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In our previous paper [D. Gonţa and P. van Loock, Phys. Rev. A 84, 042303 (2011)], we proposed an efficient
scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical
cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-NOT gates and thus
reduce complicated pulse sequences and superfluous qubit operations. In this paper, we significantly improve the
output fidelity of remotely entangled atoms by introducing one additional entanglement protocol in each of the
repeater nodes and by optimizing the laser beams required to control the entire scheme. Our improved distillation
scheme yields an almost-unit output fidelity that, together with the entanglement distribution and swapping,
opens an attractive route towards an efficient and experimentally feasible quantum repeater for long-distance
quantum communication.
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I. INTRODUCTION

In classical data transmission, repeaters are used to amplify
the data signals (bits) when they become weaker during their
propagation. In contrast to classical information, the above
mechanism is impossible to realize when the transmitted data
signals carry bits of quantum information (qubits). In an
optical-fiber system, for instance, a qubit is typically encoded
by a single photon which cannot be amplified or cloned
without destroying quantum coherence associated with this
qubit [1,2]. Therefore, the photon has to propagate along
the entire length of the fiber, which causes an exponentially
decreasing probability to receive this photon at the end of the
channel.

To avoid this exponential decay of a photon wave packet
and preserve its quantum coherence, the quantum repeater
was proposed [3]. This repeater can be divided into three
building blocks which have to be applied sequentially. First, a
large set of entangled photon pairs distributed over sufficiently
short fiber segments is generated. The two subsequent steps,
(i) entanglement purification [4,5] and (ii) entanglement
swapping [6], are employed to extend the short-distance
entangled photon pairs over the entire length of the channel.
Using the entanglement purification, high-fidelity entangled
pairs are distilled from a larger set of low-fidelity entangled
pairs by means of local operations performed in each of the
repeater nodes and classical communication between these
nodes. The entanglement swapping, finally, combines two
entangled pairs of neighboring segments into one entangled
pair, gradually increasing the distance of shared entanglement.

Because of the fragile nature of quantum correlations
and inevitable photon loss in the transmission channel, in
practice, it poses a serious challenge to outperform the
direct transmission of photons along the fiber. Up to now,
only particular building blocks of a quantum repeater have

*denis.gonta@mpl.mpg.de
†loock002@uni-mainz.de

been experimentally demonstrated, i.e., bipartite entanglement
purification [7,8], entanglement swapping [9,10], and entan-
glement distribution between two neighboring nodes [11,12].
Motivated by both an impressive experimental progress and
theoretical advances, moreover, various revised and improved
implementations of repeaters and their building blocks have
been recently proposed [13–17].

Practical schemes for implementing a quantum repeater
are not straightforward. The two mentioned protocols, entan-
glement purification and entanglement swapping, in general,
require feasible and reliable quantum logic, such as single- and
two-qubit gates. Because of the high complexity and demand
of physical resources, entanglement purification is the most
delicate and cumbersome part of a quantum repeater. The
conventional purification protocols [5,18], moreover, involve
multiple controlled-NOT (CNOT) gates which pose a serious
challenge for most physical realizations of qubits, involving
complicated pulse sequences and superfluous qubit operations
[8,19–23].

In our previous paper [24], we suggested a more practical
scheme to purify a bipartite entangled state by exploiting the
natural evolution of spin chains instead of CNOT gates. The
realization of this dynamical scheme was proposed in the
framework of cavity QED using short chains of atoms and
optical cavities. In the present paper, we propose a modified
purification scheme, in which we significantly improve the
output fidelity of remotely entangled atoms. By introducing
one additional entanglement protocol in each repeater node
and by optimizing the laser beams required to control the
entire scheme, we reach an almost-unit output fidelity after the
same number of purification rounds as before. This dramatic
improvement, therefore, allows for multiple entanglement
swapping operations and opens a route towards an efficient and
experimentally feasible quantum repeater for long-distance
quantum communication.

The paper is organized as follows. In the next section, we
describe in detail the original purification scheme presented in
our previous paper. In Sec. III, we present our modified high-
fidelity purification scheme. We analyze the atomic evolution
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FIG. 1. (Color online) (a) Sequence of steps in the original purification scheme. (b) Quantum circuit corresponding to the interaction
indicated above by gray ellipses. (c) Structure of a three-level atom in the �-type configuration. (d) Experimental setup that realizes the
purification scheme (a) and is incorporated into a quantum repeater segment with two neighboring nodes. See text for description.

mediated by the cavity and laser field, and we determine the
main properties which are relevant for our scheme in Sec. III A.
In Sec. III B, we discuss a few relevant issues related to
the implementation of our purification scheme, while a short
summary and outlook are given in Sec. IV.

II. DYNAMICAL ENTANGLEMENT PURIFICATION

In our previously proposed purification scheme, two re-
peater nodes, A and B, share one permanent qubit pair PAB

and a finite set of temporary (low-fidelity) entangled pairs
grouped into elementary blocks of two qubit pairs as displayed
in Fig. 1(a). Each temporary entangled pair is given by the rank
2 mixed state,1

ρf = f �+
A,B + (1 − f )�−

A,B, (1)

1In our previous paper, we considered the Werner state ρf =
f �+ + 1−f

3 (�− + �+ + �−) to describe low-fidelity entangled
pairs. In this paper, instead, we consider the state, (1), which can
be efficiently generated between two remote nodes of a repeater
using an optimal, ultimate entanglement distribution and detection
protocol [25]. In the last section, we discuss this protocol and provide
evidence supporting our choice.

where �±
A,B ≡ |φ±

A,B〉〈φ±
A,B | are the Bell states in the qubit-

storage basis {|0〉,|1〉}, and where the fidelity

F(ρf ) ≡ Tr[�+
A,B ρf ] = f > 0.5 (2)

is above the threshold value of 1/2. The qubit-storage states |0〉
and |1〉 correspond to the two long-living states of a three-level
atom in the � configuration as displayed in Fig. 1(c). In order
to protect this qubit against the decoherence caused by the
fast-decaying excited state |e〉, states |0〉 and |1〉 are chosen as
the stable ground and long-living metastable states or as the
two hyperfine levels of the ground state.

The permanent pair PAB , characterized by the density
operator ρf ′ , is supplemented by two temporary pairs 1AB

and 2AB , characterized by the density operators ρ1
f and ρ2

f ,
respectively, as shown in Fig. 1(a). Each of the repeater nodes
A and B, therefore, contains one triplet of qubits, PA,1A,2A

and PB,1B,2B , respectively. Each of these triplets evolves due
to the isotropic Heisenberg XY Hamiltonian [26]

Hxy = h̄ J1

2

3∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

)
, (3)
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over the time period (n = 0,1,2, . . .)

T = π

3

(
n + 1

2

)
J−1

1 , (4)

where σx
i and σ

y

i are the respective Pauli operators in the
cavity-active basis {|0〉,|e〉}, such that σx

4 = σx
1 and σ

y

4 = σ
y

1
and where J1 is the coupling between the qubits. The above
Hamiltonian with periodic boundaries is produced determinis-
tically in our scheme by coupling of three (three-level) atoms
to the same mode of a high-finesse resonator [see Fig. 1(c)].
In our previous paper, we identified the Hamiltonian, (3), with
the Jaynes-Cummings Hamiltonian in the large detuning limit,
i.e., 	 � g, where g is the atom-cavity coupling strength, 	

is the atom-cavity detuning, and J1 ≡ g2/	 is the coupling
between the atoms subject to the same cavity mode.

The evolution governed by Hamiltonian (3) over time
period (4) is referred to below as the purification gate and is
indicated by ellipses in Fig. 1(a) and by rectangles in Fig. 1(b).
Once the purification gate is performed, the qubit pairs 1AB

and 2AB are pairwise projected in the computational (qubit-
storage) basis {|0〉,|1〉} and the outcome of these projections
is exchanged between the two nodes by means of classical
communication [see Fig. 1(b) and the third box in Fig. 1(a)].
Entanglement purification is successful if the outcome of
projections reads

{01A,12A,01B,12B} or {11A,02A,11B,02B}. (5)

In this case, the (unprojected) permanent qubit pair PAB is
described by the density operator

ρF = F (f,f ′)�+
A,B + [1 − F (f,f ′)]�−

A,B, (6)

where

F (f,f ′) = f ′ − 16(f ′ − 2)f + 32(3f ′ − 1)f 2

81 + 32f 2 − 80f ′ + 16(10f ′ − 7)f
, (7)

such that F(ρF ) > F(ρf ′). The entanglement purification is
unsuccessful, if the mentioned outcome of projections 1AB and
2AB disagrees with (5). In this case, the permanent pair PAB

should be reinitialized and the entire sequence from Fig. 1(a)
restarted.

The density operator (6) ensures that the (permanent) qubit
pair PAB preserves its rank 2 form after each successful purifi-
cation round. Unlike the conventional purification protocol,
therefore, the purified state, (6), is completely characterized
by the fidelity F (ρF ) = F (f,f ′). Expression (7), furthermore,
describes quantitatively how the input fidelity f ′ of the
permanent qubit pair is modified due to one single (and
successful) purification round. In Fig. 2(a), we compare the
fidelity

F (f,f ) = f (11 − 16f + 32f 2)

27 − 64f + 64f 2
(8)

(solid curve) with the respective fidelity given by Eq. (34) in
Ref. [24] (dotted curve) that was obtained within the same

(a)

(b)

FIG. 2. (Color online) (a) Fidelities F (f,f ) (solid curve) and
F3(f,F2) (dashed curve) given by Eqs. (8) and (11), respectively. The
dotted curve displays the fidelity given by Eq. (34) in Ref. [24]. (b)
Plot of F̂ (f,n) given by Eq. (10) as a function of input fidelity f and
number n of purification rounds.

scheme, however, by considering the Werner state instead of
the rank 2 mixed state, (1), in this paper. As expected due to
the vanishing contribution of �± in (1), the growth of fidelity
in the case of a rank 2 mixed state is larger as for the Werner
state.

Assuming that each purification round is successful, the
sequence from Fig. 1(a) leads to the gradual growth of
entanglement fidelity (of stationary atoms) with regard to the
respective fidelity obtained in the previous round

f ′ < F1(f,f ′) < F2(f,F1) < · · · < Fn(f,Fn−1). (9)

In order to understand how much the output fidelity increases
with each purification round, we analyze quantitatively the
following sequence:

f < F1(f,f ) < · · · < Fn(f,Fn−1) ≡ f + F̂ (f,n). (10)

In Fig. 2(b), we show a plot of function F̂ (f,n) that describes
the difference between the final fidelity Fn(f,Fn−1) obtained
after n (successful) rounds and the initial fidelity f (n = 0).
It is clearly shown that during the first three rounds, this
function exhibits a notably fast growth that saturates and, with
increasing n, yields a negligible growth with regard to the fixed
point fidelity:

F3(f,F2) = f (70859 − 377904f + 950112f 2 − 1368064f 3 + 1278976f 4 − 671744f 5 + 294912f 6)

177147 − 1051072f + 2792896f 2 − 4204544f 3 + 3904512f 4 − 2162688f 5 + 720896f 6
. (11)
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Regardless of the number of (successful) purification
rounds, therefore, the final fidelity is bounded by a fixed
point value that determines the optimal number of purification
rounds required to reach the best performance in a resource-
and time-efficient way. Such behavior is the common feature
of the (so-called) entanglement pumping purification scheme
introduced by W. Dür and coauthors in Ref. [18]. We refer
to this property as the saturation of entanglement purification.
Corresponding to n = 3 successful purification rounds, for
which the final fidelity reaches its saturation level, we display
the (fixed point) fidelity F3(f,F2) by the dashed curve in
Fig. 2(a). By comparing this curve to the solid curve, we
conclude that the growth of fidelity due to three successive
rounds is notably larger compared to the case of a single
purification round.

We remark that the described purification scheme is based
on the effect of entanglement transfer between the networks
of evolving spin chains that was introduced and investigated
in Ref. [27]. In the same reference, it was suggested that this
effect plays the key role in the entanglement concentration
once a part of the spins from two such networks is locally
measured. One similar entanglement purification protocol,
which is based on the natural spin dynamics, has been proposed
independently in Ref. [28]. In our scheme, the role of (spin-
chain) networks is played by the atomic triplets located in two
repeater nodes, while the cavity-mediated interaction governed
by Hamiltonian (3) reproduces the spin-chain dynamics.
From a more fundamental point of view, the mentioned
effect of entanglement transfer originates the constructive and
destructive interference of the quantized spin waves (magnons)
in an evolving spin chain (see [28] and references therein).

The main physical resources of the proposed purification
scheme are (i) short chains of atoms, (ii) two high-finesse
optical cavities, and (iii) detectors for projective measurements
of atomic states. In Fig. 1(d) we show the experimental setup
of a quantum repeater segment that includes two neighboring
nodes (A and B). In this setup, each repeater node consists of
one optical cavity C1 (C2) acting along the y axis, a laser beam
L1 (L3), a chain of atoms transported by means of an optical
lattice along the same axis, one stationary atom trapped inside
the cavity with the help of a vertical lattice, a laser beam L2

(L4) acting along the y axis, a magneto-optical trap (MOT),
and a CCD camera connected to the neighboring node through
a classical communication channel.

We associated the permanent qubits with the stationary
atoms trapped inside cavities C1 and C2 and the temporary
qubits with (the chains of) atoms inserted into the horizontal
lattices and transported along the z axis. According to the
experimental scheme in Fig. 1(d), this identification implies
that atoms pass sequentially through the cavity, such that only
two atoms from the chain couple simultaneously to the same
cavity mode. These two atoms together with the stationary
(trapped) atom form an atomic triplet in each repeater node as
assumed by our purification scheme.

Right before an atom from node A enters the cavity, it
becomes entangled with the respective atom from node B
as depicted in Fig. 1(d) by wavy lines. This entanglement is
generated nonlocally by means of an entanglement distribution
block (indicated by the rectangle), such that each produced
entangled pair is described by Eq. (1) in the qubit-storage basis

{|0〉,|1〉}. During the transition of an atomic pair through the
cavity, the triplet of atoms has to undergo the cavity-mediated
evolution governed by Hamiltonian (3) in each of the repeater
nodes over time period (4). Since the Hamiltonian acts solely
on the cavity-active states {|0〉,|e〉}, the atomic population has
to be mapped from the qubit-storage basis to the cavity-active
basis in order to make possible the interaction of atoms with
the cavity mode and, moreover, to protect the qubits against
the decoherence caused by the fast-decaying excited state |e〉.
This mapping is realized using short resonant light pulses
produced by the laser beam L1 (L3). Each pulse transfers
the electronic population from the qubit-storage states to the
cavity-active states (or backwards), such that the atoms couple
to (or decouple from) the cavity field in a controlled fashion.

According to the sequence in Fig. 1(a), furthermore, the
purification sequence is completed once the states of an
(conveyed) atomic pair are projectively measured and the
outcome of projections is pairwise exchanged between the
repeater nodes in order to decide if the purification was
successful or not. In our experimental scheme, the latter
projections are performed by means of the laser beam L2 (L4)
and a CCD camera in each of the repeater nodes as displayed
in Fig. 1(d). While the laser beam L2 (L4) removes atoms in
a given (storage-basis) state from the chain without affecting
atoms in the other state (so-called push-out technique [29]),
the CCD camera is used to detect the presence of remaining
atoms via fluorescence imaging and, therefore, determine the
state of each atom that leaves the cavity.

In the successful case, furthermore, the next atomic pair
is transported into the cavity and the next purification round
takes place with the same stationary atom (permanent qubit).
In the unsuccessful case, however, the stationary atoms have to
be reinitialized and the entire sequence from Fig. 1(a) should
be restarted.

The approach presented in this section requires that short
atomic chains are transported at a constant velocity along the
experimental setup and coupled to the cavity-laser fields in
a well-controllable fashion. For this purpose, we introduced
in our setup [see Fig. 3(d)] (i) a MOT that plays the role
of an atomic source and (ii) an optical lattice (conveyor belt)
that transports atoms into the cavity from the MOT with a
position and velocity control over the atomic motion. The
proposed setup is compatible with existing experimental setups
[30–32], in which the above devices, i and ii, are integrated
into the same framework together with a high-finesse optical
cavity. The number-locked insertion technique [33], moreover,
enables one to extract atoms from the MOT and insert a
predefined pattern of them into an optical lattice with a single-
site precision. It was already demonstrated that an optical
lattice preserves the coherence of transported atoms and can
be utilized as a holder of a quantum register. By encoding the
qubits by means of hyperfine atomic levels, a qubit storage
time of the order of seconds has been demonstrated within this
register [29,34].

III. HIGH-FIDELITY DYNAMICAL ENTANGLEMENT
PURIFICATION

As shown in Fig. 2(a), the output fidelity F3(f,F2) (dashed
curve) obtained after three successful purification rounds is
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(a)

(b) (d)

(c)

FIG. 3. (Color online) (a) Sequence of steps in the modified purification scheme. (b, c) Structure of a three-level atom in the �-type
configuration subjected to cavity and laser fields. See text for description. (d) Experimental setup that realizes the purification scheme (a) and
is incorporated into a quantum repeater segment with two neighboring nodes.

still far from unit fidelity as required by a realistic quantum
repeater. In fact, this output fidelity enables one to perform
only a few swapping operations between the purified entangled
pairs of neighboring repeater segments until the fidelity of
the resulting pair (distributed over a larger distance) drops
to the initial fidelity f . Another bottleneck in our scheme
is the necessity to transfer the electronic population from the
qubit-storage states to the cavity-active states (and backwards)
in order to control the cavity-mediated evolution of atoms
inside the cavity and protect our qubits against the decoherence
caused by the fast-decaying excited state |e〉 [see Fig. 1(c)].
Obviously, these two obstacles make our scheme less attractive
to be considered in practice.

In this section, we propose a modified purification scheme,
in which we significantly improve the output fidelity of
remotely entangled atoms and get rid of the superfluous laser
pulses required to transfer the electronic population of atoms.
By introducing one additional entanglement protocol in each
repeater node and by optimizing the laser beams required to
control the entire scheme, we achieve an almost-unit output
fidelity after the same number of successful purification
rounds. This dramatic improvement, therefore, allows for
multiple entanglement swapping operations on the purified
pairs.

Similar to the original scheme that we presented in the
previous section, the modified scheme includes two repeater
nodes, A and B, sharing one permanent qubit pair PAB ,
characterized by the density operator ρf ′ , and a finite set
of temporary entangled pairs as displayed in Fig. 3(a). Each
temporary entangled pair is given by the rank 2 mixed state,
(1), in the basis {|0〉,|1〉}, such that the fidelity, (2), of each
pair is above the threshold value of 1/2. In contrast to the
original scheme, however, right before the permanent pair
is supplemented by the temporary pairs 1AB and 2AB , these
two (separate) entangled pairs are merged into the four-qubit
entangled state:

ρ
1,2
f = 1

2
(|φ−

1A,2A,φ−
1B,2B〉〈φ−

1A,2A,φ−
1B,2B |

+ |ψ−
1A,2A,ψ−

1B,2B〉〈ψ−
1A,2A,ψ−

1B,2B |)

+ 2f − 1

2(1 − 2f + 2f 2)
(|φ−

1A,2A,φ−
1B,2B〉〈ψ−

1A,2A,ψ−
1B,2B |

+ |ψ−
1A,2A,ψ−

1B,2B〉〈φ−
1A,2A,φ−

1B,2B |). (12)

This entangled state is generated using an additional
entanglement protocol that occurs prior to the purification
gate in our scheme. By this protocol, the pairs 1A,2A and
1B,2B interact locally within the repeater nodes A and B,
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respectively, such that state (12) is generated. In Fig. 3(d)
we display the experimental setup of our modified scheme.
In contrast to the setup displayed in Fig. 1(d), we added (i)
high-finesse cavities C1 and C3, (ii) photon detectors D1 and
D2, and (iii) laser beams L2 and L5 to each of the repeater
nodes A and B, respectively. These ingredients are compatible
with the resources utilized in the original purification scheme
and together they form the fusion block that is framed by
the rectangle in Fig. 3(d). Finally, the laser beams L1 and
L4 act continuously along the z axis and, together with the
cavity field of C1 (C2) and C3 (C4), respectively, produce the
two-photon (Raman) transition between state |0〉 and state |1〉
of the coupled atoms, such that the fast-decaying excited state
|e〉 remains almost unpopulated (see below).

Being transported from the entanglement distribution block
into the cavity C1 (C3), the atoms 1A,2A (1B,2B ) couple
simultaneously to the same cavity mode and both laser beams
L2 (L5) and L1 (L4) as displayed in Fig. 3(b). Assuming the
nonzero cavity relaxation rate κ associated with C1 (C3), the
evolution of the coupled atom-cavity-laser system is governed
by the master equation [35]

ρ̇ = − ι̇

h̄
[HS,ρ] + κ

2
(2 a ρ a† − a a†ρ − ρ a†a) ≡ L ρ, (13)

HS = h̄ J2

2
(a + a†)

(
σX

1 + σX
2

)
, (14)

where ρ is the density operator describing the state of the two
atoms together with the cavity mode, L is the Lindbladian
superoperator that acts on the density operator, σX

i is the
respective Pauli operator in the basis {|0〉,|1〉}, and J2 is the
coupling between the atoms inserted into the same cavity mode
and subjected to the two laser beams. We show in Appendix A
that the above Hamiltonian is produced deterministically in
our setup assuming both (i) the strong driving regime of atoms
and (ii) the large detuning limit for laser and cavity fields.

The evolution of atoms 1A,2A (1B,2B) coupled to the field
of cavity C1 (C3) due to Eq. (13) is completely determined
by the exponent eLt and the initial state of the cavity and
the atoms. Since the pairs of atoms 1AB and 2AB are initially
entangled, we have to consider the composite density operator

ρ̃AB = e(LA+LB )t
(
ρ1

f ⊗ ρ2
f ⊗ |0̄A,0̄B〉〈0̄A,0̄B |) , (15)

describing the state of two atomic pairs and two initially empty
cavities at a given time t . In this expression, ρ1

f and ρ2
f are

the density operators of the entangled pairs 1AB and 2AB ,
respectively, while |0̄A〉 and |0̄B〉 denote the vacuum states
of cavities C1 and C3, respectively. In Appendix B we show,
moreover, that, conditioned upon the no-photon measurement
of the leaked cavity field in both repeater nodes, state (15)
reduces to state (12) in the steady-state regime (κ t � 1), that
is,

ρ
1,2
f = 〈0̄A,0̄B |ρ̃ss

AB |0̄A,0̄B〉
Tr

[〈0̄A,0̄B |ρ̃ss
AB |0̄A,0̄B〉] , (16)

where ρ̃ss
AB is operator (15) in the steady-state regime. The

measurement of the leaked cavity field is performed using
the photon detector D1 (D2), which is connected to the
neighboring repeater node through a classical communication
channel. We stress that since the detection of the leaked cavity
field in our scheme discriminates between a vacuum state (no

clicks) and a strong coherent state (many clicks), the efficiency
of the detectors D1 and D2 can take rather moderate values.

Assuming that the four-qubit entangled state, (12), has
been successfully generated, the permanent pair PAB is
supplemented by two temporary pairs, 1AB and 2AB , as
displayed in Fig. 3(a). Similarly to the original scheme, each
repeater node now contains one triplet of qubits and each
of these triplets evolves due to the isotropic Heisenberg XY
Hamiltonian

HXY = h̄ J3

2

3∑
i=1

(
σX

i σX
i+1 + σY

i σ Y
i+1

)
(17)

over the time period (n = 0,1,2, . . .)

T = π

3

(
n + 1

2

)
J−1

3 , (18)

such that σX
4 = σX

1 and σY
4 = σY

1 and where J3 is the coupling
between the qubits. In Appendix C, we show that Hamiltonian
(17) is produced deterministically in our scheme by coupling
simultaneously three atoms to the same cavity mode C2 (C4)
and the laser beam L1 (L4) in the large detuning limit [see
Fig. 3(c)].

Similar to the original scheme, this evolution is followed
by the projective measurement of qubit pairs 1AB and 2AB

in the basis {|0〉,|1〉} and the exchange of the projection
outcomes between the two repeater nodes by means of classical
communication. The entanglement purification is successful if
the outcome of projections agrees with (5). In this case, the
(unprojected) permanent qubit pair is described again by the
density operator (6), where

F (f,f ′) = (25 − 50f + 194f 2)f ′

169 + 194f 2 − 144f ′ + (288f ′ − 338)f
, (19)

such that F(ρF ) = F (f,f ′) > F(ρf ′). In Fig. 4(a), we compare
the fidelity

F (f,f ) = (25 − 50f + 194f 2)f

169 − 482f + 482f 2
(20)

(solid curve) with the respective fidelity given by Eq. (8)
(dotted curve). We see that the growth of fidelity in the
modified scheme is almost twice as large as in the original
purification scheme. This nice result, however, relies merely
on the input state, (12), which is entangled strongly compared
to the separable state ρ1

f ⊗ ρ2
f used in the original scheme.

We recall that our scheme relies on the effect of entanglement
transfer between the networks of evolving spin chains intro-
duced in Refs. [27] and [28] and realized in our scheme using
the cavity QED framework. The stronger the entangled state
that we provide as the input for the purification block in our
scheme, the more entanglement is transferred to the permanent
qubit pair.

Assuming that each purification round is successful, the
sequence in Fig. 3(a) leads to a gradual growth of entanglement
fidelity (of stationary atoms) with regard to the respective
fidelity obtained in the previous round. Similar to the original
scheme, we analyze quantitatively sequence (10) in order to
understand how much the output fidelity increases with each
purification round. In Fig. 4(b), we show the plot of F̂ (f,n) that
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describes the difference between the final fidelity Fn(f,Fn−1)
obtained after n (successful) rounds and the initial fidelity
f (n = 0). For f > 0.75, this function exhibits a dramatic

growth during the first three rounds that saturates and, with
increasing n, yields a negligible growth with regard to the
fixed point fidelity

F3(f,F2) = f (25 − 50f + 194f 2)3

4826809 − 33772038f + 103411314f 2 − 179097440f 3 + 189095940f 4 − 119456664f 5 + 39818888f 6
,

(21)

displayed in Fig. 4(a) by the dashed curve. We readily see that
we obtain an almost-unit output fidelity for f > 0.75 after the
same number of purification rounds as in the original scheme.
For f < 0.75, however, the function F̂ (f,n) continues to grow
with each purification round. In this case, the optimal number

(a)

(b)

(c)

FIG. 4. (Color online) (a) Fidelities F (f,f ) (solid curve) and
F3(f,F2) (dashed curve) given by Eqs. (20) and (21), respectively.
The dotted curve displays the fidelity given by Eq. (8) obtained in
the original scheme. (b) Plot of F̂ (f,n) in the modified scheme as
a function of input fidelity f and number n of purification rounds.
(c) Off-diagonal contributions G0(f ) (dashed curve) and G3(f,G2)
(solid curve) given by Eqs. (29) and (33), respectively.

of purification rounds and the respective fixed point fidelity
have to be determined for each particular value of f separately.

A. Evolution governed by Hamiltonian (17) and the
purification gate

In this section, we already explained that density operator
(6) with function (19) characterize completely the permanent
qubit pair obtained in our (modified) scheme after a single
purification round. In this subsection, we analyze briefly the
evolution governed by Hamiltonian (17) and connect it with
the main results utilized in this paper.

The atomic evolution governed by Hamiltonian (17),

e− ι̇
h̄
HXY t =

8∑
k=1

e− ι̇
h̄
Ek t |k〉〈k|, (22)

is completely determined by the energies Ek and vectors |k〉,
which satisfy the eigenvalue equality HXY |k〉 = Ek |k〉 with
orthogonality and completeness relations 〈k|k′〉 = δkk′ and∑ |k〉〈k| = I , respectively. With the help of Jordan-Wigner
transformation [36], this eigenvalue problem can be solved
exactly (see, e.g., Ref. [37]). Since the evolution operator,
(22), acts on the states of one atomic triplet that is entangled
with another atomic triplet in the neighboring node, we have
to consider the composite evolution operator

U (t) =
8∑

k,k′=1

e− ι̇
h̄

(Ek+Ek′ ) t |kA ⊗ k′
B〉〈kA ⊗ k′

B |. (23)

Earlier we explained that right before each atomic pair
from node A enters the cavity, it becomes entangled with
another atomic pair from node B, such that the four-qubit
state (12) is generated. We denote the density operator of the
stationary atoms ρ3

f ′ . According to evolution operator (23) and
this notation, the state of both atomic triplets in nodes A and
B is described by the six-qubit density operator

ρ1,2,3(t,f,f ′) = U (t)
(
ρ

1,2
f ⊗ ρ3

f ′
)
U †(t), (24)

which evolves over time period T given by Eq. (18). After this
evolution, the state of both atomic triplets in nodes A and B is
described by the density operator

ρ1,2,3(T ,f,f ′) =
64∑

i,j=1

ρ
1,2,3
ij (T ,f,f ′) |vi〉〈vj |, (25)

where 26 composite vectors |vi〉, satisfying the orthogonality
and completeness relations 〈vi |vj 〉 = δij and

∑ |vi〉〈vi | = I ,
respectively, have been introduced.
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In order to finalize one purification round, the conveyed
atomic pairs are projectively measured, such that the projected
density operator

ρ(T ,f,f ′) =
4∑

α,β=1

ρ
1,2,3
αβ (T ,f,f ′)

Psucc(T ,f,f ′)
|̃vα〉〈̃vβ |, (26)

with

Psucc(T ,f,f ′) = Tr

[
4∑

α,β=1

ρ
1,2,3
αβ (T ,f,f ′) |̃vα〉〈̃vβ |

]
,

describes the state of the stationary atoms. In the above
expressions, the Greek indices run over the four different
values given by

|̃vα〉 ≡ 〈01A,12A,01B,12B |vα〉 �= 0 (27a)

or |̃vα〉 ≡ 〈11A,02A,11B,02B |vα〉 �= 0, (27b)

which correspond to the outcomes of the projections, (5).
Using the six-qubit density operator, (24), we have routinely

computed the matrix elements ρ
1,2,3
ij (T ,f,f ′), which, however,

are rather bulky to be displayed here. With the help of these
matrix elements, we confirmed that the density operator (26)
coincides with the rank 2 mixed state (6), where the function
F (f,f ′) is given by Eq. (19).

B. Remarks on the entanglement distribution between
stationary atomic qubits

Throughout the paper, we have assumed that the stationary
atoms are initially entangled, such that the fidelity is above the
threshold value of 1/2. In our previous paper, we suggested
that there is no need to introduce an additional entanglement
distribution protocol in our setup in order to entangle the
stationary atoms prior to the purification. Instead, it was
suggested to prepare initially both permanent atoms in the
ground state and run our purification scheme. We showed that
one successful purification round induces the entanglement of
the stationary atoms and ensures that the fidelity of resulting
density operator (almost) coincides with the fidelity f of the
temporary pairs ρ1

f and ρ2
f . In other words, one purification

round entangles two (initially separable) stationary atoms,
such that the fidelity of the temporary pairs is mapped to the
fidelity of the stationary density operator.

In our modified scheme, we utilize the same procedure as
in the original scheme. We generate two (separate) entangled
pairs and let them be conveyed through cavity C1 (C3), such
that the (probabilistic) entanglement protocol that produces
the four-qubit state, (12), is switched off. It can be shown that
a successful purification round with these two entangled pairs
transforms the state of the permanent atoms (prepared initially
in the ground state) into an entangled state described by

ρf = F0(f ) �+
A,B + (1 − F0(f ))�−

A,B

+G0(f )(|φ+
A,B〉〈φ−

A,B | + |φ−
A,B〉〈φ+

A,B |), (28)

with

F0(f ) = 1 + 48f + 32f 2∑
i(−1)i ci f i

, G0(f ) = 9 − 32f + 32f 2∑
i(−1)i ci f i

,

(29)

where c0 = 82, c1 = c2 = 64 are the only nonzero coefficients.

Obviously, the above state is no longer a rank 2 mixed state
as in Eq. (1) because of the off-diagonal contribution G0(f )
displayed in Fig. 4(c) by the dashed curve. The fidelity, (2),
associated with (28), however, is slightly larger than the fidelity
f associated with the temporary pairs ρ1

f and ρ2
f . The role of

this initialization round is solely to entangle the stationary
atoms, and therefore, it has to be followed by a number of
purification rounds leading to the gradual growth of fidelity,

F0(f ) < F1(f,F0) < · · · < Fn(f,Fn−1), (30)

and the gradual reduction of (off-diagonal) contributions,

G0(f ) > G1(f,G0) > · · · > Gn(f,Gn−1). (31)

Using the above sequences, we calculated the fidelity

F3(f,F2) = (1 + 48f + 32f 2)(25 − 50f + 194f 2)3

2
∑

i(−1)i di f i
(32)

and the respective off-diagonal contribution

G3(f,G2) = 274625 (9 − 32f + 32f 2)(1 − 2f + 2f 2)3

2
∑

i(−1)i di f i
,

(33)

which are motivated by the optimal number of purification
rounds obtained previously [see (11) and (21)] and where

d0 = 195493577, d1 = 1442887766, d2 = 4716352898,

d3 = 8883640864, d4 = 10517241220, d5 = 7944708952,

d6 = 3738576328, d7 = 934577152, d8 = 233644288

are the only nonzero coefficients.
In contrast to the dashed curve describing G0(f ) in

Fig. 4(c), the solid curve describing (33) deviates slightly
around the constant value of 0.004. To a good approximation,
therefore, the off-diagonal contribution G3(f,G2) can be
neglected and the resulting density operator takes the form of
the rank 2 mixed state, (1). We have verified, moreover, that the
output fidelity, (32), (almost) coincides with the output fidelity,
(21), displayed in Fig. 4(a) by the dashed curve. The price we
pay for one extra (successful) purification round prior to the
main sequence of rounds, therefore, is clearly compensated
by the more moderate demand of physical resources in our
purification scheme.

IV. SUMMARY AND DISCUSSION

In this paper, an efficient, high-fidelity scheme was pro-
posed to purify the low-fidelity entangled atoms trapped in
two remote optical cavities. This scheme is a modification
of the purification scheme proposed in our previous paper
[24], which exploits the natural evolution of spin chains
instead of CNOT gates. Similarly to the original scheme, the
modified scheme uses a cavity-QED framework, namely, (i)
short chains of atoms, (ii) high-finesse optical cavities, and
(iii) detectors for the projective measurement of atomic states.
In contrast to the original scheme, however, one additional
entanglement protocol was introduced in each repeater node,
and the laser beams which are used to control the entire scheme
were optimized. With the help of these modifications, an
almost-unit output fidelity was achieved after the same number
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of successful purification rounds as in the original scheme.
Similarly to the original paper, furthermore, the modified
scheme was supplied with a detailed experimental setup, and a
complete description of all necessary steps and manipulations
has been given. A comprehensive analysis of fidelities obtained
after multiple purification rounds was performed and the
optimal number of rounds was determined. We also discussed
in detail the initial distribution of entanglement between the
stationary qubits trapped in two remote cavities.

Throughout the paper, we have assumed that each purifi-
cation round is finalized successfully, leading to a gradual
growth, (9) or (30), of entanglement fidelity. In the case of
an unsuccessful purification event, i.e., when the outcomes of
the projective measurement disagree with (5), the stationary
atoms should be reinitialized and the entire scheme restarted.
Since the probability to get the two (of 24) combinations
of projective measurements for a successful purification is
rather low, the occurrence of multiple unsuccessful events
can require a large amount of atomic pairs in the chain
and unreasonable operational times. We stress, therefore, that
although the proposed purification scheme is experimentally
feasible, a practical mechanism that reduces unsuccessful
purification events has to be considered. This problem and
possible solutions shall be addressed in our future work.

The high-fidelity purification scheme proposed in this
paper enables one to perform multiple entanglement swapping
operations and thus opens a route towards an efficient and
experimentally feasible quantum repeater for long-distance
quantum communication. More specifically, in our experimen-
tal setup, each atom in node A has to be entangled with another
atom from node B right before they enter cavities C1 and C3 for
further processing. The (low-fidelity) entanglement between
these atoms is distributed nonlocally using the entanglement
distribution block indicated in Fig. 3(d) by the rectangle. In
order to entangle two (three-level) atoms located at distant
repeater nodes A and B, we find the entanglement distribution
scheme proposed in Ref. [38] the most appropriate. This
scheme is also realizable in the framework of cavity-QED
and, therefore, it utilizes the same physical resources as our
purification scheme.

By this scheme, a coherent-state light pulse interacts with
the coupled atom-cavity system in node A, such that the optical
field accumulates a phase conditioned upon the atomic state
in this node. Afterwards, the light pulse propagates to node B,
where it interacts with the second coupled atom-cavity system
and accumulates another phase conditioned upon the atomic
state in this node. The resulting density operator [25],

f |φ̃+
A,B〉〈φ̃+

A,B | + (1 − f )|φ̃−
A,B〉〈φ̃−

A,B |, (34)

with ∣∣φ̃±
A,B

〉 ≡ 1√
2
|C0〉|φ±

A,B〉 ± 1

2
e−ι̇ ηε |C1〉|1A,0B〉

+ 1

2
eι̇ ηε |C2〉|0A,1B〉,

describes the state of both atoms and the coherent light
pulse, where C0 ≡ √

η α, C1 ≡ √
η α eι̇ θ , C2 ≡ √

η α e−ι̇ θ

denote the phase-rotated and channel-damped coherent state
α, ε ≡ α2 sin θ , and f ≡ (1 + e−(1−η)α2(1−cos θ))/2 plays the
role of the entanglement fidelity.

The resulting (phase-rotated) coherent pulse becomes
disentangled from the atoms with the help of homodyne
detection followed by postselection [38] or, alternatively, using
unambiguous state discrimination [25]. This projects state (34)
onto an entangled state of two atoms that coincides with the
rank 2 mixed state, (1). We remark that the conditioned phase
rotation exploited in the entanglement distribution scheme is
naturally realized in a cavity-QED framework using the single
atom-cavity evolution in the dispersive interaction regime.
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APPENDIX A: DERIVATION OF HAMILTONIAN (14)

In this Appendix, we show that Hamiltonian (14) is
produced deterministically in our setup. Specifically, two
(three-level) atoms are subjected to the field of the (initially
empty) cavity C1 (C3) and the fields of laser beams L1 (L4)
and L2 (L5) simultaneously as displayed in Fig. 3(b). The
evolution of this coupled atom-cavity-laser system is governed
by the Hamiltonian (k = 1,2)

H1 = h̄ ωC a† a − ι̇ h̄
∑

k

[
g

2
a |e〉k〈0| + �

2
(e−iωL t |e〉k〈1|

+ e−iωP t |e〉k〈0|) − H.c.

]
+ h̄

∑
k

[ω1|1〉k〈1| + ωE|e〉k〈e|

+ω0|0〉k〈0|], (A1)

where g denotes the coupling strength of an atom to the cavity
mode, while � denotes the coupling strengths of an atom to
both laser fields.

We assume that ωC = ωP and switch to the interaction
picture using the unitary transformation

U1 = e−ι̇ t[
∑

(ω1|1〉k〈1|+ωE |e〉k〈e|+(ωL+ω1−ωP )|0〉k〈0|)+ωP a†a].

We assume, moreover, that 	L = 	C ≡ −	, where the
notation 	L ≡ (ωE − ω1) − ωL and 	C ≡ (ωE − ω0) − ωC

has been introduced. In the above interaction picture, therefore,
Hamiltonian (A1) takes the following form:

H2 = −ι̇ h̄
∑

k

[g

2
e−i	 ta |e〉k〈0|

+ �

2
e−i	 t (|e〉k〈1| + |e〉k〈0|) − H.c.

]
. (A2)

We require that 	 is sufficiently far detuned, such that
no atomic |e〉 ↔ |0〉 and |e〉 ↔ |1〉 transitions can occur. We
expand the evolution governed by Hamiltonian (A2) in series
and keep the terms up to the second order,

U2
∼= I − ι̇

h̄

∫ t

0
H2 dt ′ − 1

h̄2

∫ t

0

(
H2

∫ t ′

0
H2 dt ′′

)
dt ′.
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By performing integration and retaining only linear-in-time
contributions, we express this evolution in the form

U2
∼= I − ι̇

h̄
H3 t ∼= exp

[
− ι̇

h̄
H3 t

]
, (A3)

where the effective Hamiltonian is given by

H3 = h̄ �

4	

∑
k

[� |1〉k〈0| + g |1〉k〈0| a + H.c.] , (A4)

after removing the constant contributions.
At this stage, we switch from the atomic basis {|0〉,|1〉} to

the basis {|+〉,|−〉}, where

|+〉 = 1√
2

(|0〉 + |1〉) , |−〉 = 1√
2

(|0〉 − |1〉) . (A5)

In this basis, Hamiltonian (A4) takes the form

H4 = h̄ �

8	

∑
k

[
2 �SZ

k + g
(
SZ

k (a + a†) + (S†
k − Sk)(a − a†)

)]
,

(A6)

where Sk ≡ |−〉k〈+| and SZ
k ≡ |+〉k〈+| − |−〉k〈−|, and where

we have removed any constant contributions. We switch once
more to the interaction picture with respect to the first term in
(A6). In this interaction picture, we obtain

H5 = h̄
g �

8	

∑
k

[
SZ

k (a + a†)

+ (
S
†
k eι̇ �2

2	
t − Sk e−ι̇ �2

2	
t
)
(a − a†)

]
. (A7)

In the strong-driving regime, i.e., for � � {g,	}, we elim-
inate the last (fast-oscillating) term using the same arguments
as for the rotating-wave approximation. Hamiltonian (A7),
therefore, reduces to

H6 = h̄
g �

8	
(a + a†)

(
σX

1 + σX
2

)
, (A8)

where we have used the identity SZ
k = σX

k . The resulting
Hamiltonian, (A8), coincides with Hamiltonian (14) under the
notation J2 ≡ g �/(4	).

APPENDIX B: STEADY-STATE SOLUTION OF EQ. (13)

In this Appendix, we show that mixed state (12) is
conditionally generated by means of evolution (13), which
takes place simultaneously in both repeater nodes (A and B)
with the initial state

ρ̃0
AB = ρ1

f ⊗ ρ2
f ⊗ |0̄A,0̄B〉〈0̄A,0̄B | (B1)

in the steady-state regime. In Sec. III, we considered expres-
sion (15) based on the exponent eLt , which is difficult to
evaluate. Here we apply sequentially the steady-state solution
of Eq. (13) to the coupled (atom-atom-cavity) system in node
A and, afterwards, to the coupled system in node B.

In order to proceed, we consider first the solution of (13)
for an initially empty cavity C1 and a general mixed state of
two atoms in node A (i,j = 1, . . . ,4),

ρ0
A =

∑
i,j

(
ρ0

A

)
ij

∣∣uA
i

〉〈
uA

j

∣∣ ⊗ |0̄A〉〈0̄A|, (B2)

where we have switched to the atomic basis, (A5),
such that |uA

1 〉 = | +1A ,+2A〉, |uA
2 〉 = | −1A ,−2A〉, |uA

3 〉 =

| +1A ,−2A〉, and |uA
4 〉 = | −1A ,+2A〉 together form an orthog-

onal basis. To our best knowledge, the master equation, (13),
was solved in Refs. [39] and [40] only for an initial pure state
of atoms, which is not appropriate for use in our case. We
therefore (re)solved this master equation for an initial mixed
state of two atoms, (B2). Assuming the strong atom-cavity
coupling J2 � κ , the solution we found in the steady-state
regime κ t � 1 can be expressed as

ρss
A =

∑
i,j

(
ρ0

A

)
ij

λij

∣∣uA
i

〉〈
uA

j

∣∣ ⊗ ∣∣ − ui α
ss
A

〉〈 − uj αss
A

∣∣, (B3)

where αss
A = 2 ι̇ J2/κ is the amplitude of the coherent state,

λij = δ(ui−uj ),0, with u1 = 1, u2 = −1, and u3 = u4 = 0.
Recall that the evolution, (13), takes place simultaneously

in both repeater nodes, A and B, with initial state (B1), which
we cast in the form

ρ̃0
AB =

∑
i,j,k,l

(
ρ̃0

AB

)
ijkl

∣∣uA
i ,uB

k

〉〈
uA

j ,uB
l

∣∣ ⊗ |0̄A,0̄B〉〈0̄A,0̄B |

≡
∑
i,j

(
ρ0

A

)
ij

∣∣uA
i

〉〈
uA

j

∣∣ ⊗ |0̄A〉〈0̄A|, (B4)

where we have introduced the matrices(
ρ̃0

AB

)
ijkl

= 〈
uA

i ,uB
k

∣∣ρ1
f ⊗ ρ2

f

∣∣uA
j ,uB

l

〉
,
〈
uA

i ,uV
k

∣∣, (B5)(
ρ0

A

)
ij

=
∑
k,l

(
ρ̃0

AB

)
ijkl

∣∣uB
k

〉〈
uB

l

∣∣ ⊗ |0̄B〉〈0̄B | . (B6)

By identifying expressions (B2) and (B4), we conclude that
the density operator, (B3), gives the steady-state solution of
(13) obtained in node A for initial state (B1). Conditioned upon
the no-photon measurement of the leaked field from cavity C1,
this steady-state solution reduces to

〈0̄A|ρ̃ss
A |0̄A〉 =

∑
i,j

(
ρ0

A

)
ij

λij e−|αss
A |2uiuj

∣∣uA
i

〉〈
uA

j

∣∣
≡

∑
k,l

(
ρ0

B

)
kl

∣∣uB
k

〉〈
uB

l

∣∣ ⊗ |0̄B〉〈0̄B |, (B7)

where (
ρ0

B

)
kl

≡
∑
i,j

(
ρ̃0

AB

)
ijkl

λij e−|αss
A |2uiuj

∣∣uA
i

〉〈
uA

j

∣∣. (B8)

Similarly to node A, the density operator

ρss
B =

∑
i,j

(
ρ0

B

)
ij

λij

∣∣uB
i

〉〈
uB

j

∣∣ ⊗ ∣∣ − ui α
ss
B

〉〈 − uj αss
B

∣∣ (B9)

gives the steady-state solution of (13) for node B with initial
state (B8). Conditioned upon the no-photon measurement of
the leaked field from cavity C3, this solution reduces to

〈0̄A,0̄B |ρ̃ss
AB |0̄A,0̄B〉

=
∑
k,l

λkl

(
ρ0

B

)
kl

e−|αss
B |2ukul

∣∣uB
k

〉〈
uB

l

∣∣
=

∑
i,j,k,l

(ρ̃0λ)ijkl e
−|αss |2θijkl

∣∣uA
i ,uB

k

〉〈
uA

j ,uB
l

∣∣, (B10)

where the notation θijkl = uiuj + ukul , (ρ̃0λ)ijkl =
(ρ̃0

AB)ijkl λijλkl , and αss
A = αss

B ≡ αss was introduced.
The atom-cavity strong coupling ensures that |αss |2 � 1.
To a good approximation, this observation implies that the
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exponent in (B10) vanishes for θijkl �= 0:

〈0̄A,0̄B |ρ̃ss
AB |0̄A,0̄B〉 =

θijkl=0∑
i,j,k,l

(ρ̃0λ)ijkl

∣∣uA
i ,uB

k

〉〈
uA

j ,uB
l

∣∣. (B11)

Owing to the explicit form of (B1), we have routinely
computed the matrix elements (ρ̃0

AB)ijkl , which, however, are
rather bulky to display here. With the help of these matrix
elements, we obtained the normalized density operator, (B11),
in the form

ρ
1,2
f = f 2

2 − 4f + 4f 2
(|φ+

1A,1B,φ+
2A,2B〉〈φ+

1A,1B,φ+
2A,2B | + |ψ+

1A,1B,ψ+
2A,2B〉〈ψ+

1A,1B,ψ+
2A,2B |

− |ψ+
1A,1B,ψ+

2A,2B〉〈φ+
1A,1B,φ+

2A,2B | − |φ+
1A,1B,φ+

2A,2B〉〈ψ+
1A,1B,ψ+

2A,2B |)

+ (f − 1)2

2 − 4f + 4f 2
(|φ−

1A,1B,φ−
2A,2B〉〈φ−

1A,1B,φ−
2A,2B | + |ψ−

1A,1B,ψ−
2A,2B〉〈ψ−

1A,1B,ψ−
2A,2B |

− |ψ−
1A,1B,ψ−

2A,2B〉〈φ−
1A,1B,φ−

2A,2B | − |φ−
1A,1B,φ−

2A,2B〉〈ψ−
1A,1B,ψ−

2A,2B |), (B12)

which describes a four-qubit entangled state and coincides
with state (12).

APPENDIX C: DERIVATION OF HAMILTONIAN (17)

In this Appendix, we show that Hamiltonian (17) is
produced deterministically in our setup. Specifically, three
(three-level) atoms are subject to the field of (initially
empty) cavity C2 (C4) and the field of laser beam L1 (L4)
simultaneously as displayed in Fig. 3(c). The evolution of
this coupled atom-cavity-laser system is governed by the
Hamiltonian (k = 1,2,3)

H1 = h̄ ωC a† a

− ι̇ h̄
∑

k

[
g

2
a |e〉k〈0| + �

2
e−iωL t |e〉k〈1| − H.c.

]
+ h̄

∑
k

[ω1|1〉k〈1| + ωE|e〉k〈e| + ω0|0〉k〈0|] ,

(C1)

where g denotes the coupling strength of an atom to the cavity
mode, while � denotes the coupling strength of an atom to the
laser field.

We switch to the interaction picture using the unitary
transformation

U1 = e−ι̇ t[
∑

(ω1|1〉k〈1|+ωE |e〉k〈e|+ω0|0〉k〈0|)+(ω1+ωL−ω0)a†a].

In this picture, Hamiltonian (C1) takes the form

H2 = h̄ (	L − 	C) a† a − ι̇ h̄
∑

k

[g

2
a ei	L t |e〉k〈0|

+ �

2
ei	L t |e〉k〈1| − H.c.

]
, (C2)

where the notation 	L ≡ (ωE − ω1) − ωL and 	C ≡ (ωE −
ω0) − ωC has been introduced.

We require that 	L and 	C are sufficiently far detuned, such
that no atomic |e〉 ↔ |0〉 and |e〉 ↔ |1〉 transitions can occur.
We expand the evolution governed by Hamiltonian (C2) in
series up to the second order. By performing integration and
retaining only linear-in-time contributions, we express this
evolution in the form (A3), where the effective Hamiltonian
is given by (we assume that the cavity field is initially in the
vacuum state)

H3 = h̄ 	 a† a + h̄
g �

4 	L

∑
k

[a |1〉k〈0| + H.c.] , (C3)

where 	 ≡ 	L − 	C . We switch one more time to the
interaction picture with respect to the first term in (C3). In
this interaction picture, the Hamiltonian takes the form

H4 = h̄
g �

4 	L

∑
k

[a e−i	 t |1〉k〈0| + H.c.]. (C4)

We require, finally, that 	 is sufficiently far detuned.
As above, we expand again the evolution governed by
Hamiltonian (C4) in series up to the second order and retain
only linear-in-time contributions after the integration. This
leads to the effective Hamiltonian (i,j = 1,2,3)

H5 = h̄ g2�2

16 	2
L 	

[
i �=j∑
i,j

|0i ,1j 〉〈1i ,0j | +
∑

k

|1〉k〈1|
]
. (C5)

Since the second term in this Hamiltonian commutes with
the first term, we eliminate the second term by means of an
appropriate interaction picture. The resulting Hamiltonian, i.e.,
the first term in (C5), coincides with Hamiltonian (17) under
the notation J3 ≡ g2�2/(16 	2

L 	).
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