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High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion
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By making use of the spatial shape of paired photons, parametric down-conversion allows the generation of
two-photon entanglement in a multidimensional Hilbert space. How much entanglement can be generated in
this way? In principle, the infinite-dimensional nature of the spatial degree of freedom renders unbounded the
amount of entanglement available. However, in practice, the specific configuration used, namely, its geometry,
the length of the nonlinear crystal, and the size of the pump beam, can severely limit the value that could be
achieved. Here we show that the use of quasi-phase-matching engineering allows one to increase the amount of
entanglement generated, reaching values of tens of ebits of entropy of entanglement under different conditions.
Our work thus opens a way to fulfill the promise of generating massive spatial entanglement under a diverse
variety of circumstances, some more favorable for its experimental implementation.
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I. INTRODUCTION

Entanglement is a genuine quantum correlation between
two or more parties, with no analog in classical physics. During
the last few decades it has been recognized as a fundamental
tool in several quantum-information protocols, such as
quantum teleportation [1], quantum cryptography [2],
quantum key distribution [3], and distributed quantum
computing [4].

Nowadays, spontaneous parametric down-conversion
(SPDC), a process where the interaction of a strong pump beam
with a nonlinear crystal mediates the emission of two lower-
frequency photons (signal and idler), is a very convenient way
to generate photonic entanglement [S]. Photons generated in
SPDC can exhibit entanglement in the polarization degree
of freedom [6], frequency [7], and spatial shape [8,9]. One
can also make use of a combination of several degrees of
freedom [10,11].

Two-photon entanglement in the polarization degree of
freedom is undoubtedly the most common type of generated
entanglement, due to both its simplicity and that it suffices
to demonstrate a myriad of important quantum-information
applications. But the amount of entanglement is restricted to
1 ebit of entropy of entanglement [12], since each photon of
the pair can be generally described by the superposition of two
orthogonal polarizations (two-dimensional Hilbert space). On
the other hand, frequency and spatial entanglement occurs
in an infinite dimensional Hilbert space, offering thus the
possibility to implement entanglement that inherently lives
in a higher-dimensional Hilbert space (qudits).

The entangling of systems in higher-dimensional systems
(frequency and spatial degrees of freedom) is important both
for fundamental and applied reasons. For example, noise and
decoherence tend to degrade quickly quantum correlations.
However, theoretical investigations predict that physical sys-
tems with increasing dimensions can maintain nonclassical
correlations in the presence of more hostile noise [13,14].
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Higher-dimensional states can also exhibit unique outstand-
ing features. The potential of higher-dimensional quantum
systems for practical applications is clearly illustrated in the
demonstration of the so-called quantum coin tossing, where
the power of higher-dimensional spaces is clearly visible [15].

The amount of spatial entanglement generated depends
of the SPDC geometry used (collinear vs noncollinear), the
length of the nonlinear crystal (L), and the size of the pump
beam (wg). To obtain an initial estimate, let us consider a
collinear SPDC geometry. Under certain approximations [16],
the entropy of entanglement can be calculated analytically.
Its value can be shown to depend on the ratio L/L,, where
Ly = k,w3/2 is the Rayleigh range of the pump beam and
k, is its longitudinal wave number. Therefore, large values of
the pump beam waist wy and short crystals are ingredients for
generating high entanglement [17]. However, the use of shorter
crystals also reduces the total flux-rate of generated entangled
photon pairs. Moreover, certain applications might benefit
from the use of focused pump beams. For instance, for an
L = 1-mm-long stoichiometric lithium tantalate (SLT) crystal,
with pump beam waist wy = 100 um, pump wavelength
Ap =400 nm, and extraordinary refractive index n.(A,) =
2.27857 [18], one obtains E ~ 8.5 [16]. For a longer crystal
of L = 20 mm, the amount of entanglement is severely reduced
to E ~ 4.2 ebits.

We put forward here a scheme to generate massive spatial
entanglement, i.e., a staggering large value of the entropy of
entanglement, independently of some relevant experimental
parameters such as the crystal length or the pump beam waist.
This would allow even larger amounts of entanglement than
possible nowadays to be reached with the usual configurations
used or this would allow the same amount of entanglement to
be obtained but with other values of the nonlinear crystal length
or the pump beam waist better suited for specific experiments.

Our approach is based on a scheme originally used to in-
crease the bandwidth of parametric down-conversion [19-21].
A schematic view of the SPDC configuration is shown in
Fig. 1. It makes use of chirped quasi-phase-matching (QPM)
gratings with a linearly varying spatial frequency given by
K,(z) = Ko — a(z + L/2), where K is the grating’s spatial
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FIG. 1. (Color online) Scheme of SPDC in a linearly chirped
quasi-phase-matched nonlinear crystal. The pump beam is a Gaussian
beam, and p and q designate the transverse wave numbers of the
signal and idler photons, respectively. K is the grating wave vector
at the input face of the nonlinear crystal, and Ky-oL is the grating
wave vector at its output face. The signal and idler photons can
have different polarizations or frequencies. The different colors (or
different direction of arrows) represent domains with different signs
of the nonlinear coefficient.

frequency atits entrance face (z = —L/2) and « is a parameter
that represents the degree of linear chirp. The period of the
grating at distance z is p(z) = 27/K,4(z), so that the parameter
o is written as

o= ﬁu, (1)

L pypi

where p; is the period at the entrance face of the crystal and
Dy is the period at its output face.

The key idea is that at different points along the nonlinear
crystal, signal and idler photons with different frequencies
and transverse wave numbers can be generated, since the
continuous change of the period of the QPM gratings allows
the fulfillment of the phase-matching conditions for different
frequencies and transverse wave numbers. If appropriately
designed narrow-band interference filters allow one to neglect
the frequency degree of freedom of the two-photon state,
then the linearly chirped QPM grating enhances only the
number of spatial modes generated, leading to a corresponding
enhancement of the amount of generated spatial entanglement.

II. THEORETICAL MODEL

In order to determine how much spatial entanglement
can be generated in SPDC with the use of chirped QPM,
let us consider a nonlinear optical crystal illuminated by a
quasi-monochromatic laser Gaussian pump beam of waist
wp. Under conditions of collinear propagation of the pump,
signal, and idler photons with no Poynting vector walk-off,
which would be the case of a noncritical type II quasi-phase-
matched configuration, the amplitude of the quantum state of
the generated two-photon pair generated in SPDC reads in
transverse wave number space

W) = /dpdq\ll(p,q)lmslq)i, 2

where p (q) is the transverse wave number of the signal (idler)
photon. W is the joint amplitude of the two-photon state, so
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that | ¥ (p,q)|? is the probability to detect a signal photon with
transverse wave number p in coincidence with an idler photon
with q.

The joint amplitude that describes the quantum state of the
paired photons generated in a linearly chirped QPM crystal,
using the paraxial approximation, is equal to

w2 L/2
v = Coxp (- 2ip+ar) [
—L/2
—_al? L
X exp |:i—|p2k;l| z+ia (Z + E) Z] . (3
where C is a normalization constant ensuring
[dq [dp|¥(p,g)I*=1. Notice that the value of

Ko =2n/p(—L/2) does now show up in Eq. (3), since

we make use of the fact that there is phase matching for

p = q = 0 at certain locations inside the nonlinear crystal,

which in our case it turns out to be the input face (z = —L/2).
After integration along the z axis one obtains

i wé 2
V(p,q) =Cy/—exp|——|p+d|
4o 4
OlL2 L _ o2 o4
_; L Lp—dl”  |p—d
16 8k, 16ak2

3Jal | |p—qf?
x | erf +
i dkpia

2
ot (ﬁL N u)} @
i dkpia
where erf refers to the error function. Notice that Eq. (4) is
similar to the one describing the joint spectrum of photon pairs
in the frequency domain, when the spatial degree of freedom
is omitted [20,21]. The reason is that both equations originate
in phase-matching conditions along the propagation direction
(z axis).

Since all the configuration parameters that define the
down-conversion process show rotational symmetry along the
propagation direction z, the joint amplitude given by Eq. (4)
can be written as

oo

(p.q)= Y Bip.g)e" . 5)

l=—00

Here, we have made use of polar coordinates in
the transverse wave-vector domain for the signal pho-
tons, p = (pcosgp,psing,), and the idler photons, q =
(q cos @,,q sing,), where p and g are the corresponding
radial coordinates and ¢, , are the azimuthal angles. The
specific dependence of the Schmidt decomposition on the
azimuthal variables ¢, and ¢, reflects the conservation of the
orbital angular momentum (OAM) in this SPDC configuration
[22], so that a signal photon with OAM winding number
+[ is always accompanied by a corresponding idler photon
with OAM winding number —/[. The probability of such
coincidence detection for each value of / is the spiral spectrum
[23] of the two-photon state, i.e., the set of values P, =
[ pdp qdq |B;(p,q)|*. Recently, the spiral spectra of some
selected SPDC configurations have been measured [24].
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The Schmidt decomposition [25,26] of the spiral function,
e, Bi(p.q) = X oo o Nt fu(P)gni(q), is the tool to quantify
the amount of entanglement present. A, are the Schmidt
coefficients (eigenvalues), and the modes f,; and g,; are the
Schmidt modes (eigenvectors). Here we obtain the Schmidt
decomposition by means of a singular-value decomposition
method. Once the Schmidt coefficients are obtained, one can
obtain the entropy of entanglementas E = — )", A, 10g; Ay
An estimation of the overall number of spatial modes generated
is obtained via the Schmidt number K = 1/ an Aﬁl, which
can be interpreted as a measure of the effective dimensionality
of the system. Finally, the spiral spectrum is obtained as

P = Zn Al

III. DISCUSSION

For the sake of comparison, let us consider first the usual
case of a QPM SLT crystal with no chirp, i.e., « =0 ,um’z,
and length L = 20 mm, pumped by a Gaussian beam with
beam waist wo = 100 pm and wavelength A, = 400 nm. In
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FIG. 2. (Color online) Weight of the Schmidt coefficients A, for
(@)a =0 um~2 and (b) @ = 10 x 107® um™2. The nonlinear crystal
length is L = 20 mm and the pump beam waist is wy = 100 pwm.
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this case, the integration of Eq. (3) leads to [27]

wy . (Llp—qf?
¥(p.q) = Cexp (——40 Ip+ q|2>s1nc (T) . (6)
P

The Schmidt coefficients are plotted in Fig. 2(a), and the
corresponding spiral spectrum is shown in Fig. 3(a). The main
contribution to the spiral spectrum comes from the spatial
modes with / = 0. The entropy of entanglement for this case
is E = 6.4 ebits and the Schmidt number is K = 42.9.
Nonzero values of the chirp parameter « lead to an increase
of the number of generated modes, as it can be readily seen
in Fig. 2(b) for a = 10 x 107% um™2 and wy = 100 pum.
This broadening effect is also reflected in the corresponding
broadening of the spiral spectrum, as shown in Fig. 3(b).
Indeed, Fig. 4(a) shows that the entropy of entanglement
increases with increasingly larger values of the chirping
parameter, even though for a given value of wy its increase
saturates for large values of «. For wy =300 um and o =
10 x 107® um=2, we reach a value of E = 16.6 ebits. On
the contrary, the Schmidt number K rises linearly with «,
as can be observed in Fig. 4(b), for all values of wy. For
sufficiently large values of wy and «, K reaches values of
several thousands of spatial modes, i.e., K = 87 113 for the
same wy and «. For large values of E, a further increase of
E requires an even much larger increase of the number of
spatial modes involved, which explains why an increase of the
number of modes involved only produces a modest increase of
the entropy of entanglement. Notice that the spiral spectrum
presented in Fig. 3(b) is discrete. Notwithstanding, it might
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FIG. 3. The spiral spectrum P, for (a) « =0 um~2 and (b) « =

10 x 10 m™2. The nonlinear crystal length is L = 20 mm and the
pump beam waist is wy = 100 pm.
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FIG. 4. (Color online) (a) The entropy of entanglement E and
(b) the Schmidt number K as a function of the chirp parameter « for
wo = 100 um (solid black line), wy = 200 um (dashed blue line),
and wy = 300 um (dotted-and-dashed red line).

look continuous since it is the result of the presence of several
hundreds of OAM modes with slightly decreasing weights.
We have discussed entanglement in terms of transverse
modes which arise from the Schmidt decomposition of the two-
photon amplitude and, as such, they attain appreciable values
in the whole transverse plane. Alternatively, the existing spatial
correlations between the signal and idler photons can also be
discussed using second-order intensity correlation functions
[28]. In this approach, correlations are quantified by the size
of the correlated area (Ap) where it is highly probable to
detect a signal photon provided that its idler twin has been
detected with a fixed transverse wave vector q. We note that
the azimuthal width of the correlated area decreases with the
increasing width of the distribution of Schmidt eigenvalues
along the OAM winding number /. On the other hand, the
increasing width of the distribution of Schmidt eigenvalues
along the remaining number n results in a narrower radial
extension of the correlated area. An increase in the number
of modes K results in a diminishing correlation area, both
in the radial and azimuthal directions. The correlated area
drops to zero in the limit of plane-wave pumping, where it
attains the form of a § function. The use of such correlations in
parallel processing of information represents the easiest way
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for the exploitation of the massively multimode character of
the generated beams.

For the sake of comparison, when considering frequency
entanglement, the entropy of entanglement depends on the
ratio between the bandwidth of the pump beam (typically
B, ~5 MHz) and the bandwidth of the down-converted
two-photon state (By.) [29,30]. For type Il SPDC, one typically
has values of E ~ 1-2 [7]. Increasing the bandwidth of the
two-photon state, one can reach values of By, > 1000 THz,
therefore allowing typical ratios greater than By./B, > 108,
with £ > 25 [31].

IV. CONCLUSION

In conclusion, we have presented a way to increase
significantly the amount of two-photon spatial entanglement
generated in SPDC by means of the use of chirped quasi-
phase-matching nonlinear crystals. This opens the door to the
generation of high entanglement under various experimental
conditions, such as different crystal lengths and sizes of the
pump beam.

QPM engineering can also be an enabling tool to generate
truly massive spatial entanglement, with state of the art
QPM technologies [20] potentially allowing entropies of
entanglement of tens of ebits to be reached. Therefore, the
promise of reaching extremely high degrees of entanglement,
offered by the use of the spatial degree of freedom, can be
fulfilled with the scheme put forward here. The experimental
tools required are available nowadays. The use of extremely
high degrees of spatial entanglement, as consider here, would
demand the implementation of high aperture optical systems.
For instance, for a spatial bandwidth of Ap ~ 2 pum~!, the
aperture required for A, = 400 nm is A ~ 4°-6°.

The shaping of QPM gratings is commonly used in the
area of nonlinear optics for multiple applications such as
beam and pulse shaping, harmonic generation, and all-optical
processing [32]. In the realm of quantum optics, its uses
are not so widespread, even though QPM engineering has
been considered, and experimentally demonstrated, as a tool
for spatial [33,34] and frequency [20] control of entangled
photons. In view of the results obtained here concerning the
enhancement of the degree of spatial entanglement, it could
be possible to devise new types of gratings that turn out to be
beneficial for other applications in the area of quantum optics.
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