) We consider in detail the case N = 4 corresponding to
spin chains with five sites. In this instance, it is possible to give
a very explicit analysis of APST and to estimate waiting times
using standard methods of Diophantine approximation. The
conditions for all the possible cases (PST, APST, and neither)
are derived.

(v) We introduce a remarkable model based on the para-
Krawtchouk polynomials that can exhibit PST, APST, or
neither depending on the value of one of its parameters; it will
furthermore be seen that the waiting times can be estimated
and found to be finite independently of the size of the chain
for arbitrarily good fidelities in some special APST situations.

A. Absence of magnetic fields

Consider the special situation corresponding to zero mag-
netic fields Bs = 0. In this case the Jacobi matrix J has only
two nonzero diagonals. The corresponding OPs are symmetric
Pn(−x) = −Pn(x) and hence the eigenvalues satisfy the
properties

xs + xN−s = 0, s = 0,1, . . . ,N, (5.1)

where it is assumed that x0 < x1 < · · · xN .
Consider first the case N odd. Then one has (N + 1)/2

independent relations (5.1) for s = 0,1, . . . ,(N − 1)/2. They
coincide with relations (3.21) where only two integers are
nonzero and given by rs = rN−s = 1.

Relations (3.24) then reduce to the single condition

πN − 2φ = 0 (mod 2π ), (5.2)
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from which we find

φ =
{−π/2 if N = 4m + 3
π/2 if N = 4m + 1 (mod 2π ). (5.3)

If one assumes that the eigenvalues x0,x1, . . . ,x(N−1)/2 are
linearly independent, then the Kronecker theorem guarantees
with φ = ±π/2 that the corresponding spin chain will exhibit
APST.

If N is even, we shall have the N/2 independent relations
(5.1) for i = 0,1, . . . ,N/2 − 1 and in addition

xN/2 = 0. (5.4)

Conditions (3.24) are compatible if and only if

φ =
{

0 if N/2 is even
π if N/2 is odd (mod 2π ). (5.5)

Again, if the eigenvalues x0,x1, . . . ,xN/2−1 are linearly inde-
pendent, the APST property is present.

B. The uniform X X chain with zero magnetic fields

The APST (or pretty good state transfer) of the XX chain
with uniform couplings and no magnetic fields, that is, Js = 1
and BS = 0 for all s, have recently been sorted out in [16].
It has been found there that a chain of length N + 1 admits
APST if and only if N = p − 2 or 2p − 2, where p is prime
or if and only if N = 2m − 2. As a matter of fact, the proof
of that result given in [16] effectively proceeds from the
application of version 2 of the Kronecker theorem and the
use of trigonometric relations between the eigenvalues

xs = 2 cos[πs/(N + 2)], s = 1,2, . . . ,N + 1, (5.6)

which are given by the roots of the Chebyshev polynomials of
second kind for this model.

In the same reference [16] (see also [15]), it is pointed out,
on the basis of numerical analysis, that the waiting times for
APST will grow with the size of the chain. This has cast doubts
on the practical use of APST. Our next examples hopefully
dissipate this negative view by showing that there are models
exhibiting APST where the waiting times stay finite as the size
is grown.

Before we leave this uniform XX chain, we would like to
offer the following comment on the waiting times as the chain
is taken to have very large length.

The quantity

f00(t) = 〈e0|e−itJ |e0〉 (5.7)

represents the return amplitude, that is, the amplitude to return
to the initial (input) state after a time t . Since

|e−itJ |e0〉 − eiφ|eN 〉| = |eitJ |eN 〉 − e−iφ |e0〉|,
if we have APST from |e0〉 to |eN 〉, we also have APST from
|eN 〉 to |e0〉. As a consequence, in a chain with APST, we must
observe that there is almost perfect return, that is that there are
times tn, n = 0,1,2, . . ., such that

lim
n→∞ |f00(tn)| = 1. (5.8)

The conditions for almost perfect return have been analyzed
in [17] and can be simply stated: An XX spin chain will exhibit

almost perfect return if and only if its one-excitation Hamil-
tonian J has a pure point spectrum. As is readily seen, the
spectrum of the uniform XX chain becomes continuous as N ,
the number of sites minus 1, becomes infinite (see [17] for more
details.) It follows that almost perfect return does not occur in
the case of a semi-infinite Heisenberg XX chain and hence not
surprisingly an infinite time is required for APST in this model.

C. PST as a special case of APST

If a set {x0,x1, . . . ,xN } of eigenvalues satisfies the APST
conditions, it is clear that the affine transformed eigenvalues
x̃s = αxs + β will also satisfy the APST conditions. In
particular, we can always assume that x0 = 0 and x1 = 1. The
PST condition (3.25) then implies that x2s = K2s are even
integers while x2s+1 = K2s+1 are odd integers. We have N

linear relations

Ksx1 = xs, s = 0,2,3, . . . ,N. (5.9)

With φ = 0 we see that the conditions (3.24) become

Ks = s(mod 2). (5.10)

This is equivalent to the condition that the parity of the
integers Ks coincides with the parity of s, that is, with the
PST condition. We thus see that the PST condition is a special
case of the APST condition, as expected.

A note is in order here. In general the translation xs →
xs + β of the energy spectrum has no physical meaning: It is
always possible to redefine the value of the ground-state energy
and for instance to put it equal to zero as noted. (Similarly, the
scale can be arbitrarily chosen using the dilation factor α.) This
freedom relates to the values that the phase φ takes modulo
2π . For a given spectrum, the APST conditions might restrict
φ; however, shifts in the ground-state energy will allow φ to
take arbitrary values.

D. Spin chains with five sites and without magnetic field

Consider the the XX spin chain without magnetic fields
(B0 = B1 = · · · = BN = 0) that contains five sites. In this case
it is possible to express the APST conditions explicitly and to
describe three possible scenarios: PST, APST, and neither.

This corresponds to N = 4. There are only two distinct
exchange constants: J1 and J2. Indeed, due to the mirror-
symmetry condition (3.23) we have (for N = 4) that J4 =
J1, J3 = J2.

The spectrum of the corresponding Jacobi matrix J can
easily be found:

x0 = −a, x1 = −b, x2 = 0, x3 = b, x4 = a, (5.11)

where a =
√

J 2
1 + 2J 2

2 , b = J1 are two positive parameters.
Clearly, a > b so the eigenvalues xs in (5.11) are given in
increasing order.

This is a special case of the situation considered in Sec. V A.
The sufficient condition for APST is that the parameters a and
b be linearly independent over the rationals. This is equivalent
to the statement that the ratio a/b is an irrational number. We
thus see that if

√
J 2

1 + 2J 2
2 /J1 is an irrational number, then the

spin chain with five nodes has the APST property.
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Suppose now that the ratio a/b = n/m is a rational number
where n,m are coprime integers. This means that there are two
conditions on the eigenvalues

mx0 − nx1 = mx4 − nx3 = 0. (5.12)

Then the relations (3.24) which are required for APST (with
φ = 0) reduce to the only condition that n be even and m be
odd.

However, this is equivalent to the PST condition. Indeed,
we have

a − b

b
= n

m
− 1 = M/m, (5.13)

where M and m are both odd. Observe that the differences be-
tween the eigenvalues are 1 = x1 − x0 = a − b, 2 = x2 −
x1 = b, 3 = x3 − x2 = b, 4 = x4 − x3 = a − b. Hence,
Eq. (5.13) coincides with the PST condition for a chain with
five sites.

In all other cases, that is, when n is odd and m is odd,
or when both n and m are odd, the APST condition is not
valid and the XX spin chain does demonstrate neither PST
nor APST.

In the APST situation (i.e., when a/b is irrational), it is
interesting to estimate the waiting times. It is easy to calculate
the amplitude f0N (t) directly from

f0N (t) = a2 − b2

2a2
+ b2

2a2
cos at − 1

2
cos bt. (5.14)

This is a simple example of almost periodic functions: two
harmonic oscillations with frequencies ω1 = a and ω2 = b

do not constitute a pure periodic function. However, the
Kronecker theorem guarantees that there exists a sequence
tn such that f0N (tn) → 1 when n → ∞.

There are several simple algorithms to estimate the quanti-
ties tn.

One of them proceeds through the expansion of a/b into a
continued fraction [20]

z = a/b = ζ0 + 1

ζ1 + 1
ζ2+···

, (5.15)

where the quotients ζ0,ζ1, . . . are integers. The corresponding
convergents pn/qn of the continued fraction are rational
numbers which provide the best approximation of the irrational
number a/b [20]. In our case this method works well if all
(or at least infinitely many) convergents have the property
that pn is even and qn is odd. Otherwise, one can apply the
method of Farey fractions [20] or, equivalently, the method of
intermediate convergents [23].

This method can described as follows. Starting with the
convergents {p0/q0,p1/q1, . . .} we compute the so-called
mediants (or intermediate convergents) by the formula [23]

p̃n

q̃n

= pn+1 ± pn

qn+1 ± qn

. (5.16)

The convergents pn/qn together with the intermediate con-
vergents p̃n/q̃n form a set of generalized convergents wn =
un/vn,n = 0,1,2, . . . , where un = pn or un = p̃n (similarly
vn = qn or vn = q̃n). From the elementary properties of the
convergents it follows that all fractions un/vn are simple (i.e.,

un and vn are coprime). Moreover, it is possible to show [23]
that the generalized convergents provide the general solution
to the best approximation problem: They satisfy the inequality

|z − un/vn| < v−2
n . (5.17)

It is easy to show that there are infinitely many generalized
convergents un/vn with the desired property: un is even while
vn is odd.

Indeed, assume that there is only a finite number of the
convergents pn/qn with the desired property. This means that
starting with some n = M the numerators pn are all odd; the
corresponding denominators qn may be either even or odd.
Necessarily, for any neighbor pair pn/qn and pn+1/qn+1, the
denominators qn and qn+1 should be of opposite parity. Indeed,
if one assumes that qn and qn+1 have the same parity then their
mediant (pn + pn+1)/(qn + qn+1) will be reducible (with both
numerator and denominator even), which is impossible. Thus,
the mediants p̃n/q̃n will have the desired property, because
p̃n = pn+1 ± pn is even as a sum of two even numbers and
q̃n = qn+1 ± qn is odd as a sum of two number with opposite
parities. This means that for any irrational number z = a/b

there exists an infinite sequence of generalized convergents
cn = un/vn such that limn→∞ cn → z and un is even while
vn is odd. Moreover, the best approximation property (5.17)
holds for all such convergents.

Given this sequence, let us put

tn = πvn

b
. (5.18)

The amplitude f0N (tn) then becomes

f0N (tn) = a2 − b2

2a2
+ b2

2a2
cos

(
πvn

a

b

)
+ 1

2
. (5.19)

This can easily be simplified to

f0N (tn) = 1 − b2

a2
sin2(πvnεn/2), (5.20)

where

εn = a

b
− un

vn

(5.21)

is the accuracy of the rational approximation of the irrational
number a/b.

By property (5.17) we have that

f0N ≈ 1 − π2b2

a2v2
n

. (5.22)

It is seen from this formula that f0N (tn) converges to 1
when n → ∞. Moreover, this formula makes it possible to
estimate the accuracy of this approximation if the (generalized)
convergents un/vn are known explicitly.

It is seen that f0N (tn) → 1 when tn → ∞. This means that
the sequence {tn} is associated with APST.

Consider the special case J1 = J2 = 1 so that all couplings
are now equal. For the homogeneous Heisenberg chain (i.e.,
with Ji = 1 for all i = 0,1,2, . . . ,N) it is known [3] that PST
only occurs when there are two or three sites. We are thus in a
situation of APST for a uniform chain with five nodes.
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In this case a = √
3, b = 1. The continued fraction repre-

sentation is
√

3 = 1 + 1

1 + 1
2 + 1

1+···

. (5.23)

The first convergents are

pn

qn

=
{

1,2,
5

3
,
7

4
,
19

11
,
26

15
,
71

41
, . . .

}
. (5.24)

It is seen that the first two convergents with the desired property
(i.e., an even numerator and an odd denominator) are 2/1 and
26/15. Computing the mediants according to (5.16), we obtain
the additional intermediate convergent 12/7. Hence, the first
three desired (intermediate) convergents are

un

vn

=
{

2

1
,
12

7
,
26

15

}
. (5.25)

The first fraction, 2/1, yields an approximation to the differ-
ence between |f0N (t)| and 1 with an accuracy of 3 × 10−1; the
second fraction 12/7 yields an approximation with accuracy
2 × 10−2.

So, already in the case of a spin chain with five sites we see
that all three possibilities—PST, APST, or neither—can occur.
APST is generic; that is, APST happens for almost all possible
values of J1 and J2.

We consider next a XX spin chain with an arbitrary (even)
number of spins which demonstrates the similar property.

E. Spin chain corresponding to the
para-Krawtchouk polynomials

Assume that N is odd and that the spectrum xs is such that
(up to an affine transformation)

x2s = 2s, x2s+1 = 2s + γ, s = 0,1, . . . ,(N − 1)/2,

(5.26)

where γ is a real parameter such that 0 < γ < 2.
This situation can be realized in spin chains that are obtained

from the para-Krawtchouk polynomials with the recurrence
coefficients [24]

Bn = γ + N − 1

2
,

(5.27)

J 2
n = n(N + 1 − n)[(N + 1 − 2n)2 − γ 2]

4(N − 2n)(N − 2n + 2)
.

The corresponding Jacobi matrix is mirror symmetric. When
γ = 1 the grid is uniform and the Jacobi matrix J , which is
associated to the ordinary Krawtchouk polynomials, generates
PST [2].

It is clear that all eigenvalues can be expressed as linear
combinations of x1 and x2. Indeed,

x2s = sx2, x2s+1 = x1 + sx2, s = 0,1,2, . . . (N − 1)/2.

(5.28)

Hence, according to our central result (3.24), in order to have
APST, the following conditions must be realized:

a2s = sa2, a2s+1 = a1 + sa2 (mod 2π ), (5.29)

where as = πs − φ. These relations are compatible if and only
if φ = 0 (mod 2π ).

If the parameter γ is irrational then there are no additional
relations for the eigenvalues x1, x2 and thus provided (5.29) is
verified, APST will occur.

Equivalently, this means that there exists a sequence
{tn, n = 1,2, . . .} such that

lim
n→∞ |f0N (tn)| = 1. (5.30)

As in the previous case it is possible to determine the times tn
and estimate the corresponding rate of convergence in (5.30)
using standard Diophantine approximation methods.

Indeed, we can always choose an infinite set of (inter-
mediate) convergents {u1/v1,u2/v2, . . . ,un/vn, . . .} with the
property that the numerators un are all odd. Then we introduce
the value

εn = γ − un

vn

, (5.31)

which describes the accuracy of the Diophantine approxima-
tion of the parameter γ . We already saw that

|εn| < v−2
n . (5.32)

We choose

tn = πvn. (5.33)

Substituting this in (3.14) and taking into account that un is
odd we have

f0N (tn) = −
(N−1)/2∑

s=0

w2s +
(N−1)/2∑

s=0

e−iπγ vnw2s+1

= −
(N−1)/2∑

s=0

w2s − e−iπvnεn

(N−1)/2∑
s=0

w2s+1. (5.34)

In [24] it was shown that for the para-Krawtchouk polynomials
the identities

(N−1)/2∑
s=0

w2s =
(N−1)/2∑

s=0

w2s+1 = 1/2 (5.35)

hold. Hence,

f0N (tn) = − 1
2 (1 + e−iπvnεn ). (5.36)

Now

|f0N (tn)| = cos(πvnεn/2) ≈ 1 − π2

8v2
n

, (5.37)

where we have used Eq. (5.32).
Formula (5.37) gives a good approximation of the amplitude

|f0N | if vn is sufficiently large (depending on the physical
requirements on the accuracy). For example, for vn > 10 we
get an accuracy of 1%.

Consider, for example, the value γ = √
3.

From (5.23) we find the first appropriate (i.e., with all
numerators un odd) convergents,

un

vn

=
{

1,
5

3
,
7

4
,
19

11
,
45

26
,
71

41
, . . . ,

}
. (5.38)

Already the third convergent 7/4 gives an accuracy of about
1%. This is because the actual accuracy ε3 ≈ 0.0179 of the
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third convergent is smaller than the right-hand side of formula
(5.32) gives. Hence, the first waiting time corresponding to an
accuracy of 1% in the amplitude is t3 = 4π .

Consider now the case where γ = p/q is a rational number,
with p and q coprime integers. In this case there is an additional
linear relation between x1 and x2,

2qx1 = px2, (5.39)

and hence a similar relation should hold for a1 and a2,

2qa1 = pa2 (mod 2π ), (5.40)

where a1 = π, a2 = 2π. If the numerator p is odd then (5.40)
holds for any pair of coprime integers p,q and hence the APST
condition is satisfied. In fact, we are then in the situation where
not only APST but even PST occurs. Indeed, this corresponds
to the model with PST that we derived and discussed in [24].

If the numerator p = 2j is even for some integer j (in this
case, necessarily the denominator q is odd) then relation (5.39)
becomes qx1 = jx2 and hence (5.40) reads

qπ − 2jπ = 0 (mod 2π ). (5.41)

Obviously, (5.41) cannot hold when q is odd and there is no
PST or APST in this case.

In summary, the picture is as follows:
(i) when γ is an irrational number, APST is observed;

(ii) when γ = p/q is rational with p odd there is PST;
(iii) when γ = p/q is rational with p even neither PST nor

APST happens.
Let us make the following remark in connection with the last

two examples. As mentioned in Sec. V C, in the discussion of
the uniform XX chain, almost perfect return occurs in chains
of the type we have been considering; this is so whenever
the spectrum of the Jacobi matrix J is discrete. Clearly, this
will be the case for any XX spin chain with nearest-neighbor
interactions that has a finite number of sites. It should be
stressed that finite length does not similarly imply APST; as
we have seen, there are examples of systems with finite 1-
excitation Hamiltonian J that do not possess APST.

VI. CONCLUSIONS

Let us recapitulate the essential elements of our analysis of
APST in spin chains. It builds on the knowledge that XX spin
chains with properly engineered couplings and magnetic fields
can effect the transport of states from one end to the other with
probability 1 over certain times; these are chains with PST.
In view of the fact that there are always manufacturing or
measurement imprecisions, our study aimed to characterize
the models where although not perfect, state transfer could be

realized with a probability very close to 1; such chains have
been said to show APST.

We have thus undertaken to categorize all XX spin chains
with arbitrary nearest-neighbor couplings and magnetic fields
that would exhibit APST. The Kronecker theorem in Diophan-
tine approximation proved essential in this investigation. The
necessary and sufficient conditions that have been found for a
chain to admit APST bear on the 1-excitation restriction J (a
tridiagonal matrix) of the chain Hamiltonian. Not unlike what
is needed for PST, the requirements for APST entail a symme-
try condition on J as well as spectral restrictions. As it turns
out, like for PST, J must be mirror-symmetric, that is, invariant
against reflection with respect to its antidiagonal. The condi-
tions on the eigenvalues of J turn out (in general) to be much
less demanding for APST than for PST. They amount roughly
to the conditions for which the Kronecker theorem applies
and imply that at least a subset of these eigenvalues be linearly
independent over the field of the rational numbers. Spin chains
with APST therefore much enlarge, in principle, the class of
such systems that can be exploited as quantum wires since
their fidelity can be as good as is technically relevant.

It has also been demonstrated how chains with APST can be
constructed from a chain that already admits (or possibly not)
APST by the removal of single excitation energy levels from
the parent system via Christoffel transforms. This offers a con-
structive method to broaden the catalog of systems with APST.

A number of examples and special cases interesting in
their own right have also been presented and discussed. They
illustrate situations where PST or APST occur or where neither
can happen. One of the models introduced has provided
counterexamples to the view borne out in particular from the
examination of the Heisenberg XX chain with homogeneous
couplings, that APST requires excessively long times in
extended wires.

We trust this report provides interesting information on
the transfer of state in XX spin chains with nearest-neighbor
couplings and suggests that APST requires further analysis.
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