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The emission of entangled light from planar semiconductor microcavities is studied and the entanglement
properties are analyzed and quantified. Phase matching of the intracavity scattering dynamics for multiple pump
beams or pulses, together with the coupling to external radiation, leads to the emission of a manifold of entangled
photon pairs. A decomposition of the emitted photons into two parties leads to a strong entanglement of the
resulting bipartite system. For the quantification of the entanglement, the Schmidt number of the system is
determined by the construction of Schmidt number witnesses. It is analyzed to which extent the resources of the
originally strongly entangled light field are diminished by dephasing in propagation channels.
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I. INTRODUCTION

The interaction of light and matter is a fundamental
issue connecting elements of quantum optics and solid state
physics. It offers a wide range of quantum effects, for
example, the emission of various kinds of nonclassical light.
These phenomena sensitively depend on the interaction of
light with the fundamental excitations of the crystal. The
nonclassical correlations of such systems can be used for
various applications, such as quantum information processing,
quantum metrology, and quantum communication (see, e.g.,
[1,2]).

One of the most prominent quantum phenomena is en-
tanglement. It has been studied since the very first ideas
of nonlocal superpositions of wave functions arose [3,4].
Entanglement has been used to perform a number of classically
impossible operations in theory and experiment, such as,
quantum teleportation, secure communication, and distillation
protocols [1,2]. The latter ones require copies of entangled
mixed states to distill pure entangled states [5,6], namely,
Bell states [7]. One problem is the feasibility of appropriate
quantum memories to store and manipulate the individual,
entangled copies [8,9]. Despite this, the determination of
entanglement of, in general, mixed quantum states is still a
challenging task.

Typically, quantum correlations are determined from mea-
surements of correlation functions. Here, we aim to quantify
the measured correlations in terms of entanglement. The
tricky relation between entanglement and correlations was
mainly analyzed for spin systems [10,11]. Various entangle-
ment measures have been introduced [12,13] and compared
numerically and analytically [14—17]. It has been shown that
the evaluation of an entanglement measure, especially for
mixed states beyond qubits, is a sophisticated problem.

In the first instance, it is convenient to quantify entangle-
ment for pure states only. One example is the Schmidt number
(SN) [18-20]. For pure entangled states the SN counts the
number of required superpositions of local product states to
express the given state. A generalization to mixed quantum
states can be achieved by a convex roof construction [21].
The SN of a general quantum state can be determined by
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making use of the method of SN witnesses [18,22]. Recently,
an approach based on generalized eigenvalue equations—so-
called SN eigenvalue equations—Iled to a general construction
scheme for SN witnesses [23]. Note that such an approach does
not exist for other entanglement measures. Another advantage
of the determination of the SN via SN witnesses is that these
witnesses represent experimentally accessible observables.

Common approaches for the generation of bipartite en-
tangled states consider type-II parametric down conversion
[24] or biexciton decay in quantum dots [25,26]. Another
prominent example is based on parametric phenomena in
two-dimensional semiconductor microcavities [27-34]. They
are known to realize a strong coupling between cavity
photons and excitons [28] resulting in an anticrossing of
the mixed exciton-photon modes, called lower and upper
polariton branches. The ground state of the polaritons has
been studied with respect to general quantum properties [31]
and entanglement [35]. Stimulated scattering processes of
polaritons within the lower branch have been shown to result in
a large angle-resonant amplification of the pump field [36,37]
and to produce polarization entangled polariton pairs [32,34].
Scattering processes involving both polariton branches can
lead to the emission of photon pairs, which are entangled with
respect to the branch index [29,31].

In the present work we show that semiconductor micro-
cavities can be used to generate strongly entangled photons
and demonstrate how their entanglement can be identified. In
our study, we apply different pump beams to the microcavity,
which leads to the emission of a large number of entangled
photon pairs. These pair correlations can be identified as a
strong entanglement, if we decompose the emitted light into
two ensembles of beams. The identification of these strong
correlations is done using SN witnesses. We quantify the
impact of a lossy channel on the strongly entangled systems
by determining the SN. This procedure is closely connected
to the solution of the SN eigenvalue equations. As a result,
we show that different degrees of dephasing require different
kinds of witnesses to detect strong entanglement.

We proceed as follows. In Sec. II, we briefly recapitulate
the physical description of the polariton formation in planar
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microcavities. The intracavity scattering dynamics leads to
branch entangled polariton pairs, which will be discussed in
Sec. III. The coupling of the polaritons to radiation modes
considered in Sec. IV yields strongly frequency-entangled
photons. We verify their correlations by the use of entangle-
ment and SN witnesses. In Sec. V, we study the dephasing
due to the propagation of the frequency-entangled radiation
through a linear dispersive medium. Section VI presents our
conclusions.

II. PLANAR MICROCAVITY MODEL

In this section, we briefly recapitulate the quantum Hamil-
tonian model for semiconductor microcavities. It is based on
the bosonic picture of interacting excitons [29,38,39] and can
easily be used to investigate polariton parametric scattering in
momentum space. Another common approach is based on the
dynamics-controlled truncation formalism [40—42] that can be
written in terms of the 7" matrix [43].

In semiconductors the fundamental excitations are electron-
hole pairs with radius Ry and binding energy E, =
e?/(2e Rx), with € being the static dielectric constant of the
crystal. Since excitons are composite particles made up of
fermions, they have an internal structure. Moreover, we have
to take into account an effective exciton-exciton interaction
[38,39],

R? _
Hyy = 6E,—< > bl obl—bribic-
kK .q

ey

In this equation b, (bli) are bosonic annihilation (creation)
operators of excitons with wave vector k and dispersion
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Ex(k), and A is the sample surface. Since we consider
planar microcavities, all wave vectors in Eq. (1) shall be in
plane. As a simplification, we assume dispersionless excitons
Ex(k) = Ex and work in units where i = ¢ = 1.

Coupling the excitons of the crystal to in-plane cavity
photons with dispersion

Ec(k) = Ec([k]) = Ec(0)y'1 + (k/ko)?,

where ko = E¢(0), we have to consider the exciton-photon
interaction. The harmonic part of this interaction is given by

2

Hyc = Qr Y _ bia, +He., 3)
k

where 2Q2¢ denotes the vacuum Rabi splitting and a,, (alt) are

bosonic annihilation (creation) operators of the cavity photons

with in-plane wave vector k. It leads to lower (j = 1) and

upper (j = 2) polariton branches

E;(0) = L(Ec() + Ex F \J[Ec(k) — ExP +43), ()

which depend on the modulus k = |Kk| only.

Figure 1(a) schematically shows the polariton dispersions
E (k) and E» (k) (solid lines) as well as the dispersions E¢ (k)
and Ey of the cavity photons and the excitons (dashed lines).
Note the anticrossing of the polariton branches, which is due to
the strong coupling of exciton and cavity photon modes. The
parameter 282 is oftentimes called polariton splitting, since it
determines the distance E,(k) — E1(k) when the exciton and
cavity photon modes are resonant, Ec(k) = E.
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FIG. 1. (Color online) Sketch of the considered physical processes. The inset (a) shows the dispersion relations of the excitons, cavity
photons, and polaritons. Part (b) visualizes the interbranch polariton pair scattering. Panel (c) depicts the emission and propagation of the

emitted entangled light.
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The anharmonic part of the total Hamiltonian of the exciton-
photon interaction (saturation) is [37,38]

HS‘dt — _l QR
XCc — k+
2 KK .q NgatA 4

bbby +He. (5

where ng = 7/(1671R§) is the exciton saturation density.
Together with the exciton-exciton interaction Hyy, it gives
rise to an effective polariton-polariton interaction

DIDIL

k K.q j.p,
J3,J4

X Jri2jzda T
Hpp = Vk K.q Jlk‘Hlplzk’ aPjsk Pk (©)

Here the p ik (p;.k) are bosonic annihilation (creation) op-
erators of polaritons in the lower or upper branch with
in-plane wave vector k. The effective branch-dependent

V2130 can be calculated through a unitary Hopfield

potential V..’
transformation [44]
M2k Pik
7
M ) < P2k ) @

b\ _ ( M
ag M1k

as
Vj1j2j3j4
KK oM e M MM
, = Ljik+q M1 ok —q 1 sk k!
8
— 7 Ps (MajikqMi e —q M M e
+ Maje My jk My e —q M jicrq)- @®)

In Eq. (8) we have introduced the ratio of polariton splitting to
binding energy, p; = 2Qg/E}. For the matrix elements of the
Hopfield transformation one finds the relations

Mok = Myx = 1/,/1 + pg, 9
Mk = =Mk = /1 — M}, (10)
where
E>(K) — Ec(k
Ok = M (11)
Qg

Note that in contrast to the relations used in Ref. [29], the
coefficient M, is always positive.

InFig. 2 we show the dependence of the squared coefficients
M}, and M?, on the modulus k of the wave vector k for
different values of the normalized detuning

5= Ec© = Ex (12)

2Qr

For large values of k the coefficient M7, — 1, and conse-
quently excitons and cavity photons do not mix. The polariton
modes are equal to the separated exciton and cavity photon
modes. For smaller k the value of M?,, depends on the detuning
§ and the polaritons are a combination of excitons and cavity
photons. This mixing is due to the strong coupling of excitons
and cavity photons.

III. BRANCH-ENTANGLED POLARITONS

Since we are interested in the generation of entangled
polariton pairs, we consider a situation where a pump laser
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FIG. 2. (Color online) Coefficients of the Hopfield transformation
matrix in Eq. (7), for the parameters Ec(0) = 1.5 eV and Q¢ =
2 meV. The solid lines correspond to M7, and the dashed ones to
M3, The color of the curves indicates the values of the normalized
detuning §. For large values of |k| the coefficient M?, converges to
one and M?%, vanishes.

stimulates scattering processes of polaritons. It was shown
theoretically in Ref. [34] and experimentally in Ref. [32], using
“which-way” experiments, that pumping the lower polariton
branch can lead to the generation of polarization-entangled
polariton pairs. Here we are interested in a different situation
where the pump laser drives coherently the upper branch
at a given wave vector k,, as illustrated by Fig. 1(b) for
k, = 0.05koe,, Ec(0) = 1.5eV,Qr = 2meV,and § = 0. The
pumped polaritons (solid black circles) scatter into states be-
longing to different branches, j; # j» (open black circles). In
this setting, frequency or branch entanglement arises since both
paths (indicated by the green lines) are indistinguishable, i. e.,
they are simultaneously phase matched. For strong pumping
we approximately replace the annihilation operator pox, by its
mean-field value (p,) and use Pzzkp = (pax,)*R%/A. This
yields a parametric Hamiltonian

1
par __ 2 1222
Hp)p = 5 2 PZk,,(Vk,, K, qplk,,+qP2k —q
q

+ Vlglf,, qukp+ql’1k q) +He. (13)

that approximates the polariton-polariton interaction Hamilto-
nian (6) for the scattering process of Fig. 1(b). Note that each
pair of polariton creation operators has a different effective
potential, such that we cannot factor out the effective potential
as done in Ref. [29]. Additionally, there is a mean-field shift
of the branch-dependent energy:

Ej(k) = E;(K) + AL |P2k

, (14)
where
Aé,zk,, = %(Vﬂﬂo + ij + Vzﬁ,zk,,—q + Vkﬂz]q K, ). (15

Assuming that the scattering wave vector q fulfills the
phase-matching condition for the considered interbranch
polariton pair scattering process,

Exn(k, +q) + Eiok, — q) = 2E5(k,), (16)

the Hamiltonian Hb’ from Eq. (13) applied on the vacuum
state |vac) generates branch-entangled pairs of polaritons in
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the state
o o
16) = (o Pl rqPr,—q + B P, 1aPlk, ) Vac).  (17)

Here we introduced the parameters
kR ) (RR)T
B=Vik (V2R )+ (MR )T

characterizing the properties of the material. In contrast to
Ref. [29], the state |¢) in Eq. (17) is not a Bell state (for
a® # B?), which is due to the inequality of the effective
branch-dependent potentials. As usual, «? + 82 = 1 ensures
the normalization of |¢).

In that the polariton energy dispersions E| »(k) depend on
k only, the phase-matching condition is fulfilled if

k, +ql* = [k, — q|%, (19)

being equivalent to q L k,. The second part of the phase-
matching condition in Eq. (16) yields

Ec(kp +4]) + Ex =2E>(k)). (20)

The solution of this equation gives the absolute value of the
scattering wave vector q:

q? = <2E2(k,,) — Ex

(18a)

(18b)

Ec(0)

Because the sign of q remains unspecified, the phase-matching
condition is fulfilled for two equivalent interbranch polariton
pair scattering processes. Entangled polaritons in the state
(17) appear due to the indistinguishability of these scattering
channels.

As we have mentioned above, the value of 8 influences
the nonlocal character of |¢), cf. Eq. (23). In case B = 1/2,
we have a true Bell state, and |¢) is separable for 82 = 0 or
B% = 1. In all other cases, we have an entangled state as a
superposition of two product states. Such states are referred
to as Bell-like states. They violate a Bell inequality, but not
maximally [7].

In Fig. 3 we plot the value of B2 for the phase-matching
scattering wave vector q following from Egs. (19) and (21)
as a function of the normalized detuning § and the polariton
splitting to binding energy ratio p,. From this figure we
can deduce that the state described by Eq. (17) is a true
Bell state only on a specific line in the (8, p;) plane. For
values of § and p, apart from this line the state of the
polariton pair is an entangled Bell-like state. Since § and p, are
determined by the material, we are in the position to tune the
entanglement properties of the polariton pairs. For example,
we might consider materials, where the polariton splitting
is of the order 2Q ~ 4 meV, while the exciton binding
energy approximately is E; ~ 10 meV. Since the ratio of the
anharmonic exciton-photon interaction to the exciton-exciton
interaction, [47w Qg /(21E,)]?, is of the order of 1072, it is a
fairly good approximation to omit the anharmonic part of the
exciton-photon coupling. The particular choice p; = 0 causes
a simpler effective branch-dependent potential

2
> —1—k,|% (21)

Jij2J3Ja
Vk k'.q

A~ 12My jikrqMa je—qMa jcMaj e (22)

b
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FIG. 3. (Color online) Magnitude of g% in the (8,p,) plane
according to Eq. (18b) for Ec(0) = 1.5 eV, E, = 10 meV, and
k, = 0.05koe,. The phase-matching scattering wave vector q follows
from Egs. (19) and (21).

Vit = Vi q and @ = % = 1/2. Obviously, such mi-

crocavities create polariton pairs in a Bell state configuration.

Another important effect results when we apply several
pumps with different pump wave vectors K,i,Kp, ... to the
microcavity. Motivated by experiments is a pump-pulse train,
where all k,,, n = 1,2, ... are aligned in the same direction
but have different amplitudes. Then we have a phase-matching
condition for each Kk ,,,. Accordingly, branch-entangled polari-
ton pairs appear for all phase-matching scattering wave vectors
q, following from Egs. (19) and (21) by inserting the respective
pump vector Kk,,. Then the state of N branch-entangled
polariton pairs takes the form

N
1_[ n plkp/x""‘ln p2klm_(In

n=1

+ Bn pzk,m+qnp1k,,fq )Ivac). (23)

The normalization [(«? + 2) = 1 of this state follows from
the property a2 + B2 = 1 for each n.

IV. ENTANGLEMENT OF EMITTED LIGHT

A. Frequency-entangled photons

In the following, we consider the emission of entangled
light from the microcavity. As shown in Ref. [29], the coupling
of the intracavity polaritons to an external field can be
described by the quasimode Hamiltonian

Hpp =" / dw g(@)|Mjxl*al  py +He.  (24)

with a frequency-dependent coupling g(w). The creation
operator a;[) « describes an emitted photon with frequency w
and in—plané wave vector k. The coupling of each branch
to the external field is proportional to the photonic fraction
|M 2k|2 If the |M ]2k|2 are of comparable magnitude, the
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branch entanglement of the polaritons transfers to a frequency
entanglement of photon pairs in the state

N
W) = [J(owah _al , + Bual _al Dlvac),  (25)

n=1
where the multi-indices are defined as
(n,1) = (El(kpn + qn)’kpn + (In),
(ﬁ’i) = (EZ(kpn + qn)’kpn =+ qn)

Obviously, Eyx)(Kyn — q,) = Ei)(Kp, + qn), for scattering
wave vectors (,, fulfilling the phase-matching condition (16).

We now identify the entanglement of the multiple photon
pairs as strong entanglement by changing the point of view
according to Fig. 1(c). For this purpose, we decompose the
compound Hilbert space H of the emitted photons into two
parties, H = H_ ® H,, where the subspaces H. contain
all photons emitted with an in-plane wave vector k,, & q,,,
respectively. In Fig. 1(c), this yields two spatial subspaces for
all photons emitted to the left-hand side or to the right-hand
side. We choose this particular decomposition in order to
quantify entanglement in possible which-way experiments. It
is important to stress that other possible decompositions could
be treated similarly, but they may give other outcomes [1,45].
Our particular decomposition is motivated from experimental
accessibility. Consider, for example, the above-mentioned
pump-pulse train, where all k,, are aligned in the same
direction e,, but have different amplitudes. Then, according to
the solution of the phase-matching condition (16) in Sec. I11, all
scattering wave vectors ¢, are perpendicular to the symmetry
axis e, i.e., photons with wave vectors k,,, & g, are spatially
separated.

Let us describe this decomposition mathematically. We
may introduce the states |0), for a photon with an energy
E((kp, +q,), and 1), for a photon energy E>(K,, + q,).

(26)

With these definitions we get al,_a;’Jrlvac) =10), ® |1), and
al _a) ,|vac) = |1), ® |0),. Thus, the state [y) in Eq. (25)
reads

N

W) = [J@l0)y ® 1)y + Bul1)s @ 10)). (27

n=1

The expansion of this product yields a sum of 2V product states

Qﬁ[llin)n) ® (f[lll _in>n>

SIN)® (1 =iy, ...

with i, € {0,1}. The sequence (i”),llv=1 can be understood as
a binary representation of an integer m between 0 and 2" —
1, whereas the corresponding sequence (1 —i,)"_, gives the
complement integer 7 = (2¥ — 1) — m. As a result we obtain

A —in) (28)

=lig, ..

2N 1
W)=Y Yulm.m) (29)
m=0
with coefficients
N
v = [ JI = in)etn + inBal. (30)

n=1

PHYSICAL REVIEW A 86, 052313 (2012)

The expression (1 — i,)a, + i, B, equals «, fori, = 0 and 8,
for i, = 1. The normalization condition reads

2N —1 N
Y =Tl +a)=1. @
m=0 n=1

Note that in the form of Eq. (29) |) is no longer a multipartite
product state, but a strongly entangled bipartite state.

B. Identification of strongly entangled states

To identify bipartite entanglement we use entanglement
witnesses [46,47], or, more specifically, SN (Schmidt number)
witnesses. For pure states the SN arises from the Schmidt
decomposition of the state [2]. For example, if we consider the
pure state |), cf. Eq. (29), the SN is the number of nonzero
coefficients y,,. Thus, the SN quantifies the entanglement
based on the quantum superposition of the product states
|m,m). SN witnesses can also be employed for mixed quantum
states.

The construction of SN witnesses is a challenging task.
Recently we have shown that one can use general Hermitian
operators to identify the amount of entanglement [23]. A (in
general mixed) quantum state has a SN greater than r if and
only if there exists a Hermitian operator L with

(L) =Tr pL > f,(L), (32)
where

Jr(L) = sup{(¥|L|¥,) : [¥,) SN 7 state}.  (33)

A SN witness can be constructed from [ f.(L)I — L]. Obvi-
ously, the case r = 1 is equivalent to an entanglement test [47].
A possible way to identify the value of the function f,.(L) is
based on a generalized eigenvalue equation—the so-called SN
eigenvalue equation—which takes the form

Liy,) = glyr) + 1x) (34)

with |x) being a biorthogonal perturbation, cf. [23]. The
value g is the SN eigenvalue and the vector |i,) is the
SN eigenvector. The largest SN eigenvalue is the value of
the function f,(L) for the SN test in Eq. (32). The case
r = 1 delivers the separability eigenvalue equations [47], and
we have shown that they also apply to the identification of
entanglement via negative quasiprobabilities [48,49].

Now, let us measure the entanglement with respect to the
chosen decomposition of the Hilbert space 7. To determine
the SN of the state, we consider the projection L = [y) (V|
and obtain (L) = (Y|L|¥) = 1. For the function f, (L) we get

fr(L) =max{yn21] +"'+Vri, :m; #m;j fori ;éj}, 35)

which is the sum of the r largest squared Schmidt coefficients

[23]. Due to the normalization of the state, ZiNz_ol y2 =1, the
value of f,(L) is smaller than 1, if there exist more than r
values B, # 0. In conclusion, the considered pure state [i/)
has a SN of 2V, in the general case that all «,,8, # 0 for
n=1,...,N.

We conclude that the emitted light, which directly cor-
responds to the cavity-internal quantum state, is strongly
entangled. In order to generate such a state, the quantum

superposition of local states |m,im), is required at least r = 2V
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times. These strongly entangled outputs verify the internal
quantum correlation between the branch-entangled polaritons
inside the cavity structure. However, in a more realistic
scenario, we have imperfections causing a loss of quantum
entanglement. For example, the initially strongly entangled
state |Y) (¢ | could undergo a dephasing. In the limiting case
of full dephasing, the state pgepn becomes

2N —1
Pacph = Y, Vo lm,m) (m. ], (36)

m=0

and contains no interferences of the form |m,m) (1,1| forl # m.
In this scenario, the SN equals the minimum value one for the
separable state pgepn. This means that this state is useless for
any protocol based on entanglement. In the following, we will
study the amount of entanglement in the intermediate region
between no and full dephasing.

V. DEPHASING

In quantum optics the role of losses is crucial and has to be
considered carefully. On the one hand there are internal losses
leading to branch-, wave-vector-, and excitation-density-
dependent broadenings for the polariton modes. Examples are
scattering with acoustic phonons [34,50], mixing with states
of the exciton continuum [51], Coulomb induced parametric
scattering [50], or losses through the cavity mirrors. On the
other hand, there are external losses diminishing the initially
available amount of entanglement. Once entangled radiation
is emitted out of the cavity a major source for the loss of
entanglement is dephasing [23,49]. We here aim to quantify
this lossy channel, i.e., we neglect all internal losses and
assume that the microcavity emits strongly entangled photons
that shall be detected at a certain fixed distance.

A. Propagation through different linear media

In the bipartite setting under study, the two parts of the
entangled radiation field would in general propagate through
different media, cf. Fig. 1(c). In the case of pumping by a
pulse train, already some small differences in the dispersive
properties of the two media would lead to significant relative
phase shifts and hence to an overall dephasing effect diminish-
ing the entanglement between the output channels of the two
transmission lines.

Let us assume two media with linear dispersions given
by w4 (k), where the index =+ indicates the propagation in
‘H., respectively. The Hamiltonian reads Hgeph = H_ + H,
where

N
Hy =Y [0s(Epa) sa, . +os(Eyal yaz ] G7)

n=1

with the energies Ey,0n) = Ei2)(Kpn £ q,). Recall that en-
ergies for wave vectors K,, £ q, are identical for phase-
matching scattering wave vectors q,. These Hamiltonians are
diagonal in the photon number basis, such that

Hi|m> = Em,i|m> (38)
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N

n=1

with modified eigenvalues in the binary representation (i,,)
of the integer m € [0,2V — 1]

N
Eps= Y [(1 = inow(E) + ios(Ex)l.  (39)

n=1

It is obvious that the vacuum can be expressed in the same way
using the dispersion relation wy,.(k) = k.
The time evolution of the initially emitted radiation is

2N 1

—i(H_+H —i(Ep,—+Em, 7

W () = e "I gy = N " e En By, i ).
m=0

(40)

The spatial distances from the cavity to detectors in the left
and right subspaces are assumed to be equal. However, the
optical path lengths differ in both parties and depend on the
frequency components of the propagating fields. Effectively,
the arrival times at the detectors differ for the different field
components created by the microcavity system. This leads to
the exponential factor in Eq. (40) which takes into account the
phase shift between the two parties of photons.

To obtain the photon state measured by the detectors, we
have to average over the different arrival times to account
for the different optical path lengths. In practice the resulting
statistics depends on the details of the dispersive properties of
both media representing the two propagation channels. Such
a treatment must be based on an experimental analysis of the
used channels, which is beyond the scope of the present paper.
To demonstrate the basic principles, we simply suppose an
equally distributed difference of the arrival times in the two
channels. This yields

1 f
o(t,0) = —/ dr [y (@) (YD)l
nh—nJ,

2V —1
— E oy e~ xmi(ti+1)/2
m,[=0

. h—1n
X sinc | X

)|m,m><1j|, 41)

—da
>, (42)

where  xp = (Ep - + Emy — Ei - — Ej ), sinc(y) =
sin(y)/y. The state p(t;,/2) in Eq. (41) represents the
structure of the density operator of entangled light suffering
from dephasing. For Ar =1, —t; - oo we obtain the
separable state pgeph. All the correlations generated by the
branch-entangled polaritons vanish in this extremal situation.

Clearly there is no dephasing if the photons in both Hilbert
spaces ‘Hi propagate through the same medium, wy(k) =
w(k), as it is perfectly realized in vacuum channels. Under
such conditions, the sum

with

b
. . b
/ e dt = (b — a)e T2 gine (x
a

N
Eps+ Enz =Y [0(E)+ o(Ey)] (43)

n=1
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is independent of m such that x,,; = O forallm,l € [0,2Y — 1].
The difference in the optical path lengths only depends on the
difference of the dispersion relations between left and right
Hilbert space. Thus, without loss of generality, we can assume
that we have a free-space propagation in 7, and a linear
medium in H_ as anticipated in Fig. 1(c).

B. Detection of strong entanglement

To quantify strong entanglement in the continuous-variable
mixed state p(t;,1,) for finite Az, we need to find a suitable test
operator L. As we have seen in the case of pure states, the test
operator should be closely related to the density operator in
order to have a large value on the left-hand side of Eq. (32). On
the other hand, the value f,(L) should be as small as possible.
Together this means that we should use a test operator L in the
form

b

L= Tplmm(LlIl, (44)
m,[=0

with the positive semidefinite matrix of coefficients
N_
T =) Lo (45)

As shown in Ref. [23], in such a case we can obtain the function
fr(L) just by determining the largest eigenvalue of all r x r
principal submatrices of T'.

To construct a suitable test operator we consider the given

— 2V -] —\ /77 vARS
state 0(t1,12) = Yy 1o Pmalm,m)(L1|. Let x® = (x{P)?
be the kth eigenvector of the coefficient matrix (p,,,,l)fll; 10 for

anonzero eigenvalue. Then we choose L to be the projector in
the subspace spanned by the vectors

2N —1
x®) =" xWPlm.m). (46)
m=0

This means T,y ; = Y, xPx*. Analogously to the case of a
pure state we obtain

(L) = Tr p(t1,t)L = 1. A7)

As long as the subspace given by all |x®) does not contain a
SN r vector |, ), for the projection L holds:

fr(L) = ‘Sll';lr;<wr|L|1[/r> <1 (48)

Hence we get a SN greater than r whenever f,.(L) < 1 = (L).

At this point, let us comment on the particular choice of the
observable L. The fact that L is a projection guarantees a high
verification rate of the SN test given by Eq. (32). The main
advantage of using L, which depends on p(#;,1,), relates to the
appearance of a large mean value (L) on the left-hand side of
Eq. (32), representing the measurement outcome. By contrast,
the right-hand side of the SN inequality test, for our choice,
takes a comparably small value f,(L) because the projected
subspace of L, by construction, has no SN r state in its
range.

In Figs. 4 and 5, we plot the SN of the state p(t1,%)
depending on At for different values of the normalized
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0 T 2 3

At/ (10° t,)

FIG. 4. (Color online) Amount of entanglement within the state
p(t,t,) depending on At and quantized by the SN. We apply three
different pumps with wave vectors k,, = 0.025nkpe,, n = 1,2,3 to
the cavity. The system parameters are Ec(0) = 1.5 eV and E, =
10 meV. The dispersion of the medium is chosen to be w(k) = 0.5k.
Based on our units 7 = ¢ = 1, we choose a typical reference time
scale 7o = 1 eV. The inset shows the behavior for weak dephasing.

detuning § and the ratio of polariton splitting to binding energy
ps- Figure 4 shows the case, where the microcavity is pumped
by three beams with different wave vectors aligned in the
same direction. Hence, the maximal possible SN of the emitted
radiation is eight. Applying an additional pump, the maximal
achievable amount of entanglement increases to 16 (see Fig. 5).

Both figures indicate that an increasing dephasing due to
the increase of At, yields a decreasing SN. For Ar = 0 the
SN of the state p(t1,t,) is equal to 2V, which is the maximum
value. The jumps of the value of the guaranteed SN from r to
r — 1 occur for values of At where the corresponding witness
fails to identify a SN larger than r. For a fixed value of Ar the
SN strongly depends on the properties § and p; of the planar
microcavity. A higher number of pump beams—and thus a
higher initial SN—may significantly increase the range of Af
for which the state p(#,#,) is still entangled (compare Figs. 4
and 5).

16 ' : - y

At/ (10° t,)

FIG. 5. (Color online) Amount of entanglement within the state
p(t,t) for N = 4 different pumps. The parameters are the same as
in Fig. 4, aside from the additional k,, forn = 4.
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VI. CONCLUSIONS

We have discussed polariton scattering processes within
planar semiconductor microcavities with a focus on the
possible creation of entangled polariton pairs. In extension
to previous works, we show that a polychromatic pumping
of the upper polariton branch, as motivated by experiments,
leads to a simultaneous creation of multiple branch-entangled
polariton pairs. The coupling of the intracavity scattering
dynamics to an external field then transfers these kinds of
quantum correlations to frequency-entangled photon pairs.
Since the entanglement properties of these photon pairs are
determined by parameters of the device, the measurement of
the photon correlations gives valuable information about the
internal branch-entanglement within the microcavity.

The simultaneous creation of photon pairs renders it possi-
ble to generate an arbitrary number of copies of entangled qubit
states p, of the form p ® p ® - - - ® p. Such kinds of states are
desired to perform quantum operations based on entanglement,
such as quantum teleportation. Usually the generation of such
states requires that a source of entangled states produces at
each time a state p, which will be stored in a quantum memory
to obtain the desired number of copies. Here, the number of
pump beams or the spectral properties of a pump-pulse train
determine the maximal number of simultaneously available
entangled qubits. By properly choosing the wave vectors of the

PHYSICAL REVIEW A 86, 052313 (2012)

pump field, one can optimize the Bell-type correlations within
one or more of those entangled qubits. Microcavities pumped
with a single pulse of polychromatic light serve as generators
of copies of entangled qubit states, making optical quantum
memories superfluous. Decoherence due to the storage time in
a quantum memory cannot occur.

If desired, the multipartite pair correlations can be mapped
to strong bipartite entanglement. The quantification of such
correlations can be done via the determination of the Schmidt
number, which automatically quantifies the multipartite pair
correlations and the branch entanglement in the microcavity.
From our results follows that the Schmidt number of such an
unperturbed system is maximal and it can be controlled by the
properties of the pump field. A dephasing channel diminishes
this resource of entanglement. However, we showed that a high
amount of entanglement can be guaranteed for a certain range
of parameters. By using a higher number of pump beams or
properly designed pump pulses, one may not only increase
the initially available amount of entanglement, but also its
resistance against dephasing.
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