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Quantum search using non-Hermitian adiabatic evolution
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Gennady P. Berman†

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
(Received 21 August 2012; published 12 November 2012)

We propose a non-Hermitian quantum annealing algorithm which can be useful for solving complex
optimization problems. We demonstrate our approach on Grover’s problem [L. K. Grover, Phys. Rev. Lett.
79, 325 (1997)] of finding a marked item inside of an unsorted database. We show that the energy gap between
the ground and excited states depends on the relaxation parameters and is not exponentially small. This allows a
significant reduction of the searching time, which is proportional to the number of qubits. We discuss the relations
between the probabilities of finding the ground state and the survival of a quantum computer in a dissipative
environment, and we discuss alternate ways to solve NP -complete problems.
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I. INTRODUCTION

Many physical and combinatorial problems associated with
complex networks of interacting degrees of freedom can be
mapped to equivalent problems of finding the minimum of
the cost function or the ground state of a corresponding
quantum Hamiltonian, H0, [1–9]. One of the approaches
to find the ground state of H0 is quantum annealing (QA)
which can be formulated as follows. Consider the time-
dependent Hamiltonian, H(t) = H0 + �(t)H1, where H0 is
the Hamiltonian to be optimized, H1 is an auxiliary “initial”
Hamiltonian, and [H0,H1] �= 0. The coefficient, �(t), is a
control parameter, and �(t) decreases from very high value
to zero during the evolution.

One starts with the ground state of H1 as the initial
state, and if �(t) is slowly decreasing, the adiabatic theorem
guarantees approaching the ground state of H0 at the end
of the computation, assuming that there are no energy level
crossings between the ground and excited states. So, the
quantum optimization algorithms require the presence of a
gap between the ground state and first excited state. However,
in typical cases the minimal gap, gm, is exponentially small.
For instance, in the commonly used quantum optimization
n-qubit models, the estimation of the minimal energy gap
yields gm ≈ 2−n/2 [1,4,10–12]. This increases drastically the
total computational time, and from a practical point of view
the advantage of the method is lost.

Recently [13], we have proposed a non-Hermitian adia-
batic quantum optimization with the non-Hermitian auxiliary
Hamiltonian. We have shown that the non-Hermitian quantum
annealing (NQA) provides an effective level repulsion for
the total Hamiltonian. This effect enables us to develop
an adiabatic theory without the usual gap condition and to
determine the low-lying states of H0, including the ground
state. Some interesting suggestions for implementation of non-
Hermitian architectures by realization of the “Ising machine”
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based on mutually injection-locked laser systems were recently
discussed in Refs. [14,15].

In this paper, we apply the NQA to Grover’s problem [16],
i.e., finding a marked item in an unstructured database.

II. NON-HERMITIAN QUANTUM SEARCH

Consider a set of N = 2n unsorted items among which one
item is marked. The related Hilbert space is of dimension N . In
this space, the basis states are written as |i〉 (i = 1,2, . . . ,N ),
and the marked state is denoted as |m〉. The task is to find the
marked item as rapidly as possible.

The Hamiltonian whose ground state is to be found
can be written as H0 = −|m〉〈m|. Its ground state, marked
as |m〉, is unknown. The auxiliary Hamiltonian is given
by H1 = −|ψ0〉〈ψ0|, where |ψ0〉 = (1/

√
N )

∑N
i=1 |i〉 is its

ground state with energy E
g

1 = −1. For both Hamiltonians,
H0 and H1, the rest of the eigenstates have the (N − 1)-times
degenerate energy Er = 0 (r = 2,3, . . . ,N ). (Our choice of
the Hamiltonian is different from the Hamiltonian considered
in Refs. [17–20] by a total shift on the unit matrix.)

Usually, the non-Hermitian Hamiltonian appears naturally
when one considers a qubit based on two discrete eigenstates
interacting with their continuum spectrum [21]. In this case, the
non-Hermitian terms in the Hamiltonian have a structure which
depends on the concrete type of a qubit and on the mechanisms
of interactions between qubits and the environment.

Below we use a simplified model (similar to that in
Ref. [22]) for a non-Hermitian term in the Hamiltonian,
because our main goal in this paper is to demonstrate
the principal effects related to non-Hermitian effects. The
total time-dependent non-Hermitian Hamiltonian is chosen as
follows: Hτ (t) = H0 + h(t)H1, where

h(t) =
{

γ (τ − t), 0 � t � τ,

0, t � τ.
(1)

We denote γ = (g + iδ)/τ , where g (an effective field) and
δ (a damping parameter) are real. In what follows we assume
that δ � g.
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The adiabatic quantum search algorithm consists of
(i) preparing the system in the initial state, |ψ(0)〉 = |ψ0〉, and
(ii) performing an evolution by applying the non-Hermitian
Hamiltonian, Hτ (t), during a time, τ . At the end of evolution,
the non-Hermitian part of the total Hamiltonian disappears.
Then, if the evolution is sufficiently slow, the system remains in
its ground state, which will be the ground state of the Hermitian
Hamiltonian, H0.

We start with the solution of the eigenvalue problem
for Hτ (t). This yields an (N − 2)-times degenerate highest
eigenvalue, E2 = 0, and two lowest eigenvalues, E0 and E1,
which are given by

E0(t) = −ε(t)

2
− �(t)

2
, (2)

E1(t) = −ε(t)

2
+ �(t)

2
, (3)

where �(t) =
√

h2(t) − 2h(t) cos α + 1 and ε(t) = h(t) + 1.
We set sin(α/2) = 1/

√
N .

The energy gap between the ground state and the first ex-
cited state is given by |
E(t)| = |

√
h2(t) − 2h(t) cos α + 1|.

For N � 1/δ one can show that the minimum of the energy
gap is given by |
E|min = δ/

√
g2 + δ2 + O(1/N).

In the two-dimensional subspace spanned by the vectors,
|ψ0〉 and |m〉, we choose an orthonormal basis as |ψ0〉 and
|ψ1〉 = (sin(α/2)|ψ0〉 − |m〉)/ cos(α/2). We complement it
to the basis of the N -dimensional Hilbert space by adding
(N − 2) vectors, |ψk〉 (k = 2, . . . ,N − 1), which form the
orthonormal basis of the orthogonal (N − 2)-dimensional
Hilbert subspace. Then, an arbitrary state, |�(t)〉, can be
expanded as |�(t)〉 = c0(t)|ψ0〉 + c1(t)|ψ1〉 +∑N−1

k=2 ck(t)|ψk〉.
Inserting this expansion into the Shrödinger equation,

i∂/∂t |�〉 = Hτ |�(t)〉, we find that the differential equa-
tions for the coefficients c0(t) and c1(t) do not involve
the coefficients ck(t) (k = 2, . . . ,N − 1). Then, effectively
the N -dimensional problem is exactly reduced to the two-
dimensional one. So, it suffices to confine our attention to the
two-dimensional subspace.

Choosing the orthonormal basis as {|ψ0〉 =
( 0

1 ),|ψ1〉 = ( 1
0 )}, one can write the corresponding effective

(non-Hermitian) Hamiltonian as

Hef(t) = −ε(t)

2
+ �(t)

2
· σ , (4)

where �(t) = ( sin α,0,h(t) − cos α) is a complex vector and
σ denotes the Pauli matrices.

We denote the (right) instantaneous eigenvectors, corre-
sponding to the eigenvalues, Ea(t), as |ua(t)〉 (a = 0,1).
One can show that |u0(0)〉 = |ψ0〉 + O(1/N ) and |u0(t)〉 →
|ψ1〉 + O(1/N ), as t → τ .

For the two-level system (TLS) governed by the ef-
fective non-Hermitian Hamiltonian (4), the wave function
can be written as |ψ(t)〉 = c0(t)|ψ0〉 + c1(t)|ψ1〉. Writing
ca = ua(t) exp[ i

2

∫ t

0 ε(t)dt], and employing the Schrödinger
equation for the TLS governed by the effective Hamiltonian

of Eq. (4), we obtain

iu̇0 = 1
2 {sin αu1 − [h(t) − cos α)]u0}, (5)

iu̇1 = 1
2 {[h(t) − cos α]u1 + sin α u0}. (6)

Further, it is convenient to introduce a new variable, z(t) =
eiπ/4[γ (τ − t) − cos α]/

√
γ . Then, for new functions, ua(t) =

Ua(z), we rewrite Eqs. (5) and (6) in the standard Landau-Zener
form [23,24],

d

dz
U0 = − z

2
U0 +

√
iνkU1, (7)

d

dzk

U1 = z

2
U1 +

√
iνkU0, (8)

where ν = sin2 α/4γ . From Eqs. (7) and (8) we obtain the
second-order Weber equation [25,26]

d2

dz2
U0,1 +

(
±1

2
− z2

4
− iν

)
U0,1 = 0. (9)

Solutions of Weber’s equation are given by the parabolic
cylinder functions, D−iν(±z):

U0(z) = AD−iν(z) + BD−iν(−z), (10)

U1(z) = √
iν[BD−iν−1(−z) − AD−iν−1(z)]. (11)

The constants, A and B, should be determined from the
initial conditions. We assume that the evolution of the TLS
starts at t0 = 0 in the state |ψ(0)〉 = |ψ0〉. This implies the
following initial conditions: c0(0) = 1 and c1(0) = 0. From
here we obtain A = D−iν−1(−z0)�(1 + iν)/

√
2πν and B =

D−iν−1(z0)�(1 + iν)/
√

2πν, where we set z0 = z(0).
It is assumed that the quantum measurement will determine

the state of the quantum system at t > τ , when the external
field h(t) = 0 [see Eq. (1)]. We denote the final state of the
system as |ψτ 〉. Then, the probability, Pn, of finding the system
in a given state, |n〉, can be written as

Pn = |〈n|ψτ 〉|2
|〈ψτ |ψτ 〉|2 . (12)

Since for non-Hermitian systems the norm of the wave
function is not conserved, we define the (intrinsic) probability
of transition |ψ0(t)〉 → |ψ1(t)〉 as

Pτ (t) = |c1(t)|2
|c0(t)|2 + |c1(t)|2 . (13)

Using the functions, U0,1(z), we recast Eq. (13) as

Pτ (t) = 1

1 + |U0(z)|2
|U1(z)|2

. (14)

To estimate Pτ at the end of evolution (t = τ ), we use
asymptotic formulas for the parabolic functions [27]. The
leading term is

U0(zτ )

U1(zτ )
≈ −e−πν/2e−z2

τ /2�(1 + iν)√
2πνi

, (15)

where zτ = z(τ ) = −eπi/4 cos α/
√

γ . Using Eq. (15), we
obtain

Pτ = 1

1 + |�(1+iν)|2
2π |ν| e−πReν−Rez2

τ

. (16)
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FIG. 1. (Color online) The transition probability, Pτ , as a function
of a scaled decay rate, δ∗ = δτ0/g

2, and scaled annealing time, τ∗ =
τ/τ0, where τ0 = gN .

For δ � g we can approximate

Reν ≈ (τ/4g) sin2 α, (17)

Rez2
τ ≈ (δτ/g2) cos2 α, (18)

�(1 + iν) ≈ �(1 + iReν). (19)

Inserting Eqs. (17)–(19) into Eq. (16) and using the relation
[26]

|�(iy)|2 = π

y sinh πy
, (20)

for real y, we obtain

Pτ = 1 − e−2πReν

1 − e−2πReν + e−2πReν−Rez2
τ

. (21)

In Fig. 1, the transition probability, Pτ , as a function of
a scaled decay rate, δ∗ = δτ0/g

2, and a scaled annealing
time, τ∗ = τ/τ0, is demonstrated, where τ0 = gN denotes the
characteristic time scale of the QA. As one can see, even for
δ � 1 and small τ � τ0, the probability, Pτ , is close to 1.

For the Hermitian QA (δ = 0) Eq. (21) yields the Landau-
Zener formula [23,24]

Pτ = 1 − e−2πν, (22)

where for N � 1 we obtain ν = (τ/τ0). We conclude that
Pτ ≈ 1, if τ � τ0 = gN . Thus, to obtain the probability close
to 1 to remain in the ground state at the end of evolution, the
computational time should be of order N . In fact, this result is
equivalent to the well-known result on the complexity of order
N provided by the quantum adiabatic evolution approach [18],
which is the same as in the classical search algorithm.

For the NQA with N � 1, we can approximate Reν ≈ τ/τ0

and Rez2
τ ≈ δτ/g2. Assuming τ � τ0, we obtain

Pτ ≈ 1

1 + τ0
2πτ

e−δτ/g2 . (23)

From here, in the limit of δ → 0, we obtain

Pτ → 1

1 + τ0
2πτ

� 1. (24)

FIG. 2. (Color online) Left panel: The transition probability, Pτ ,
as a function of the scaled time, s = t/τ (δ = 0). Right panel:
The survival probability, Ps (dotted blue line), and the transition
probability, Pτ (red line), as functions of the scaled time, s = t/τ

(δ = 0.0025). In all cases g = 2, τ = 1.5 × 104, and N = 240.

This result is expected, because in this case, the time of
the Hermitian annealing, τ , is small with respect to the
characteristic time, τ0: τ � τ0.

Next, assuming

δτ

g2
− ln

τ0

2πτ
� 1. (25)

we obtain

Pτ ≈ 1 − τ0

2πτ
e−δτ/g2

, (26)

As one can see Pτ ≈ 1, if conditions of Eq. (25) are satisfied.
From Eq. (25) we obtain the following rough estimate of the

computational time: τ ≈ (g2/δ) ln N . Recognizing that τ �
τ0, this can be recast as δ � (g/N ) ln N . The obtained results
mean that the characteristic time of non-Hermitian annealing,
even for small but finite δ �= 0, is defined not by N (as in Hermi-
tian annealing), but mainly by the dissipation rate, δ [see Fig. 1
and Eq. (26)]. Thus, the non-Hermitian quantum search has
complexity of order ln N , which is much better than the quan-
tum Hermitian (global) adiabatic algorithm. Also, this com-
plexity is certainly better than that of the adiabatic local search
algorithm which has a total running time of order

√
N [17].

In Fig. 2 we present the results of our numerical simulation.
For the Hermitian QA (δ = 0) the transition probability (to
remain in the ground state) at the end of evolution is Pτ ≈
3 × 10−8; and for the NQA with weak dissipation, δ = 0.0025,
the transition probability is Pτ = 1 (τ = 1.5 × 104).

III. NONLINEAR NQA

We define the survival probability of the lossy system
as the trace of the density matrix, Ps(t) = Trρ(t). Using
the asymptotic formulas for the Weber functions, one can
show that for N � 1 the asymptotic behavior of the survival
probability is given by Ps(t) ≈ e−δt (see Fig. 2, dotted blue
line). Then, one can see that the conditions to obtain high
probabilities for (i) finding the ground state, leading to
inequality, τ � (g2/δ) ln N , and (ii) survival of qubits, δt � 1,
are not compatible. A compromise can be found by using a
local adiabatic evolution approach [17].
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FIG. 3. (Color online) Nonlinear NQA. The transition probability
(left panel) and the survival probability (right panel) as the functions
of the scaled time, s = t/τ (g = 2, δ = 10−4, τ = 5 × 104, N = 240).

We rewrite the total time-dependent non-Hermitian Hamil-
tonian as

Hτ (t) = H0 + h0[1 − f (t)]H1, (27)

where h0 = (g + iδ) and f (t) is a monotonic function of t .
For concreteness, we choose g = 2 and impose the following
boundary conditions: f (0) = 0 and f (τ ) = 1, where τ denotes
the computational time.

We choose f (t) as a solution of

df

dt
= βδ

τ

[
1 +

(
(1 − 2f )

δ

)2 ]
, (28)

where β = arctan(1/δ). Performing the integration, we find

t = τ

2
+ τ

2β
arctan

(2f − 1)

δ
. (29)

By inverting this function we obtain

f (t) = 1

2
+ δ

2
tan

[
β

(
2t

τ
− 1

)]
. (30)

From here it follows that f (τ ) = 1, and the computation time
is τ .

In Figs. 3 and 4 we present the results of numerical
calculations for different choices of parameters, δ and τ .
Our results show that the nonlinear NQA can be realized
with the transition probabilities Pτ ≈ 1.2 × 10−2 and Ps ≈
1.6 × 10−2. The computational time τ ≈ 5.5 × 104 is better
than the time of quantum search predicted by the Grover
algorithm, τ = √

N ≈ 106 (for n = 40).

IV. CONCLUSION

The field of quantum adiabatic computation is well
established, and many useful results are discussed in the
literature. One of the main problems of this approach is that

FIG. 4. (Color online) Nonlinear NQA. The transition probability
(left panel) and the survival probability (right panel) as functions
of the scaled time, s = t/τ (g = 2, δ = 7.5 × 10−5, τ = 5.5 × 104,
N = 240).

the energy gap between the ground state to be found and the
excited states is generally exponentially small. This requires
exponentially large computational times, τ ∼ √

N , in the best
case. On the other hand, in the dissipative (non-Hermitian)
regime, the energy gap is defined by the relaxation parameters
and may not be exponentially small (see also Refs. [14,15]). In
this case, the computational time can be significantly reduced,
τ ∼ (g2/δ) ln N . This means that the characteristic time of
non-Hermitian annealing, even for a small but finite dissipation
parameter δ, is defined mainly not by N , but by a dissipation
rate, ∼δ.

At the same time, another problem appears—the quantum
computer has a finite probability to be destroyed (which
happens anyway). One way to overcome this problem is
discussed in Refs. [14,15], where both dissipation and external
pumping in the locked laser system were used to model the
Ising system in its stationary ground state. But still many
theoretical and experimental issues must be resolved in order
to build this type of “Ising machine.”

The results presented in our paper demonstrate that
non-Hermitian quantum computations can be used for two
purposes. One is to use non-Hermitian quantum algorithms
together with the use of classical computers to significantly
reduce computational time, which, we expect, would help in
solving NP -complete problems. We are in the process of
demonstrating this option for some classes of Ising models
[28]. Another purpose is to build a real “non-Hermitian quan-
tum computer” (NHQC) to solve specific complex problems
rapidly. As was demonstrated in this paper, in the later case
there will be a tradeoff between the probability of finding
the desired outcome and the probability of survival of the
computer. As our results show, there are useful ways to improve
the performance of a NHQC.
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